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Abstract. This study proposes a new Deep-IRT with a temporal con-
volutional network for knowledge tracing. The proposed method stores
a student’s latent multi-dimensional abilities at each time point and es-
timates the latent ability which comprehensively reflects the long-term
history of ability data. To demonstrate the performance of the proposed
method, we conducted experiments using benchmark datasets and simu-
lation data. Results indicate that the proposed method improves the per-
formance prediction accuracy of earlier Deep-IRT methods while main-
taining high parameter interpretability. The proposed method exceeds
the performance of earlier methods especially when the student’s ability
fluctuates according to past abilities.

Keywords: Deep Learning - Item Response Theory - Knowledge Trac-
ing

1 Introduction

Recently, adaptive learning has been attracting attention to provide optimal
support based on a student’s ability growth in online learning systems. In the
field of artificial intelligence, Knowledge Tracing (KT) has been studied actively
to provide optimal support for students to maximize learning efficiency [6,17,
18,22,24,26,27]. An important task is discovering concepts that the student
has not mastered based on the student’s prior learning history data collected
by online learning systems. In addition, accurately estimating students’ evolving
multi-dimensional abilities and predicting a student’s performance (correct or
incorrect responses to an unknown item) are important for adaptive learning.
Many researchers have developed various methods to solve KT tasks. Bayesian
Knowledge Tracing (BKT) [6] and Item Response Theory (IRT) [3] are widely
used probabilistic approaches. BKT traces a process of student ability growth
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following a Hidden Markov process. It estimates whether the student has mas-
tered the skill or not and predicts the student’s responses to unknown items. By
contrast, IRT predicts a student’s correct answer probability for an item based
on the student’s latent ability parameter and item-characteristic parameters.
Although BKT and IRT have high parameter interpretability, they are unable
to capture the multi-dimensional ability sufficiently. For that reason, they are
unable to predict a student’s performance accurately when a learning task is
associated with multiple skills.

To overcome the limitations, various deep-learning-based methods have been
proposed [7,17, 18, 24, 27]. Recently, Deep item response theory (Deep-IRT) meth-
ods combining deep learning and item response theory have been proposed to
provide educational parameter interpretability and to achieve accurate perfor-
mance prediction [18-20, 24]. Yeung (2019) [24] proposed a Deep-IRT (designated
as Yeung-DI) combining a memory network architecture [27] with an IRT mod-
ule. Yeung-DI adds hidden layers to a memory network architecture to estimate
a student’s ability and item difficulty parameters such as IRT. However, ability
parameters of Yeung-DI are difficult to interpret because they depend on each
item difficulty parameter. The most difficult challenge is to incorporate the abil-
ity and item parameters independently into a deep learning-based method so as
not to degrade the prediction accuracy.

Tsutsumi et al. (2021) proposed a Deep-IRT (designated as Tsutsumi-DI)
that has two independent redundant networks: a student network and an item
network [20]. Tsutsumi-DI learns student parameters and item parameters inde-
pendently to avoid impairment of the predictive accuracy. Most recently, Tsut-
sumi et al. (2024) combined Tsutsumi-DI with a novel hypernetwork (designated
as Tsutsumi-HN) to optimize the degree of forgetting of the past latent variables.
Tsutsumi-HN achieves the highest ability parameter interpretability and student
response prediction accuracies among the existing methods to which it was com-
pared. Especially, it is noteworthy that Tsutsumi-HN outperforms the attentive
knowledge tracing [7] (designated as AKT), which provides state-of-the-art per-
formance of response prediction.

Nevertheless, room for improvement remains for the prediction accuracy of
the Deep-IRTs (Tsutsumi-DI and Tsutsumi-HN). They estimate a student’s abil-
ity using only a most recent latent ability parameter. In general, the latest ability
depends on past ability values while a student addresses items in the same skill.
Because current ability estimates cannot adequately reflect past ability values,
it interrupts accurate estimation of the ability transition. As a result, the per-
formance prediction accuracy might be impaired or biased.

