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Abstract. This study proposes a scaffolding system that provides adap-
tive hints using a new dynamic assessment probabilistic model, i.e.,Sliding
Hidden Markov Item Response Theory (SHMIRT). The SHMIRT opti-
mizes the degree of forgetting past data for the prediction of a student’s
performance by adjusting the student’s ability change throughout the
learning process. Using the SHMIRT, the system provides hints so that
the student’s correct response probability approaches 0.5 to each task
even during long-term learning. We assess the causal effects of the pro-
posed scaffolding mechanism using Inverse Probability Weighting (IPW)
for long-term learning data in actual classes. The results demonstrate
that the proposed system is effective.

Keywords: adaptive learning · scaffolding · dynamic assessment · learn-
ing analytics · causal inference · hint · Item Response Theory

1 Introduction

Vygotsky (1978) introduced the Zone of Proximal Development (ZPD), where
a learner cannot solve difficulties alone, but can do so with an expert’s help, to
promote student development[28]. Bruner (1978), like Vygotsky, emphasized the
social nature of learning, reporting that other people should help a child develop
skills through a process designated as scaffolding[3]. He defined scaffolding as
steps taken to reduce the degrees of freedom in carrying out some task so that
children can concentrate on difficult skills. The term of scaffolding first appeared
in the literature when Wood et al. (1976) described how tutors interacted with
preschoolers to help them solve a block reconstruction problem [32]. Brown and
Ferrara [2] and Campione [4] examined a ZPD-based assessment method, "dy-
namic assessment", by which a cascading sequence of hints (so-called "graded
hints" ) is provided to enable dynamic assessment of how much support students
need for completing various benchmark tasks. Each hint is staged in a graded
fashion known as a cascading sequence of hints. A student is given a task to
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solve. If the student is unable to solve the task independently, then the stu-
dent is given a series of graded hints, one after another, until the achievement
is successful. The graded hints become increasingly concrete as the sequence is
followed. Results demonstrated that students needing only a minimum number
of hints to solve the tasks tended to achieve the greatest learning gain ([32, 2,
4]). Consequently, to scaffold a student efficiently, a teacher should predict how
much support a student needs to complete a task. Then a teacher must determine
the optimal degree of assistance which should be given to support the student’s
development [31]. To ascertain the optimal degree of assistance for student de-
velopment, Ueno and Miyazawa proposed probability-based scaffolding, which
assumes that optimal scaffolding is based on a probabilistic decision rule: given
that, for a teacher’s assistance, there exists an optimal probability of a student’s
correct answer to facilitate the student’s development [24, 25]. Specifically, to
predict a student’s performance (correct answer probability) given hints, they
first proposed an Item Response Theory (IRT) model for dynamic assessment, by
which students are tested when given dynamic conditions of providing a series of
graded hints. They then developed a scaffolding system that presented adaptive
hints using the ability which was estimated using the IRT from the student’s
response data. To ascertain the optimal probability, they used the scaffolding
system to compare the learning performance by changing the predictive proba-
bility. Results indicated that scaffolding to make the students’ success probability
0.5 provided the best learning performance. Nevertheless, their experiments did
not conclusively confirm the actual effectiveness for long-term learning because
they used only seven tasks during a few hours. Especially, their system did not
incorporate consideration of unique features in which the estimated ability was
changed dynamically by learning. In short-term learning of a single skill as in
this experiment, the improvement in a learner’s ability is limited, and the learn-
ing system would still work effectively even if it assumed that learners ability do
not change with their learning. However, in actual long-term learning, where a
learner progresses while learning new various skills, a learner’s ability changes
significantly, and the system would incorrectly predict the learner’s probability of
answering a new task correctly and then can not provide an optimal scaffolding
to the learner. Therefore, their system has only limited application for practical
use. More recently, Bernd and Chounta(2024) employed Additive Factor Model
(AFM) instead of IRT to predict a student’s correct answer probability and
analyze the relationship between his/her hint request behaviors and ZPD[19].
However, their analyses also did not take into account changes in a student’s
ability.

