4. 述語論理

植野真臣

電気通信大学情報数理工学コース

本授業の構成

第1回 10月6日:第1回 命題と証明

第2回 10月13日:第2回集合の基礎、全称記号、存在記号

第3回 10月20日:第3回 命題論理 第4回 10月27日:第4回 述語論理

第5回 11月 3日:第5回 述語と集合

第6回 11月10日:第6回 直積と冪集合 (出張中につきHPの資料でオンデマンドで

自習してください)

第7回 11月17日: 第7回 様々な証明法 (1)

11月24日:調布祭の後片付けで休み

第8回 12月 1日:第8回 様々な証明法 (2)

第9回 12月8日 様々な証明法 (再帰的定義と数学的帰納法)

第10回 12月15日:第10回 写像(関数)(1) 第11回 12月22日:第11回 写像(関数)(2)

第12回 1月5日:第12回 写像と関係:二項関係、関係行列、

グラフによる表現

第13回 1月19日: 第13回 同値関係

第14回 1月26日:第14回 順序関係:半順序集合、

ハッセ図、全順序集合、上界と下界

第15回 2月2日:第15回 期末試験

1. 本日の目標

- 1. 述語論理とは何かを理解する
- 2. 真理集合
- 3. 述語の同値性
- 4. 全称命題と存在命題
- 5. 述語演算
- 6. 述語論理での含意
- 7. 述語と集合は等価

前回まで習ったこと

▶命題

- > ソクラテスは人間である
- $> 2^2 + 1 = 5$
- > 2は偶数である

前回まで習ったこと

▶命題

- > ソクラテスは人間である
- \rightarrow 2² + 1 = 5
- > 2は偶数である

→より一般化すると述語論理 なる。

2. 述語

Def

述語(Predicate)とは、値の決まっていない変数(自由変数)を含み、その変数の値を定めれば、真か偽か判断できる記述

- xは人間である
- $x^2 + 1 = 5$
- xは偶数である

3. 記法

自由変数xについての述語を表すのに, P(x), Q(x),…などの記号で表す。

述語P(x)の自由変数に値aを代入したものをP(a)と書く。P(x)を「自由変数xについての述語」という。

例

- P(x): 「xは人間である」, Q(x): $x^2 + 1 = 5$
- (1) P(ソクラテス):「ソクラテスは人間である」
- (2) $Q(2): 2^2 + 1 = 5$
- 注) (2)より,方程式も等式を用いた特別な述語の一つであることがわかる。

4. 述語と条件

- ▶「**条件**」という言葉は,しばしば述語と同じ意味で用いられる。
- ▶ 自由変数xについての述語P(x)のことを,xについての条件と呼ぶことがある。
- > このとき,要素aを述語P(x)の自由変数x に代入した命題P(a)が真であることを, 「要素aは,条件P(x)をみたす」という。

5. 真理集合

Def

P(x)は自由変数xについての述語で,xの**変域**(xの取り得る値の範囲)は集合Uとする。 Uの要素のうち, P(x)の自由変数xに代入した命題が真になるものをすべて集めた集合,条件P(x)を満たすUの要素集合を, $A = \{x | P(x)\}$ と書き,述語P(x)の真理集合という。

例 変域が変わると同じ述語でも真理集合が大きく変わる。

- 自由変数 $x \in \mathbb{N}$ についての述語「x < 3」を P(x)とする。このとき, $A = \{x | P(x)\} = \{0,1,2\}$
- 自由変数 $x \in \mathbb{N}$ についての述語「 $|x| \le 1$ 」を P(x)とする。このとき, $A = \{x | P(x)\} = \{0,1\}$
- 自由変数 $x \in \mathbb{R}$ についての述語「 $|x| \le 1$ 」を P(x)とする。このとき, $A = \{x | P(x)\} = \{x | -1 \le x \le 1\}$
- 自由変数 $x \in \mathbb{C}$ についての述語「 $|x| \leq 1$ 」を P(x)とする。このとき, $A = \{x | P(x)\}$ は, 複素数平面の単位円の円周およびその内部