To resolve that difficulty, we propose a new Deep-IRT with a Temporal
Convolutional Network (TCN) [2,15] that reflects features of the past multi-
dimensional abilities to the latest ability estimate. Reportedly, TCN predicts
time-series data more accurately than RNN-based models such as LSTM [11]
and GRU [5]. Different from LSTM and GRU, which only refer to the previous
latent state, TCN stores features of longer-term latent states. Therefore, the
proposed method stores the student’s latent multi-dimensional abilities at each
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time point and comprehensively reflects the long-term ability history data dur-
ing the student’s performance prediction. We conducted experiments to compare
the proposed method’s performance to those found for earlier KT methods. The
results demonstrate that the proposed method improves the performance pre-
diction accuracy of earlier Deep-IRT methods while maintaining high parameter
interpretability. Particularly, the proposed method outperforms a state-of-the-
art method, Tsutsumi-HN, which provides the highest performance among the
current knowledge tracing methods.
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Fig. 1. Structure of Yeung-DI. Fig. 2. Structure of Tsutsumi-DI.

2 Earlier Deep-IRT methods

Several Deep-IRT methods have been proposed to provide educational parame-
ter interpretability and to achieve accurate performance prediction by combining
deep learning and item response theory. Yeung proposed a Deep-IRT method
(Yeung-DI) combining a memory network architecture [27] with an IRT module
[24]. Yeung-DI adds a hidden layer to a memory network architecture and esti-
mates ability and item difficulty parameters. Fig. 1 presents a simple illustration.
Yeung-DI predicts a student’s response probability p;; to an item j at time ¢

using the student’s ability 05 and item difficulty 5§ such as IRT [24].
Dt = sigmoid (3,0 % gé’f) _ ﬁéj)) . )

However, in Yeung-DI, the ability parameter Gét) depends on each item because
it is estimated using features of the item difficulty parameter. Therefore, the
ability and the item difficulty parameters cannot be interpreted separately.

To resolve that difficulty, Tsutsumi et al. propose a novel Deep-IRT method
(Tsutsumi-DI) comprising two independent neural networks: The student net-
work and the item network [18,20], as presented in Fig. 2. Tsutsumi-DI can
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estimate student parameters and item parameters independently such that the
prediction accuracy does not decline because the two independent networks are
designed to be redundant [8, 13, 14]. In addition, the item network of Tsutsumi-DI
estimates the two difficulty parameters of item j: The item characteristic diffi-
culty ﬁi(tjc)m and the skill difficulty 5£ﬁi)11~ A recent study assessed a Deep-IRT with
hypernetwork architecture (Tsutsumi-HN) to optimize the degree of forgetting of
the past latent ability variables [18,19]. Tsutsumi-HN shows the highest ability
parameter interpretability and response prediction accuracies compared to ex-
isting methods. Furthermore, it can identify a relation among multi-dimensional
skills and can capture multi-dimensional ability transitions. Tsutsumi-DI and
Tsutsumi-HN predict a student’s response probability p;; to an item j at time ¢
using the diﬂe(:r)ence between a student’s ability (Y and the sum of two difficulty
J

item and 55(1211 as follows.

parameters (3

py = sigmoid (3.0 0 — (89}, + AL (2)

3 Proposed Method

3.1 Temporal Convolutional Network

Recently, convolutional neural networks (CNN) [12] and Transformer [21] have
attracted attention as prediction methods for time-series data. As a neural net-
work with a convolutional layer and a pooling layer, CNN extracts features from
two-dimensional data such as images by compressing local elements into a feature
using the sliding window method. In addition, temporal convolutional network
(TCN) has been developed as a method to reflect past data used for prediction
by convolving long-term time-series data in multiple layers [2, 15]. Actually, TCN
has been reported to predict time-series data more accurately than RNN-based
models such as LSTM [11] and GRU [5]. TCN stores features of longer-term
latent states, different from LSTM and GRU, which only refer to the previous
latent state. By contrast, the Transformer stores features of longer-term data by
calculating the relative distance and the weight of the relations between each el-
ement of the input vector. Transformer provides highly accurate data prediction
in many fields.

A recent study comparing CNN and Transformer performance found that
the prediction accuracies of Transformer are superior to those of CNN when
the training data size is sufficiently large [1,4]. However, Transformer is known
to cause overfitting often when using small or sparse datasets. Although CNN
has slightly lower prediction accuracy than that of a Transformer, it can accom-
modate sparse data and can train a model efficiently with lower memory cost.
Furthermore, for the field of KT, earlier methods based on Transformer (|7,
16]) have shown high prediction accuracy. However, they have low parameter
interpretability. Their educational applicability remains limited.
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Fig. 3. Structure of the proposed method.