To realize a probability-based scaffolding for long-term learning, this study
proposes a new IRT, Sliding Hidden Markov Item Response Theory (SHMIRT)
that adapts to long-term learner ability changes, to predict a student’s correct
answer probability given hints. SHMIRT incorporates the sliding window Hid-
den Markov into IRT. Thereby, it optimizes the degree of forgetting past data
for the prediction of a student’s performance by adjusting the student’s ability
change throughout the learning process. With the proposed method, a window
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of specified length moves over the student’s past response data. Subsequently,
the ability is estimated solely from data within the window. The window size
can be optimized easily using cross-validation because it can be searched from
several discrete values. We developed a scaffolding system using SHMIRT to
provide adaptive hints. The system provides hints so that the correct response
probability of the student approaches 0.5 to each task using SHMIRT. The per-
formance of the proposed system was assessed in an actual university course
of "Discrete mathematics" for one semester. We assess the causal effects of the
proposed scaffolding mechanism using Inverse Probability Weighting (IPW) by
comparing those obtained using prior systems for the same course.

Results demonstrate the following. 1) SHMIRT improves the student perfor-
mance prediction accuracy and enables the system to provide hints such that the
predictive probabilities of a student’s correct answer for tasks are approximately
0.5 throughout long-term learning. 2) The proposed system improves students’
learning performance compared to that obtained using the earlier systems. Al-
though many excellent scaffolding systems[1, 7, 11, 20] have been developed in
recent years, there is no system with a fading function based on probabilistic-
based scaffolding which adjusts a student’s ability change throughout the learn-
ing process.

2 Data from Dynamic Assessment System
We developed the dynamic assessment system to obtain students’ response data
from tasks using a series of graded hints to apply IRT to dynamic assessment
data.

Let {k},(k = 1, 2, . . . ,K − 1) be a series of graded hints for task j. For that
series, k = 0 when the task is presented without a hint. First, the dynamic
assessment system in a computer presents task j without a hint to student i. If
the student responds incorrectly, then the system presents hint k = 1. Otherwise,
the system stores the student’s response and presents the next task: j+1. If the
student responds incorrectly to task j with hint k = 1, then the system presents
hint k = 2. Alternatively, the system stores the student’s response and presents
the next task: j + 2. Consequently, the system presents hints from k = 1 to
k = K − 1 until the student answers correctly. This procedure is repeated until
j = M . After applying this procedure for N students, one obtains dynamic
assessment data as

X = {xijk}, (i = 1, · · · , N, j = 1, · · · ,M, k = 0, · · ·K),

where

xijk =


1 : student i answered correctly to task j when

k-th hint or the previous hint before k was presented
0 : else other.

Therein, xijK denotes the response data when student i cannot answer correctly
with hint K − 1.
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3 Item Response Theory for Dynamic Assessment
3.1 Sliding Hidden Markov Item Response Theory

This section proposes a new IRT for application to data X obtained in dynamic
assessment: Sliding Hidden Markov Item Response Theory (SHMIRT). Various
Hidden Markov IRT (HMIRT) models without consideration of hints have been
proposed to adjust to the changing abilities of a student (e.g.[5, 6, 29, 30]). For
accurate prediction throughout the longitudinal process, a key issue is the opti-
mal degree of forgetting past response data. Actually, past response data might
not reflect the current ability of the student accurately because the student abil-
ity has changed by learning. However, earlier HMIRTs [6, 29] did not consider
the degree of forgetting past data. Although Wilson et al. (2016) [30] introduced
a new HMIRT incorporating a new method of forgetting past data, it can not
be used directly for dynamic assessment data.

To optimize the degree of forgetting past data, this study proposes Sliding
Hidden Markov Item Response Theory (SHMIRT), by which a student’s ability
changes to follow the Sliding Hidden Markov process (Fig. 1). The sliding window
method is used mainly in the fields of information technology, image processing,
and voice recognition (e.g. [21]). When using this method, a window of specified
length is moved over the student’s past response data. Subsequently, the ability
is estimated solely based on data within the window. In actuality, SHMIRT
has a window size parameter L, which determines the degree of forgetting of
past data. Window size L can be optimized easily using cross-validation because
the optimal window size can be searched greedily from several discrete values.
Furthermore, SHMIRT incorporates hint parameters into the model. Specifically,
in SHMIRT, a random variable ujk denotes the response of a student to task
j(1, · · · ,M) with k-th hint as

ujk =

{
1 : a student answers correctly to task j with k-th hint
0 : else other.