 $y (\cos t, \sin t)$ 1 x

- 自由変数 $x \in \mathbb{N}$ についての述語「 $x^2 4x = 0$ 」 の真理集合は, $A = \{x | x^2 - 4x = 0\} = \{0,4\}$
- 自由変数 $x \in \mathbb{N}$ についての述語 $\int x^2 x + \frac{1}{4} = 0$ 0」の真理集合は, $A = \{x | x^2 - x + \frac{1}{4} = 0\} = \emptyset$
- 自由変数 $x \in \mathbb{R}$ についての述語「 $(x-2)^2 \ge 0$ 」の真理集合は, $A = \{x | (x-2)^2 \ge 0\} = \mathbb{R}$
- ・ 自由変数 $x \in \mathbb{R}$ についての述語「 $(x-2)^2 < 0$ 」の真理集合は, $A = \{x | (x-2)^2 < 0\} = \emptyset$

6. 同值

Def P(x), Q(x)を自由変数xについての述語とする。

 $\{x|P(x)\} = \{x|Q(x)\}$ であるとき,述語P(x)とQ(x)は「**同値である**」という。 $P(x) \equiv Q(x)$ または $P(x) \Leftrightarrow Q(x)$ と書く。

例題

自由変数 $x \in \mathbb{N}$ についての述語 「x < 3」を P(x)とする。自由変数 $x \in \mathbb{N}$ についての述語 「 $x \le 2$ 」を Q(x)とする。このとき, P(x)とQ(x)は同値か?

解答

自由変数 $x \in \mathbb{N}$ についての述語 「x < 3」を P(x)とする。自由変数 $x \in \mathbb{N}$ についての述語 「 $x \le 2$ 」を Q(x)とする。

このとき, $\{x|P(x)\} = \{x|Q(x)\} = \{0,1,2\}$ 。従って, $P(x) \equiv Q(x)$

例題

自由変数 $x \in \mathbb{R}$ についての述語 「x < 3」を P(x)とする。自由変数 $x \in \mathbb{R}$ についての述語 「 $x \le 2$ 」を Q(x)とする。このとき, P(x)とQ(x)は同値か?

解答

自由変数 $x \in \mathbb{R}$ についての述語「x < 3」を P(x)とする。自由変数 $x \in \mathbb{R}$ についての述語 「 $x \leq 2$ 」を Q(x)とする。

このとき,
$$\{x|P(x)\} = \{x|x < 3\}$$
, $\{x|Q(x)\} = \{x|x \le 2\}$.

P(2.5)は真であるがQ(2.5)は偽 $\exists x \in \mathbb{R}[P(x), \neg Q(x)]$

従って,
$$P(x) \not\equiv Q(x)$$

7. 十分条件と必要条件

Def. P(x), Q(x)を自由変数xについての述語とする. $\{x|P(x)\}\subseteq \{x|Q(x)\}$ となるとき, P(x)はQ(x)の十分条件であるといい, Q(x)はP(x)の必要条件であるという。

自由変数 $x \in \mathbb{R}$ についての述語「 $x \le 2$ 」を P(x)とする。自由変数 $x \in \mathbb{R}$ についての述語「x < 3」を Q(x)とする。

$$\{x|P(x)\} \subseteq \{x|Q(x)\}$$

なので, P(x)はQ(x)の十分条件であるといい, Q(x)はP(x)の必要条件である

8. 必要十分条件

Def. P(x)がQ(x)の十分条件であり、か つ,必要条件であるとき,P(x)はQ(x)の必要十分条件であるという。 $\{x|P(x)\} \subseteq \{x|Q(x)\} \text{ if } |x|P(x)\} \supseteq$ $\{x|Q(x)\}\$ であるので, $\{x|P(x)\}=$ $\{x|Q(x)\}$ となる。 P(x)はQ(x)の必要十 分条件であるとは, P(x)とQ(x)が同値 であることをいう。

自由変数 $x \in \mathbb{N}$ についての述語 「x < 3」を P(x)とする。自由変数 $x \in \mathbb{N}$ についての述語 「 $x \le 2$ 」を Q(x)とする。