3.2 Deep-IRT with Temporal Convolutional Network

Although Tsutsumi-DI and Tsutsumi-HN provide high parameters independently
and achieve performance prediction, they estimate the student’s ability using
only the most recent latent ability parameters. Therefore, current ability esti-
mates cannot adequately reflect past ability history data. However, the latest
ability depends on past ability values under circumstances where a student ad-
dresses items in the same skill. This problem might impair the performance
prediction accuracy.

To resolve the difficulty of Tsutsumi-DI and Tsutsumi-HN, we propose a new
Deep-IRT with a temporal convolutional network. Fig. 3 presents the structure
of the proposed method. We add TCN as the Skill Convolutional Network to
Deep-IRT [18] to reflect features of the past multi-dimensional abilities to the
ability estimate. The Skill Convolutional Network stores the student’s latent
multi-dimensional abilities at each time point and estimates the latent ability,
comprehensively reflecting the long-term past ability history data. In Section
3.3, we describe details of the Skill Convolutional Network. In addition, the
proposed method has the student network and the item network. In the student
network, the ability parameters 6;; of the student ¢ at time ¢ are estimated based
on the latent multi-dimensional ability variable M. In the item network, the

model estimates the item characteristic difficulty parameter ﬁi(tjgm and the skill

difficulty BS(QH. Section 3.4 and Section 3.5 respectively present details of the
student network and the item network.
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Fig. 4. Skill Convolutional Network.

3.3 Skill Convolutional Network

With a Skill Convolutional Network, the method estimates the optimal weight
parameters related to a student’s past ability values by convolving the latent abil-
ity valuables using the sliding window method. The Skill Convolutional Network
structure is shown in Fig. 4. Skill Convolutional Network employs Causal Dilated
Convolution [15,25] and Residual Connection[9, 10]. Causal Dilated Convolution
extracts features of long time-series data by convolving each input sequence ac-
cording to "dilation" to avoid increasing the number of parameters. Dilation
represents the distance between the elements of the input sequence used to com-
pute the output value. When the dilation is 1, this convolution method is the
same as general convolution. Residual Connection adds the input value of the
first layer to the last output value to avoid the vanishing gradient for the deep
layers. The proposed method uses the two methods above to convolve the latent
ability values in multiple layers.

The input vector th) is encoded values of the latent variable M7 which
represents the latent multi-dimensional ability at each time ¢. A student’s latent
ability Hgt) € RV is calculated as

N
0 =3 wa (M), (3)
=1

gt), Hgt_1)7 0?—2), .-+ } are N-dimensional abilities. For sim-

)’ agtfl)’ 9§t72)’ o

where the vectors {0

plicity, we explain them using the one-dimensional column vector {0?
In the first layer, the input vector is calculated as

k—1
o0 =" Mg, (4)
1=0
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In the n-th layer, the latent ability values are calculated as
0y = Z £ -8, (5)

where fi(") is the weight parameter and d,, = {1,2,4,---,2"} is the dilation
parameter in the n-th layer. Also, k is the kernel size: k = kjus in the last
layer, and k = 2 otherwise. Therefore, the layer size n and the kernel size k
determine the input size of ability history data. Finally, the output of the Skill
Convolutional Network is calculated as

60, =60 1o\, (6)

conv
Therein, éﬁi?m is a latent ability value reflecting the student’s past ability history
data.

3.4 Estimation of student parameters

In the student network, the student ability ) = {Hm 1,0 m 2, . ,91(7:)7N|2 <m}
is estimated from the latent variable M/ in the neural networks, similarly to the
method described by Tsutsumi et al. [20]. Then, we calculate the weighted linear
summations of the student ability 0% and the output of Skill Convolutional

m

Network as 6., = {Gcom 0 com} gsc ,HEOM N} respectively.
N
00 =3 "wbly, | (7)
1=1
~ N ~
0 = wulioni )

=1

Therein, wy; is an attention weight that signifies the degree of the relation be-
tween the latent skill and the actual skill of item j.

3.5 Estimation of item and skill parameters

In the item network, the input of the item network is an embedding vector
q; € R” calculated from the item j’s tag and the student’s response. Here, J

represents for the number of items. We estimate the item characteristic difficulty
(4)

item as

parameter [

/ng) — GELU (W(Bl)qj + 7-(,31)) , (9)

/B(J) — GELU (W(Bm ﬁ 7) L+ T(ﬂm)) (10)
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ﬁ(j) _ W(ﬁitcm)ﬁsi) + 7 (Bitem) (11)

item

Next, the skill difficulty ,Bs(ii)n is estimated using the embedding vector s; €
RS calculated from the skill tag of item j and the student’s response. Here, S
represents the number of skills.