Inspired by Samejima’s graded response model [18], we propose the probability
p(ujk = 1 | θit) that student i answers task j with k-th hint correctly at time t

Fig. 1. Outline of SHMIRT.
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Fig. 2. Examples of IRCs for hints.
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as

p(ujk = 1 | θit) =
1

1 + exp(−aj(θit − bjk)
− 1

1 + exp(−aj(θit − bj(k−1))
. (1)

Therein, aj ∈ (0,∞), (j = 1, · · · ,M) stands for the j-th task’s discrimination
parameter expressing the discriminatory power for students’ abilities of task j,
bjk ∈ (−∞,∞), (k = 1, · · · ,K), which satisfies bj1 > bj2 > · · · , bjK , a diffi-
culty parameter expressing the degree of difficulty of task j after the k-th hint is
presented. Furthermore, θit ∈ (−∞,∞), (i = 1 · · · , N, t = 1, · · · ,M − L) repre-
sents student i’s ability at time point t. The prior distribution of θit is a normal
distribution defined as

θit ∼ N(θit−1, σ), (2)

where σ is a variance parameter that is included to regulate ability changes.
Consequently, this parameter avoids overfitting and thereby raises the student
performance prediction accuracy. In addition, 1

(1+exp(−aj(θit−bj(−1))))
= 0.0,

1
(1+exp(−aj(θit−bjK))) = 1.0 and the initial value θi0 for the prior distribution is
zero.

Here, we simply assume a unidimensional ability variable which reflects the
student development for a domain. In the case of no hints for a task and a fixed
t, i.e., K = 1 and k = 0, equation (1) is identical to that of conventional IRT(2-
parameters logistic model) [10]. In addition, when K = 1, k = 0, and L = 1,
SHMIRT is equivalent to an earlier HMIRT model [29, 6].

As presented in Fig. 1, when the student has answered more than L tasks, the
predictive correct answer probability of p(uijk = 1 | θit) is estimated using the
estimated ability θ̂it and hint parameters aj , bjk stored in the database. Ability
θit is estimated from the student’s responses {xi(j−L)k, · · · , xi(j−1)k}. The system
provides hints so that the correct response probability of the student is 0.5 to each
task using SHMIRT. Each time the student answers to the task, SHMIRT slides
the window by one task and repeats the process presented above. Therefore, the
ability vector of student i is represented as θi = {θi1, · · · , θi(M−L)}. When the
window size L is small, the ability depends only on the most recent response
data. When the window size L is large, the ability depends on response data
which are much farther in the past.

Fig. 2 depicts an example of item response curves (IRCs) in (1) for a task
with two hints. The horizontal axis shows the student’s abilities. The vertical
axis shows the probability p(ujk = 1|θit) that student i will respond correctly to
task j after the k-th hint is presented. The response curve with k = 0 represents
the correct response probability given an ability for a task with no hint. The
curves for k = 1, 2 represent the correct response probability given an ability
after the k-th hint is presented. The curve for k = 3 shows the wrong response
probability after all hints (k=1, 2) are presented.

For this study, we estimate student ability θit, variance σ, an item discrimi-
nation parameter aj , and an item difficulty parameter bj as the expected a poste-
rior (EAP) using the Metropolis–Hastings method in the MCMC algorithm [13].
The prior distributions of respective parameters are set as θi0 ∼ N(0.0, 1.0),
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Fig. 3. Example of adaptive hints presented by the probability-based scaffolding system

θit ∼ N(θit−1, σ), σ ∼ IG(1.0, 1.0), log aj ∼ N(0.0, 0.2), bjk ∼ N(µjk, 0.4
2),

and µjk = 4
K×k − 2, with IG(α, β) representing the inverse gamma distribution

with shape parameter α and scale parameter β, and N(µ, σ) denoting a normal
distribution with expected value µ and variance σ. The posterior distribution
of θ = (θ1, · · · ,θN ), a = (a1, · · · , aM ) ,b = (b1, · · · , bM ) is given as presented
below.

p(θ,a, b, σ | X, L) ∝ L(X | θ,a, b)p(a)p(b)p(θ)p(σ) (3)

=

N∏
i=1

[[
M−L∏
t=0

t+1+L∏
j=t+1

K∏
k=0

p(ujk = 1 | θit)xijk

] [
M∏
j=1

p(aj) · p(bj)

][
M−L∏
t=0

N∏
j=1

p(θit | θit−1, σ)

]
p(σ)

]
.