このとき, $\{x|P(x)\} = \{x|Q(x)\} = \{0,1,2\}$ 。従って, P(x)はQ(x)の必要十分条件である。

9. 述語の演算と真理集合

P(x), Q(x)を自由変数xについての述語とする。

このとき,以下が成り立つ。

Th. 1 (定理1)
$$\{x|P(x) \land Q(x)\} = \{x|P(x)\} \cap \{x|Q(x)\}$$

Th. 2 (定理2)
$$\{x|P(x) \lor Q(x)\} = \{x|P(x)\} \cup \{x|Q(x)\}$$

Th. 3 (定理3)

$$\{x|\neg P(x)\} = \{x|P(x)\}^c$$

重要:論理演算が集合演算に対応している。

```
自由変数x \in \mathbb{N}についての述語「x > 2」を P(x),「x < 5」を Q(x)とする。
このとき,
\{x|P(x) \land Q(x)\} = \{x|P(x)\} \cap \{x|Q(x)\}
= \{x|x > 2\} \cap \{x|x < 5\}
= \{3,4\}
```

10. 述語論理の含意と同値

P(x), Q(x)を自由変数xについての述語とする。

Th. 4

$$P(x) \to Q(x) \Leftrightarrow \neg P(x) \lor Q(x)$$

Th.5

$$P(x) \leftrightarrow Q(x) \Leftrightarrow (P(x) \land Q(x)) \lor (\neg P(x) \land \neg Q(x))$$

Th. 6

$${x|P(x) \to Q(x)} = {x|P(x)}^c \cup {x|Q(x)}$$

Th.7

$$\{x | P(x) \longleftrightarrow Q(x)\} =$$

$$(\{x | P(x)\} \cap \{x | Q(x)\}) \cup (\{x | P(x)\}^c \cap \{x | Q(x_3)\}^c)$$

Th 5を証明せよ

$$P(x) \longleftrightarrow Q(x)$$

$$\Leftrightarrow (P(x) \land Q(x)) \lor (\neg P(x) \land \neg Q(x))$$

Th 5を証明せよ

$$P(x) \leftrightarrow Q(x)$$

$$\Leftrightarrow (P(x) \land Q(x)) \lor (\neg P(x) \land \neg Q(x))$$
[註明]
$$P(x) \leftrightarrow Q(x) \Leftrightarrow [\neg P(x) \lor Q(x)]$$

$$\land [P(x) \lor \neg Q(x)]$$

$$\Leftrightarrow [\neg P(x) \land P(x)] \lor [P(x) \land Q(x)] \lor [\neg P(x) \land \neg Q(x)] \lor [Q(x) \land \neg Q(x)] \Leftrightarrow [P(x) \land Q(x)]$$

$$\lor [\neg P(x) \land \neg Q(x)]$$

1 1. 全称命題

Def. 集合Uの変域を持つxについての述語P(x)に対して,「すべてのxについてP(x)」という命題を全称命題といい, $\forall x \in U[P(x)]$ と書く。 $\forall x$ を全称量化子という。

12. 存在命題

Def. 集合Uの変域を持つxについての述語P(x)に対して, 「あるx についてP(x)」という命題を存在命題といい, $\exists x \in U[P(x)]$ と書く。 $\exists x$ を存在量化子という。

束縛変数

全称命題,存在命題におけるxは自由に値を代入できるという自由変数の性質を失っている。全称命題,存在命題におけるxのように,述語や命題の内容を示すためだけに用いられる変数を束縛変数と呼ぶ。

述語「x-2=3」を P(x)と書く。 このとき,次の命題は真か偽か?

- $(1) \quad \forall x \in \mathbb{N}[P(x)]$
- (2) $\exists x \in \mathbb{N}[P(x)]$

述語「x-2=3」を P(x)と書く。 このとき,次の命題は真か偽か?

- (1) $\forall x \in \mathbb{N}[P(x)]$ は偽
- $(2) \quad \exists x \in \mathbb{N}[P(x)]$

述語「x-2=3」を P(x)と書く。 このとき, 次の命題は真か偽か?