VW = GELU (WO 4 700, (12)
,77(131‘) — GELU (W(%”)’Y%),l + T(’Ym)) 7 (13)
55(1{311 _ W(ﬂskiu),y%) + 7(ﬁskill). (14)

Each output of the last layer ﬁi(tje)m and ﬁs(l{i)u denotes the j-th item characteristic

difficulty parameter and the difficulty parameter of the required skills to solve the
j-th item. Then, the item i’s difficulty is calculated from two difficulty parameters

51(ng and ﬁéii)ll- _ '
BUY) = tanh (Bi(ﬁe)m + /65(111)11) . (15)

The proposed method predicts a student’s response probability using the student
ability #®) and item difficulty 5U) as presented below.

Djt = sigmoid(0®) — B1)), (16)

The proposed method updates the latent variable M} according to the earlier
method [27]. In addition, the loss function of the proposed method employs
cross-entropy, which reflects classification errors [18].

4 Experiment

5 Prediction accuracy

This section presents a comparison of the prediction accuracies for student per-
formance of the proposed methods with those of earlier methods (Yeung-DI
[24], AKT [7], and Tsutsumi-HN [19]). We used five benchmark datasets as AS-
SISTments2009, ASSISTments2017, Statics2011, Junyi, and Eedi. For ASSIST-
ments2009, ASSISTments2017, and Eedi with item and skill tags, we adopt
both tags as input data. Also, for Statics2011, and Junyi with only skill tags,
we employ the skill as input data. Table 1 presents the number of students (No.
Students), the number of skills (No. Skills), the number of items (No. Items),
the rate of correct responses (Rate Correct), and the average length of the items
which students addressed (Learning length).

This experiment is conducted to evaluate the prediction accuracies of the
methods based on standard five-fold cross-validation. For each fold, 20% students
are used as the test set, 20% are used as the validation set, and 60% are used as
the training set according to an earlier study [7]. The optimal number of layers
and kj,s: of Skill Convolutional Network are decided to maximize AUC for the
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Table 1. Summary of Benchmark Datasets

Dataset No. students No. skills No. Items Rate Correct Learning length
ASSISTments2009 4151 111 26684 63.6% 52.1
ASSISTments2017 1709 102 3162 39.0% 551.0
Statics2011 333 1223 N/A 79.8% 180.9
Junyi 48925 705 N/A 82.78% 345

Eedi 80000 1200 27613 64.25% 177

Table 2. Optimal numbers of layers and ki,s: of the proposed method

Data set layer|kiqst
ASSISTments2009| 5 3
ASSISTments2017| 8 2
Statics2011 3 7
Junyi 8 2
Eedi 8 2

validation set, as shown in Table 2. For all methods, we employ the tuning
parameters according to the earlier studies [7,18,24]. If the predicted correct
answer probability for the next item is 0.5 or more, then the student’s response
to the next item is predicted as correct. Otherwise, the student’s response is
predicted as incorrect. For this study, we leverage two metrics for prediction
accuracy: AUC score and Accuracy score.

Tables 3 present the results, with the model having the higher performance
given in bold. Results indicate that the proposed method provides the best av-
erage AUC and Accuracy scores. The proposed method outperforms Yeung-DI,
AKT, and the Tsutsumi-HN for ASSISTments2019, ASSISTments2017, Eedi,
and Junyi. These results demonstrate that reflecting the past ability history
data by TCN is effective for improving the prediction accuracy. In addition,
these datasets are large-scale datasets including more than 1000 students. The
sufficient number of students for model training is one reason for the improved
accuracy of the proposed method. By contrast, the proposed method tends to
have lower prediction accuracies for statics2011 than AKT has. For Statics2011
and Junyi, the prediction accuracy of the proposed method is comparable to
that of AKT. A reason for the limited improvement was inferred: the TCN did
not work effectively because the student’s ability might change independently of
the past ability at each time point.