4 Probability-based Scaffolding System for Longitudinal
Learning

4.1 Dynamic assessment in a discrete mathematics course

For learning SHMIRT, we obtained dynamic assessment data of a discrete math-
ematics course comprising 15 lectures of 90 min each. The participants were
426 first-year technical college students who took a discrete mathematics course
during 2019–2021. The participants solved the presented tasks in the dynamic
assessment system for discrete mathematics once a week after they took a course
lecture. The system has 123 tasks. It presents 7–9 items with graded hints to a
student after each lecture. Each task has 4–12 hints.

An example of a task with a hint is presented in Fig. 3. The tasks are proof
problems. Students complete the proof by sorting the given options. First, the
system presents a task for a student to solve. If the student is unable to solve the
task independently, then the student is provided one of a series of graded hints,
one after another, until the achievement is successful. The first hint presented
the necessary prior knowledge to solve the task. For these tasks, the graded
hints are designed to approach the final answer as the sequence is followed. Con-
sequently, we obtained response data X from 426 examinees using the dynamic
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assessment system. The average correct response rate of all the tasks without
hints is 0.28. The parameters of SHMIRT were estimated as the EAP using the
MCMC method based on (3) from data X. For cross validation to determine the
forgetting parameter L, we partitioned the 426 examinee data into 338 samples
as a training dataset, 44 samples as a validation dataset, and 44 samples as a
test dataset. Subsequently, the proposed method estimates window size L by
incrementing the value by one from the initial value L = 1 to maximize the
prediction accuracy. The prediction accuracy is calculated using the precision
rate between the actual needed hint kij of the test data and the predicted hints
by SHMIRT. The predicted hint k̂ij is given as

k̂ij = arg max
k∈{0,1,··· ,K}

p(ujk = 1 | θ̂it), (4)

where θ̂it represents the estimated θit as the EAP using MCMC method from
past data {xj−L, · · · , xj−1} when j > L . When j ≤ L, θ̂it is estimated simi-
larly to methods used for earlier studies [24, 25]. Consequently, we obtained the
maximum average prediction accuracy 0.69 when L=9 with σ = 0.10 for the
validation data. Similarly, we calculated the prediction accuracy for predicting
k̂ij using the IRT in Ueno and Miyazawa[24, 25]. Consequently, we obtained the
average prediction accuracy 0.60. Results demonstrate that SHMIRT improves
the prediction accuracy of earlier method.

Fig. 4 presents a scatter plot illustrating the estimated values of the IRT and
SHMIRT for parameter a. The horizontal axis denotes the estimates obtained
using IRT, whereas the vertical axis denotes those of SHMIRT. Similarly, Fig.
5 depicts a scatter plot for the estimated values of the IRT and SHMIRT for
parameter b. In both scatter plots, a reference line y = x is included. The esti-
mated a parameters of SHMIRT tend to be larger overall than those from the
IRT. In contrast, for parameter b, SHMIRT assigns lower difficulty levels to the
same items than IRT does. The ability estimates in SHMIRT tend to increase
during the learning process. This increase leads to difference of the parameter
estimates between those provided by IRT and by SHMIRT.

4.2 Probability-based scaffolding system for discrete mathematics
Using SHMIRT, we developed a scaffolding system to adjust a student’s ability
change over longer periods. Fig. 3 depicts an example of the proposed system
by which adaptive hints are presented. First, the system presents the first task
without hints. The tasks are presented according to the determined order in the

Fig. 4. Scatter plot of parameter a. Fig. 5. Scatter plot of parameter b.
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course, but those with the predicted correct answer probability greater than 0.5
are skipped so that they are not presented. If a student answers the presented
task correctly, then the system estimates the student ability using the student
response data. Then the system presents the next task. If the student answers
incorrectly, then the system searches the hint database for a hint such that the
student predictive correct answer probability is nearest to 0.5.