- (1) $\forall x \in \mathbb{N}[P(x)]$ は偽
- (2) $\exists x \in \mathbb{N}[P(x)]$ は真

Th. 8.
$$\neg(\forall x \in U[P(x)]) \equiv \exists x \in U[\neg P(x)]$$

```
Th. 8. \neg(\forall x \in U[P(x)]) \equiv \exists x \in U[\neg P(x)] [証明] \forall x \in U[P(x)]: Uのすべての要素はP(x)を満たす
```

- ⇒否定 $\neg(\forall x \in U[P(x)])$:
- Uのある要素はP(x)を満たさない
- \Rightarrow Uのある要素は $\neg P(x)$ を満たす
 - $\Rightarrow \exists x \in U[\neg P(x)]$

Th.9.
$$\neg(\exists x \in U[P(x)]) \equiv \forall x \in U[\neg P(x)]$$

Th.9. $\neg(\exists x \in U[P(x)]) \equiv \forall x \in U[\neg P(x)]$ [証明]

```
\exists x \in U(P(x)): Uのある要素はP(x)を満たす
```

⇒否定
$$\neg(\exists x \in U[P(x)])$$
:

Uのどの要素もP(x)を満たさない

- \Rightarrow Uのすべての要素は $\neg P(x)$ を満たす
- $\Rightarrow \forall x \in U[\neg P(x)]$

14. 「~ならば」の述語表現

命題論理では, $p \to q$ は, 「pならばq」を意味していた。しかし、述語論理での $P(x) \to Q(x)$

は, $\lceil P(x)$ ならばQ(x)」という意味とは限らない。

「P(x)ならばQ(x)」という命題は, $\forall x[P(x) \rightarrow Q(x)]$ $\forall x [\neg P(x) \lor Q(x))]$

という意味。

Th.10

$$\forall x \in U[P(x) \to Q(x)]$$

$$\iff \{x | P(x)\} \subseteq \{x | Q(x)\}$$

Th.10

$$\forall x \in U[P(x) \to Q(x)]$$

$$\Leftrightarrow \{x|P(x)\} \subseteq \{x|Q(x)\}$$

[証明]

$$\{x|P(x)\} \subseteq \{x|Q(x)\} \Leftrightarrow$$

$$\forall x \in U[x \in \{x|P(x)\} \to x \in \{x|Q(x)\}]$$

$$\Leftrightarrow \forall x \in U[P(x) \to Q(x)]$$

15. 「~ならば」命題の否定

命題 「P(x)ならばQ(x)」 の否定 は, 「P(x)かつ¬Q(x)を満たす要素が存在する」

15. 「~ならば」命題の否定

命題 「P(x)ならばQ(x)」 の否定 は, 「P(x)かつ¬Q(x)を満たす要素が存在する」 [証明]

$$\neg(\forall x[P(x) \to Q(x)])$$

$$\equiv \neg(\forall x[\neg P(x) \lor Q(x)])$$

$$\equiv \exists x[\neg(\neg P(x) \lor Q(x))]$$

$$\equiv \exists x[\neg\neg P(x) \land \neg Q(x)]$$

$$\equiv \exists x[P(x) \land \neg Q(x)]$$

「P(x)ならばQ(x)」を否定するためには,P(x)かつ¬Q(x)を満たす要素を一つ見つけて示せばよい。この要素を「反例」と呼ぶ。

述語P(x): 「 $x \ge 0$ 」と述語Q(x): 「x > 1」 について以下の命題が成り立たないことを 証明せよ。

$$\forall x \in \mathbb{N}[P(x) \to Q(x)]$$

述語P(x): 「 $x \ge 0$ 」と述語Q(x): 「x > 1」 について以下の命題が成り立たないことを証明せよ。

 $\forall x \in \mathbb{N}[P(x) \to Q(x)]$

証明(反例は0か1どちらかを挙げればよい)

 $1 \in \mathbb{N}$ は,命題P(x): 「 $x \ge 0$ 」を満たすが, 命題Q(x): 「x > 1」は満たさない。すなわち, $1 \in \mathbb{N}$ は命題の否定 $(P(x) \land \neg Q(x))$ を満たす。

すなわち $\exists x \in \mathbb{N}[P(x) \land \neg Q(x)]$

従って,反例が存在し, $\forall x \in \mathbb{N}[P(x) \to Q(x)]$

は成り立たない。

16. 空ゆえに真

命題論理 $p \to q$ の値に関わらず命題 $p \to q$ は、「p が偽のときには、q の値に関わらず命題 $p \to q$ は真」

16. 空ゆえに真

命題論理 $p \rightarrow q$ 命題 $p \rightarrow q$ は「p が偽のときには, q の値に関わらず命題 $p \rightarrow q$ は真」 述語論理 $P(x) \rightarrow Q(x)$ 「述語P(x)の真理集合が空であれば, 述語Q(x)が何であれ, $P(x) \rightarrow Q(x)$ は真」 「条件P(x)を満たす要素が存在しなければ、 $P(x) \to Q(x)$ は「空ゆえに真」 (vacurously true, vacuous truth)]