6 Parameter Interpretation

6.1 Estimation accuracy of ability parameters

In this section, to evaluate the interpretability of the ability parameters of the
proposed method according to the earlier study [18], we use simulation data gen-
erated from Temporal IRT [23] to compare parameter estimates with those of
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Table 3. Prediction accuracies of student performance
Dataset metrics  |Yeung-DI [24] AKT[7] Tsutsumi-HN[19]|  Proposed
AUC 80.68+/-0.46 | 82.20+/-0.25 81.98+/-0.54 |82.95+4/-0.30
ASSISTments2009)\ - vacy| 7664+ /-0.54 | 77.304/-0.55 | 77.15+/-0.55 | 77.60+ /-0.56
AUC | 70.61+/-052| 74.54+/-0.21 | 75.13+/-0.20 |75.49+/-0.36
ASSISTments2017) \ - racy| 68.21+/-0.57 | 69.83+/-0.06 | 70.69+/-0.60 | 70.85-+/-0.50
Statica2011 AUC  [81.121/-0.53 |82.151 /-0.35| 81.57+/-0.50 | 82.02+/-0.39
s Accuracy| 80.32+/-0.80 |80.414/-0.67| 80.114/-0.92 | 80.40+/-0.80
o AUC | 77.70+/0.21| 78.13+/-0.39 | 77.911/-0.37 |78.14+/-0.43
Juny Accuracy| 86.66+/-0.29 | 86.79+/-0.17 | 86.65+/-0.15 |86.85+/-0.14
Eedi AUC 75.62+/-0.15 | 77.58+/-0.21 | 78.97+/-0.10 |79.14 +/-0.11
Accuracy| 71.35+/-0.24 | 72.35+/-0.21 | 73.38+/-0.13 |73.55+/-0.13
Aver AUC 77.15 78.92 79.11 79.60
verage Accuracy|  76.63 77.54 77.60 77.81

earlier Deep-IRTs [24, 18] and the proposed method. Temporal IRT is a Hidden
Markov IRT that models the student ability changes following Hidden Markov
processes with a parameter to forget past response data. It estimates student
i’s ability 6;; at time ¢, item j’s discrimination parameter a;, and item j’s
difficulty parameter b;. The prior of ;; is a normal distribution described as
00 ~ N(0,1), 0 ~ N(0;t—1,€). Therein, € represents the variance of 6;;. It
controls the smoothness of a student’s ability transition. Especially, it is note-
worthy that e reflects the degree of dependence of the student’s current ability
on past ability values. As € becomes small (large), the current ability increases
the degree of the dependence (independence) on past abilities. Therefore, as €
increases, the fluctuation range of the true ability increases at each time point.
In addition, the priors of the item parameters are loga ~ N (0,1), b ~ N(0,1).

In this experiment, each dataset includes 2000 student responses to
{50,100, 200,300} items. First, we estimate item parameters a and b using
1800 students’ response data. Next, given the estimated item parameter, we
estimate the student’s ability parameters ;; at each time using the remain-
ing 200 students’ response data. Additionally, we obtain results obtained using
e ={0.1,0.3,0.5,1.0} for each dataset.

We calculate the Pearson’s correlation coefficients, the Spearman’s rank cor-
relation coefficients, and the Kendall rank correlation coefficients using a stu-
dent’s abilities 0; at time t € {1,2,---,T}, as estimated using the true model
and using the Deep-IRT methods. Next, we average these correlation coefficients
of all students. The proposed method employs eight layers and kj,s¢ = 2 in TCN
for all datasets.

Table 4 presents the average correlation coefficients of the methods for the
respective conditions. Table 4 shows that the proposed method has higher cor-
relation than the earlier Deep-IRTs for small variances of the ability parameters
(e = {0.1,0.3}). The small variance € indicates that the ability depends strongly
on past ability history data. Therefore, TCN functions effectively and improves
the estimation accuracy by reflecting past ability values. However, the large vari-
ance (e = {0.5,1.0}) reflects a weak relation between current and past ability val-
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Table 4. Correlation coefficients of the estimated abilities
No. items 50 100 200 300 50 100 200 300 50 100 200 300
€ Method Pearson Spearman Kendall
Yeung-DI |0.63 0.67 0.74 0.74|/0.63 0.66 0.75 0.75(0.44 0.47 0.55 0.55
0.1|Tsutsumi-HN|0.73 0.77 0.85 0.82(/0.74 0.78 0.88 0.87(/0.54 0.59 0.70 0.69
Proposed |0.86 0.90 0.91 0.89(/0.87 0.91 0.94 0.94(/0.68 0.74 0.79 0.79
Yeung-DI |0.73 0.80 0.81 0.82|/0.75 0.83 0.86 0.87(0.55 0.63 0.66 0.67
0.3|Tsutsumi-HN|0.82 0.86 0.86 0.86(/0.85 0.91 0.94 0.95|/0.66 0.74 0.79 0.80
Proposed |0.84 0.91 0.90 0.91{/0.88 0.93 0.95 0.95|/0.67 0.77 0.80 0.80
Yeung-DI |0.77 0.80 0.81 0.81|/0.81 0.86 0.88 0.890.61 0.65 0.68 0.69
0.5/ Tsutsumi-HN|0.85 0.84 0.83 0.82(/0.90 0.93 0.94 0.95(/0.71 0.76 0.78 0.80
Proposed |0.85 0.84 0.82 0.81(/0.89 0.92 0.92 0.89(/0.71 0.73 0.73 0.70
Yeung-DI |0.79 0.81 0.82 0.81(/0.83 0.88 0.89 0.890.63 0.68 0.70 0.69
1.0/ Tsutsumi-HN|0.82 0.80 0.81 0.79 (|0.89 0.92 0.94 0.94(/0.70 0.75 0.79 0.79
Proposed |0.80 0.79 0.80 0.79(/0.88 0.92 0.92 0.93{/0.68 0.74 0.75 0.76