The predictive correct answer probability of p(ujk = 1 | θ̂it) is estimated
using the student’s estimated ability θ̂it and hint parameters aj , bjk stored in the
database. The ability θ̂it is estimated similarly in (4). Then, the system presents
the selected hint to the student. If the student answers incorrectly to the task
with a hint, then the system provides the correct answer and its explanation. It
then presents the next task.

5 Practical Assessment of the System for Longitudinal
Learning

5.1 Method

This section presents a description of assessment of the proposed scaffolding
system in an actual university course, "Discrete mathematics" (the same course
as that described in 3.3), which consists of 15 lectures for 90 min, for one semester
in 2023. The participants were first-year technical college students who took a
discrete mathematics course in 2023. This group was designated as ’Proposed’.
After they took a course lecture once a week, they solved the presented tasks
in the scaffolding system for discrete mathematics shown in Fig. 3. The system
has 123 tasks. It presents 7–9 tasks with adaptive hints to a student after each
lecture. Although each task has 4–12 hints, the system selects and presents only
the optimal hints with which the student predictive correct answer probability is
the nearest to 0.5, and only if the student answers the task incorrectly without
receiving a hint.

We compare the learning performances of the proposed system with those
obtained using the following earlier systems.

– Graded hints system: The system presents the graded hints sequentially in
the same way as the method explained in section 3.3. System presents the
next hint if the participant responds to the task incorrectly. This procedure is
repeated until the participant responds correctly. If the participant responds
incorrectly to the task when the final hint is presented, then the system
presents the correct answer and its explanation. This system was assessed
in the same way as the method which was proposed and examined for this
study. The participants were first-year technical college students who took a
discrete mathematics course in 2021.

– IRT-based hints system: The earlier scaffolding system [24, 25] was assessed
in the same way as that for the method proposed for this study. The par-
ticipants are first-year technical college students who took a discrete math-
ematics course in 2022.
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All participants took pre-tests to assess their prior knowledge before they took
the course. Each pre-test consisted of 31 basic mathematics problems. Using
analysis of variance (ANOVA), we found no significant difference among the
three participant groups. Furthermore, all participants took post-tests after they
completed all the scaffolding system tasks. Each post-test consisted of new 25
problems combined with the previously learned knowledge. The maximum score
of the post-test is 100.

5.2 Results

Evaluation of probability prediction accuracy As described in this sec-
tion, we tested and confirmed that the systems presented adaptive hints so that
the students’ correct answer probabilities to the tasks were approximately 0.5.
Fig. 6 depicts the correct answer rates of participants for each week when the
selected hints were presented by the proposed system and by the IRT-based hints
system[24, 25]. As shown in Fig. 6, although the prediction accuracies of IRT-
based hints system become worse as learning proceeds, those of the proposed
system maintain their higher prediction accuracies throughout the learning pro-
cess because the proposed system adjusts a student’s ability change over longer
periods. By contrast, the abilities estimated using the IRT-based hints system
tend to become greater than 0.5 as learning proceeds. The average of the correct
answer rates for the proposed method was 0.53 (χ2 = 2.53, p < 0.01 of the χ2

test). That for IRT-based hints was 0.61 (χ2 = 10.38, p < 0.11), thereby demon-
strating that the predictive correct answer probabilities by the proposed system
are equivalent to 0.5 with a significance level of 1%, but those by the IRT-based
hints system are not. Fig. 7 depicts the moving average numbers of hints (kij)
for a sequence of 10 tasks provided by the three systems to participants. The
horizontal axis represents the number of presented tasks. The vertical axis of
the left side shows the moving average of kij . That of the right side presents the
difficulty parameters of presented tasks. The average numbers of hints through-
out overall period, provided by the graded hints system, the IRT-based hints
system, and the proposed system were, respectively, 1.72 (0.68), 1.46 (0.51), and