例

普遍集合 $U: \{日本の小学生\}$

P(x): xは車を運転する。

Q(x):xは運転免許を持っている。

 $P(x) \rightarrow Q(x)$: 空ゆえに真

自由変数 $x \in \mathbb{R}$ について, $P(x): (x-2)^2 < 0$, $Q(x): x^2 < 0$ とすると $P(x) \rightarrow Q(x)$ は「空ゆえに真」を証明せよ。

自由変数 $x \in \mathbb{R}$ について, $P(x): (x-2)^2 < 0$, $Q(x): x^2 < 0$

とすると $P(x) \rightarrow Q(x)$ は「空ゆえに真」 を証明せよ。

[証明]

自由変数 $x \in \mathbb{R}$ について,条件 P(x)を満たす要素が存在しなければ, $P(x) \rightarrow Q(x)$ は「空ゆえに真」を証明せよ。

例題 2 自由変数 $x \in R$ について,条件P(x)を満たす要素が存在しなければ, $P(x) \rightarrow Q(x)$ は「空ゆえに真」を証明せよ。

証明
$$\forall x \in \mathbb{R}[P(x) \to Q(x)]$$

$$\equiv \forall x \in \mathbb{R}[\neg P(x) \lor Q(x)]$$

$$\{x|\neg P(x)\} = \{x|P(x)\}^c \downarrow \mathcal{D},$$

$$\forall x \in \mathbb{R}[P(x) \to Q(x)]$$
の真理集合は
$$\{x|P(x)\}^c \cup \{x|Q(x)\}$$
ここで、
$$\{x|P(x)\} = \emptyset \downarrow \mathcal{D}, \{x|P(x)\}^c = \mathbb{R}$$

$$\{x|P(x)\}^c \cup \{x|Q(x)\} = \mathbb{R} \cup \{x|Q(x)\} = \mathbb{R}$$

$$Q(x)$$
に関わらず、真理集合が \mathbb{R} となり、
$$\forall x \in \mathbb{R}[P(x) \to Q(x)]$$
は真

述語⇒真理集合 P(x)⇒ $\{x|P(x)\}$

述語⇒真理集合 P(x)⇒ $\{x|P(x)\}$ 集合演算⇒述語 $A \cap B$ の述語表現はどのように なるのか?

述語⇒真理集合 P(x) ⇒ $\{x|P(x)\}$ 集合演算⇒述語 $A \cap B \iff \{x|(x \in A) \land (x \in B)\}$

述語⇒真理集合 P(x)⇒ $\{x|P(x)\}$ 集合演算⇒述語 $A \cap B \Leftrightarrow \{x|(x \in A) \land (x \in B)\}$ $A \cup B$ の述語表現はどのように なるのか?

述語→真理集合 P(x) ⇒ $\{x|P(x)\}$ 集合演算→述語の真理集合 $A \cap B \iff \{x|(x \in A) \land (x \in B)\}$ $A \cup B \iff \{x|(x \in A) \lor (x \in B)\}$

述語⇒真理集合 $P(x) \Rightarrow \{x | P(x)\}$ 集合演算⇒述語の真理集合 $A \cap B \iff \{x | (x \in A) \land (x \in B)\}$ $A \cup B \iff \{x | (x \in A) \lor (x \in B)\}$ A^Cの述語表現はどのようになる のか?

述語⇒真理集合 $P(x) \Rightarrow \{x | P(x)\}$ 集合演算⇒述語の真理集合 $A \cap B \iff \{x | (x \in A) \land (x \in B)\}$ $A \cup B \iff \{x | (x \in A) \lor (x \in B)\}$ $A^C \iff \{x \mid \neg(x \in A)\}$ $A \subseteq B$ の述語表現はどのよう になるのか?