ues. Then it engenders rapid ability fluctuating at each time point. In this case,
Tsutsumi-HN estimation ability by only the most recent ability and response
data provides higher correlation. Results suggest that the proposed method is
superior when the current ability depends on past abilities; Tsutsumi-HN is su-
perior otherwise. It is noteworthy that no significant difference was found in the
correlation coefficients between the ability estimates of the proposed method
and those of Tsutsumi-HN. The proposed method provides comparably high
estimation accuracies to those of Tsutsumi-HN.

6.2 Student ability transitions

As presented in this section, we visualize the ability transitions estimated using
the proposed method and verify the accuracy of the ability estimation. Visual-
ization of ability transition helps both students and teachers to identify students’
strengths and weaknesses. We use the ASSISTments2009 dataset according to
earlier studies [19, 24].

First, Fig. 5 depicts an example of a student’s one-dimensional ability transi-
tions estimated using Tsutsumi-HN and the proposed method. The vertical axis
shows the student’s ability value on the right side. The horizontal axis shows
the item number. The student response is shown by filled circles "e" when the
student answers the item correctly. It is shown by hollow circles "o" otherwise.
DeepIRT-HN shows that the ability barely changes after it increases rapidly in
items 1-5. Because DeepIRT-HN estimates an ability using only a most recent
ability parameter, it might cause overfitting when a student continuously answers
items correctly (incorrectly). As a result, the estimated ability converges to an
extremely high (low) value. By contrast, the proposed method shows that the
ability increases gradually as the student answers items correctly by estimating
an ability reflecting past ability history data.
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Fig. 6. Example of a student’s multi-dimensional ability transition.

Second, Fig. 6 depicts an example of student multi-dimensional ability tran-
sitions of each skill estimated using the proposed method. We use the first 30
responses. The student attempted four skills: "equation solving more than two
steps" (shown in grey), "equation solving two or few steps" (shown in green),
"ordering factions" (shown in orange), and "finding percents" (shown in yellow).
The proposed method estimates abilities considering relations among the skills.
Therefore, when a student answers an item correctly (or incorrectly), the abilities
of the other skills change with the ability of the corresponding skill. In addition,
as shown in Fig. 5, each ability fluctuates gradually, reflecting the student’s re-
sponses while a student is addressing items in the same skill. However, when
the student answers an item in a different skill, the estimated ability value fluc-
tuates considerably. Actually, it is unlikely that the ability of a particular skill
changes rapidly. In future work, we expect to improve the estimation accuracy
and interpretability of multi-dimensional ability.

7 Conclusion

This article proposed a new Deep-IRT with a temporal convolutional network
for knowledge tracing. The proposed method stores the student’s latent multi-
dimensional abilities at each time point and estimates the latent ability which
comprehensively reflects the long-term ability history data. To demonstrate the
performance of the proposed method, we conducted experiments using bench-
mark datasets and simulation data. Results indicate that the proposed method
improves the performance prediction accuracy of earlier Deep-IRT methods while
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maintaining high parameter interpretability. Especially when the ability fluctu-
ates depending on past abilities, the proposed method exceeds the performance
of earlier methods. As future work, we expect to improve the estimation accuracy
and interpretability of its multi-dimensional ability.
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