Fig. 6. Correct answer rates transition for
each week

Fig. 7. Average number of presented hints
and difficulty parameters of presented
tasks.
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Table 1. Post-Test Results (maximum score is 100)

Group Graded hints IRT-based hints Proposed
No. examinees 31 30 39
Avg. Pre-test 34.00(12.24) 50.00(19.07) 45.90(49.90)

GPA 2.23(0.48) 2.40(1.14) 2.45(1.26)
Avg. Post-test 57.03**(8.92) 61.18**(12.79) 69.33(11.90)

IPW-Adjusted Avg. Post-test 58.75**(7.21) 60.48**(12.51) 74.99(13.54)
ATE -7.46**(1.97) -7.45**(1.98) 10.43(1.83)

Avg. Difference abilities 0.116*(0.465) 0.120*(0.423) 0.373(0.280)
Avg. Attempt 1.814*(0.349) 1.538(0.221) 1.352(0.191)

Avg. Response time (s) 243**(219) 230**(215) 305(377)
Significant difference from the proposed method: *5%, **1%) .

1.02 (0.23) (the values in parentheses represent the standard deviation). The
proposed system clearly provides fewer hints than the other systems do. Pea
(2004) pointed out that a fading function is a necessary feature for scaffolding
system[14]. The graded hints system and the IRT-based hints system increase
the average number of hints throughout the learning process. Although it is
known that this phenomenon is caused by over-instruction [24, 25], the main
reason is that the tasks presented later become more difficult as shown in Fig.7.
On the other hand, the proposed system slightly reduces the average number of
hints throughout the learning process. These results demonstrate that the sys-
tem selects and presents only the optimal hints with which the student predictive
correct answer probability is the nearest to 0.5.

Evaluation of learning performance This section presents the main evalu-
ation of the proposed system. Post-test results are presented in Table 1, which
lists the number of examinees (designated as ’No. examinees’) who completed the
experiments in each group, the average score from pretests (designated as ’Avg.
Pre-test’) , the average score of grade point averages (designated as ’GPA’), and
average score from post-tests (designated as ’Avg. Post-test’).

The values in parentheses in the table are standard deviations. Table 1 also
includes the average differences of the SHMIRT-based estimated abilities ob-
tained for the first attempt and the last attempt to each system for the three
groups, respectively (designated as ’Avg. Difference abilities’), the average of the
attempts to a task in each group (designated as ’Avg. Attempt’), and the aver-
age task response time (s) in each group (designated as ’Avg. Response time’).
We assessed differences among the groups using one-way ANOVA for results ob-
tained from post-tests. Then we applied the Tukey–Kramer method to evaluate
the detected differences. The proposed system performed better than the others
for Avg. Post-test, as shown in Table 1, with the relevant significance levels.
Nevertheless, this difference cannot be strictly derived because the participants
assignments were not randomized for each year experiments. Therefore, we em-
ploy propensity score-based covariate adjustment [16], including several variables
as covariates, to compare the post-test results. The propensity score is a method
proposed by Rosenbaum and Rubin (1983) for estimating causal effects in ob-
servational studies where random assignment is not feasible[15]. For this study,
the propensity score eCi for participant i is estimated using the following logistic
regression model.
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eCi =
1

1 + exp{−(β0 + β1x1i + β2x2i + · · ·+ β8x8i + β9x9i)}
(5)

In equation (5), x1i, x2i, x3i, x4i, x5i, x6i, x7i, x8i, and x9i represent the pre-test
score, the university GPA, and grades from seven courses: Calculus I, Calculus
II, Linear Algebra I, Linear Algebra II, Mathematics Practice I, Mathematics
Practice II, and Mathematical Analysis, which all participants have taken. We
determined the generalized propensity scores for each comparison method using
logistic regression analysis[8]. To account for potential differences in partici-
pants’ abilities across different years, we obtained the adjusted average post-test
by IPW (designated as ’PW-Adjusted Avg. Post-test’) as shown in Table 1. The
results demonstrate that the proposed method provides highest learning perfor-
mance by a significant margin. Additionally, the average treatment effect (ATE)
obtained when comparing each method with the other methods was estimated [9,
12, 17]. The results, as presented in Table 1, indicate that the proposed method
improves the post-test scores significantly compared to other methods with im-
provement of 10.43 points. Although the average score of post-test for IRT-based
hints system is greater than that of the graded hints system, the ATE results
for the two systems are almost identical. The IRT-based hints system can not
select the optimal hints to a student accurately for long-term learning. because
that hint system does not consider a student’s change in ability.