述語⇒真理集合 $P(x) \Rightarrow \{x | P(x)\}$ 集合演算⇒述語の真理集合 $A \cap B \iff \{x | (x \in A) \land (x \in B)\}$ $A \cup B \iff \{x | (x \in A) \lor (x \in B)\}$ $A^C \iff \{x | \neg (x \in A)\}$ $A \subseteq B \iff \{x | x \in A \longrightarrow x \in B\}$ A = Bの述語表現は?

述語⇒真理集合
$$P(x) \Rightarrow \{x | P(x)\}$$
集合演算⇒述語の真理集合
$$A \cap B \iff \{x | (x \in A) \land (x \in B)\}$$

$$A \cup B \iff \{x | (x \in A) \lor (x \in B)\}$$

$$A^{C} \iff \{x | \neg (x \in A)\}$$

$$A \subseteq B \iff \{x | x \in A \implies x \in B\}$$

$$A = B \iff \{x | x \in A \iff x \in B\}$$

18. 述語論理と人工知能

述語論理は初期(80s)の人工知能推論

P(x): xは人間である。

Q(x): xは 死ぬ。

 $[P(x) \to Q(x)]$

P(ソクラテス): 「ソクラテスは人間である」 真

 \downarrow

Q(ソクラテス): 「ソクラテスは 死ぬ」 真

三段論法

P(x): xはギリシャ人である。

Q(x): xは人間である。

R(x): xは 死ぬ。

 $\forall x[P(x) \to Q(x) \to R(x)]$

 $P(\mathcal{Y}D \supset \mathcal{F}\mathcal{X}) \rightarrow Q(\mathcal{Y}D \supset \mathcal{F}\mathcal{X}) \rightarrow R(\mathcal{Y}D \supset \mathcal{F}\mathcal{X})$

 $P(ソクラテス): 「ソクラテスは人間である」<math>\rightarrow$

Q(ソクラテス): 「ソクラテスは 死ぬ」

例題:三段論法

$$\forall x [[P(x) \rightarrow Q(x)] \land [Q(x) \rightarrow R(x)] \rightarrow [P(x) \rightarrow R(x)]]$$

[$P(x) \rightarrow R(x)$]]
を証明せよ。

例題:三段論法

$$\forall x [[P(x) \to Q(x)] \land [Q(x) \to R(x)]$$

$$\to [P(x) \to R(x)]]$$

を証明せよ。

[証明]

$$\neg([P(x) \to Q(x)] \land [Q(x) \to R(x)]) \lor (\neg P(x) \lor R(x))$$

$$\equiv \neg \left(\left(\neg P(x) \lor Q(x) \right) \land \left(\neg Q(x) \lor R(x) \right) \right) \lor \left(\neg P(x) \lor R(x) \right)$$

$$\equiv (P(x) \land \neg Q(x)) \lor (Q(x) \land \neg R(x)) \lor \neg P(x) \lor R(x)$$

$$\equiv \{ [P(x) \land \neg Q(x))] \lor \neg P(x) \} \lor \{ [Q(x) \land \neg R(x)] \lor R(x) \}$$

$$\equiv \neg Q(x) \ \forall Q(x)$$

は∀xについて 真 (恒真命題)

$$\forall x [[P(x) \to Q(x)] \land [Q(x) \to R(x)] \to [P(x) \to R(x)]$$
 は真

推論

P(x): xはギリシャ人である。

Q(x): xは人間である。

R(x): xは 死ぬ。

 $\neg R$ (ドラえもん): ドラえもんは死なない。

- → ドラえもんは人間でない
- → ドラえもんはギリシャ人でない

対偶

$$P(x) \to Q(x) \Leftrightarrow \neg Q(x) \to \neg P(x)$$

- ¬R(ドラえもん):ドラえもんは死なない。
- $\rightarrow \neg Q$ (ドラえもん): ドラえもんは人間でない。

 $\neg Q$ (ドラえもん): ドラえもんは人間でない。

 $\rightarrow \neg P$ (ドラえもん): ドラえもんはギリシャ人ではない。

注意「真の述語命題からは何も推論できない」

P(x): xはギリシャ人である。

Q(x): xは人間である。

R(x): xは 死ぬ。

 $R(ネズミ):ネズミは死ぬ<math>\rightarrow$ ネズミは人間である

- ⇒ ネズミはギリシャ人である
- → 帰納推論 (確率推論へ)

