
Automated parallel test form assembly
based on discrete algorithms

Kazuma Fuchimoto

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Engineering – Dr.Eng
Graduate School of Informatics and Engineering

The University of Electro-Communications

March 2025

Supervisory Committee

• Prof. Yoshio Okamoto

• Prof. Yusaku Yamamoto

• Assoc. Prof. Yasuhiko Takenaga

• Assoc. Prof. Masaki Uto

• Prof. Maomi Ueno

Copyright © 2025 by Kazuma Fuchimoto
All Rights Reserved

論文の和文概要

 論文題目

Automated parallel test form assembly based on discrete algorithms

 氏 名

渕本 壱真

近年，Computer Based Testing (CBT)の普及に伴い，自動平行テスト構成が注目されてい

る．平行テストでは，異なる問題項目で構成されるにもかかわらず，受検者得点を同一精

度で測定できる．そのために，平行テストは，受検者得点の予測誤差が等質となるよう

に，問題項目のデータベースから組合せ最適化を用いて可能な限り多く自動構成する必要

がある．これにより，複数回受検や任意の時間・場所での実施が可能となる．最先端手法

では，空間計算量が大きく，約10万の平行テスト構成が限界であった．しかし，実際の試

験（例えば，American College Testing）では100万人以上が受験する場合があり，同一

テストが重複して実施されてきた．この場合，全ての受検者が異なるテストを受けるため

には100万以上の平行テストを構成しなければいけない．平行テストの構成数を大幅に改

善するために，本研究では最大クリークと整数計画法を用いた二段階並列探索手法を提案

する．第一段階では，時間計算量は小さいが空間計算量の大きい最大クリーク手法によ

り，メモリの限界まで平行テスト構成する．第二段階では，時間計算量は大きいが空間計

算量の小さい整数計画法を用いた並列探索手法に切り替える．これにより，提案手法は1

週間で約30万の平行テスト構成が可能となった．しかし，整数計画法の時間計算量が大き

く，平行テスト数の改善には限界がある．そこで，本研究では，場合分け二分木の圧縮表

現であるZero-suppressed Binary Decision Diagram (ZDD)を用いた手法を提案する．こ

の手法では，各節点を問題項目，各節点をその問題項目をテストに含むか否かとした場合

分け二分木をZDDにより圧縮する．具体的には，この場合分け二分木を幅優先で展開し，

その節点までのテストの問題項目数や受検者得点の予測誤差が等価な節点を共有する．し

かし，予測誤差が等価な節点は限りなく少ないため，従来のZDDでは節点が共有できずメ

モリオーバーを引き起こす．この問題を解決するために，本研究では，①幅優先探索の過

程で同じ深さのある二節点における予測誤差の差が閾値以下の場合に節点を共有し，共有

節点の予測誤差を二節点の平均値を取りZDDを構築する．ただし，閾値はメモリが許す限

り経路（テスト）数が最大となるように決定する．②構築されたZDDから予測誤差の制約

を満たす経路を探索して厳密な予測誤差を（共有節点の近似を用いず）再計算し，制約を

満たす経路を列挙する．その結果，提案手法は，978問題項目を持つ実際のデータベース

から，最大約150万の平行テスト構成を1日で達成できた．

Abstract

In recent years, along with the spread of Computer Based Testing
(CBT), automated parallel test form assembly has emerged. Paral-
lel test forms allow for the measurement accuracy of examinees’ test
scores on the same scale, even when the test form consists of dif-
ferent question items. An exceedingly important task in automated
parallel test form assembly is to assemble as many parallel test forms
as possible to administer CBT multiple times or at any time. How-
ever, the state-of-the-art maximum clique algorithm is limited by high
space complexity. It is therefore capable of assembling a maximum of
only 100,000 parallel test forms, although some actual examinations
require over 1,000,000 parallel test forms annually.

To increase the number of parallel test forms, this study proposes
a two-stage method using the maximum clique algorithm and integer
programming. In the first stage, the proposed method assembles par-
allel test forms by extracting a maximum clique that is found within
the computation time. However, because of the high space complex-
ity of the maximum clique algorithm, the first stage is constrained
in increasing the number of parallel test forms. Consequently, in the
second stage, the proposed method switches to integer programming,
which has high time complexity but low space complexity. This ap-
proach can assemble approximately 200,000 parallel test forms in one
week under specific test constraints from an actual item pool with 978
items, surpassing conventional methods.