Table 1 also demonstrates that the proposed system performed better than
the others for Avg. Difference abilities, with the relevant significance levels. This
causes that the proposed system provides fewer hints than the other systems do,
as shown in Fig.7.

Another interesting finding is that the results obtained from the proposed
system exhibit the least average number of attempts for a task with the longest
average time to solve a task. The fact that these learners abilities have improved
significantly in Table 1 and the results of the questionnaire in Table 2 which will
be described next justify longer engagement times of the learners means active
participation by the learners, and not engaging in unproductive behaviors but
contributing to learning. Therefore, participants who used the proposed system
tended to ponder over a problem for a longer time.
Question analyses We also posed the two questions in Table 2 to participants
who used IRT-based hints and the proposed system. Participants answered them
by responding using a five-point Likert scale for questions 1) and 2): 1. Strongly
disagree, 2. Weakly disagree, 3. I am not sure, 4. Weakly agree, and 5. Strongly
agree. Table 2 presents the average scores to the questionnaires for participants
who used IRT-based hints and the proposed system. The values in parentheses

Table 2. Average scores and standard deviation from five-point Likert scale questions

IRT-based hints Proposed
Question 1: Do you think that you found the correct answers
for the tasks using only minimal assistance from the system? 2.67(0.82) 3.50(0.84)
Question 2: Do you think that you tried to ponder the problem 1.67*(0.82) 3.17*(0.41)

(t-test and significant difference: *5%,)
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in the table represent standard deviations. The results of question 1 demonstrate
that the proposed system’s average score is higher than that of IRT-based hints,
but no significant difference was found. The results of question 2 demonstrate
that the proposed system is significantly more effective at facilitating deep think-
ing than IRT-based hint system is. These results justify that longer engagement
times of the learners for the proposed system shown in table 1 were due to their
active, autonomous, and deep thought process towards the task. It is superior in
this regard because it selects and presents only the optimal hints with which the
student predictive correct answer probability is the nearest to 0.5. By contrast,
IRT-based hint systems tend to present hints for which the student predictive
correct answer probability is higher than that of the proposed system, which
leads to over-assistance, as shown in Fig. 6. Consequently, the proposed system
facilitates student pondering of problems by themselves, with minimal assistance
from the system.

6 Conclusions

We proposed a scaffolding system that provides adaptive hints using a new IRT,
Sliding Hidden Markov Item Response Theory (SHMIRT), with adjustment to
changes in student ability that have occurred over a longer period of time. The
SHMIRT adjusts to a student’s changes in ability over longer periods. The pro-
posed system provides hints so that the student’s correct response probability
approaches 0.5 to each task using SHMIRT. The performance of the proposed
system was assessed in an actual university course of "Discrete mathematics" for
one semester. Using IPW, we assessed the causal effects of the proposed scaffold-
ing mechanism by comparing those obtained using prior systems for the same
course. Results demonstrated the following. 1) SHMIRT improved the accuracy
of student performance prediction and enabled the system to provide a hint so
that the predictive probability of the student’s correct answer approached 0.5
throughout long-term learning. 2) The proposed system selected and presented
only minimal hints, by contrast to earlier systems that tended to provide more
numerous hints, which led to over-instruction. Consequently, the proposed sys-
tem improved students’ learning performance compared to that supported by
the earlier systems.

Our work has the following limitations that should be considered. We used
a dataset from only one actual university course. Accordingly, the effectiveness
of the proposed system depends on the participants characteristics, the subject,
quality of hints, and other factors. Therefore, even though we controlled for
potential covariates using IPW, there might still be unobserved variables that
influenced the results. In addition, we intend to add adaptive problem selection
function[26, 27, 23, 22] to the scaffolding system so that the learner’s correct an-
swer probabilities for the presented tasks without a hint are less than 0.5. Our
future task is to solve these problems to obtain more general results.
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