1990年代以降

その他の欠点

- ・計算量が爆発する
- ・人間が知識を入力しないと学習できない
- ・例外がある場合処理が複雑
- ・不確実な知識を扱えない

人工知能分野は 機械学習、確率的アプローチにシフト。現在のAIの繁栄につながる。

18. まとめ

- 1. 述語論理とは何かを理解する
- 2. 真理集合
- 3. 述語の同値性
- 4. 全称命題と存在命題
- 5. 述語演算
- 6. 述語論理での含意
- 7. 述語と集合は等価

演習問題

問題 1 (1)

$$U = \{x \in \mathbb{N} | 1 \le x \le 10\}$$
 \(\tau_1 \tau_2 \)

$$P_1(x) \Leftrightarrow \text{"x} \leq 8\text{"}, P_2(x) \Leftrightarrow \text{"x} > 5\text{"}, P_3(x) \Leftrightarrow$$

- "x>6", $P_4(x) \iff "x^2 10x + 9 = 0$ ".
- (1)次の述語の真理集合を外延的記法で示せ。
- (a) $P_1(x)$,
- (b) $P_4(x)$,
- (c) $\neg P_2(x)$,
- (d) $P_2(x) \wedge \neg P_4(x)$,
- (e) $P_1(x) \vee P_2(x)$,
- (f) $P_3(x) \wedge P_4(x)$.

問題1(2)

```
U = \{x \in \mathbb{N} | 1 \le x \le 10\}について,P_1(x) \Leftrightarrow "x \le 8",P_2(x) \Leftrightarrow "x > 5",P_3(x) \Leftrightarrow "x > 6",P_4(x) \Leftrightarrow "x^2 - 10x + 9 = 0".次の文が「必要十分条件である」「十分条件だが必要条件ではない」「必要条件だが十分条件ではない」「十分条件でも必要条件でもない」のどれにあてはまるか文を完成させよ。
```

- (a) $P_3(x) \downarrow t P_2(x) \circlearrowleft$
- (b) $P_1(x) \downarrow t P_4(x) \circlearrowleft$
- (c) $P_4(x) \downarrow t P_1(x) \land P_2(x) \circlearrowleft$
- (d) $P_3(x)$ $t \neg P_4(x)$ \mathcal{O}
- (e) $P_1(x) \vee P_3(x) \bowtie P_2(x) \oslash$
- (f) $\neg P_1(x) \lor P_4(x) \lor P_2(x) \circlearrowleft$
- (g) $P_1(x) \vee P_2(x) \bowtie P_4(x) \bigcirc$
- (h) $P_1(x) \wedge P_3(x) \downarrow P_4(x) \bigcirc$

問題 2. 変数 $x \in \mathbb{R}$ についての以下の述語の否定命題を書け。

$$1. \qquad \forall x \in \mathbb{R} \big(x^2 - 2x + 1 > 0 \big)$$

$$2. \quad \forall x \in \mathbb{R} \big(2x^2 - x + 3 \ge 0 \big)$$

3.
$$\forall x \in \mathbb{R}(x > 3 \forall x \leq 7)$$

4.
$$\exists x \in \mathbb{R}(x^2 - x + 2 = 0)$$

$$5. \quad \exists x \in \mathbb{R} \big(x^2 - 2x + 10 \neq 0 \big)$$

6.
$$\exists x \in \mathbb{R} (x \neq 0 \land x^2 \geq 0)$$

問題3. $x \in \mathbb{R}$ についての次の命題 の真偽を答えよ。偽の場合は,その 否定命題を述べ,それが真であること を証明せよ。

$$1. \quad \forall x \in \mathbb{R} \big(x^2 - 5x + 6 \ge 0 \big)$$

2.
$$x > 3 \rightarrow x > \sqrt{10}$$

3.
$$x^2 = 9 \longrightarrow x = 3$$

4.
$$x < 4 \rightarrow x^2 < 16$$

問題4 自由変数 $x \in \mathbb{R}$ についての 述語P(x)を「 $2^x \le 0$ 」, 述語Q(x)を 「x = 0」とする. P(x)が偽のとき, Q(x)の真偽に関係なく, $P(x) \to Q(x)$ が 成り立つことを証明せよ。