However, the two-stage method remains incapable of assembling a
sufficient number of parallel test forms for large-scale CBT because
of the high time complexity of integer programming. Therefore, this
study proposes a method using Zero-suppressed Binary Decision Dia-
gram (ZDD), a compressed representation of a binary decision tree. In
this method, each vertex represents a question item. Each vertex has
two outgoing edges, indicating whether the corresponding question
item is included in parallel test form, or not. Specifically, the ZDD

method is expanded via a breadth-first search. Vertices with the iden-
tical number of question items in parallel test form and the identical
measurement accuracies of examinees’ test scores are shared. How-
ever, extremely few vertices have identical measurement accuracy to
examinees’ test scores, leading to insufficient sharing vertices. Conse-
quently, the conventional breadth-first search causes computer mem-
ory overflow because vertices cannot be shared.

To resolve this issue, this study proposes a two-stage algorithm. (1)
During the breadth-first search, vertices are shared when the differ-
ence in the measurement accuracy of examinees’ test scores between
two vertices at the same depth is less than a threshold. The shared
vertex’s measurement accuracy of examinees’ test scores is averaged
from the two vertices. The threshold is determined to increase the
number of paths (parallel test forms) to as many as possible up to a
computer memory limit. (2) Paths that satisfy the measurement ac-
curacy constraint are searched and enumerated from the constructed
ZDD. The exact measurement accuracy of examinee’s test scores for
each of the enumerated paths is recalculated to enumerate paths that
satisfy the measurement accuracy constraint exactly. As a result, the
ZDD method assembles parallel test forms that exactly satisfy all test
constraints.

Empirical experiments have demonstrated that the ZDD based
method can assemble up to approximately 1,500,000 parallel test
forms in one day under specific test constraints from an actual item
pool with 978 items, thereby exceeding the approximately 100,000
parallel test forms assembled using earlier reported methods.

3

Contents

Chapter 1 Introduction.. 1
Chapter 2 Related Work ... 11

2.1 Item Response Theory... 11
2.2 Automated Parallel Test Form Assembly......................... 13

2.2.1 Big Shadow Test... 13
2.2.2 Maximum Clique Algorithm................................. 15

Chapter 3 Automated Parallel Test Form Assembly using
Integer Programming for Maximum Clique 22

3.1 Random Integer Programming Maximum Clique Algo-
rithm for Automated Parallel Test Form Assembly 22
3.2 Hybrid Maximum Clique Algorithm using Integer Pro-
gramming for Automated Parallel Test Form Assembly........... 27
3.3 Tuning Parameter Optimization and Lower Bound
Evaluation for HMCAPIP .. 34

3.3.1 Optimization of Parameter SUB 34
3.3.2 Performance of HMCAPIP with Lower Bound..... 37
3.3.3 Optimization of the number of parallelisms 40

3.4 Comparison of HMCAPIP to Earlier Methods 42
3.4.1 Comparing HMCAPIP to earlier methods 42
3.4.2 Comparison of HMCAPIP to earlier methods
with extended computation time....................................... 45

Chapter 4 Automated Parallel Test Form Assembly using
Zero-suppressed Binary Decision Diagram.............................. 49

4.1 Zero-suppressed Binary Decision Diagram (ZDD).......... 50
4.2 Automated Parallel Test Form Assembly using ZDD 53
4.3 ATA-ZDD Experiments... 63

4.3.1 Threshold Parameter Effectiveness 63
4.3.2 Comparison of ATA-ZDD to earlier methods........ 70

i

Chapter 5 Conclusions... 77
Acknowledgements ... 83
References .. 84

ii

List of Figures

Figure 1.1 Measurement error of examinees’ test
scores obtained using parallel test forms for an actual
examination.. 2
Figure 1.2 Outline of the automated parallel test form
assembly... 3

Figure 2.1 Example of ExMCA... 17

Figure 3.1 Outline of the second stage in HMCAPIP......... 28
Figure 3.2 Line plot of number of parallel test forms for
each method in 168 hr. ... 48

Figure 4.1 BDT and ZDD.. 51
Figure 4.2 Outline of ATA-ZDD.. 54

Figure 5.1 Averages and standard deviations of test in-
formation values for 100 randomly sampled items for each
item pool. ... 80

iii

List of Tables

Table 3.1 Test information constraints for HMCAPIP ex-
perimentation .. 35
Table 3.2 Performance of HMCAPIP achieved by modi-
fying the tuning parameter SUB values 36
Table 3.3 Performance of “HMCAPIP with the lower
bound” and “HMCAPIP without the lower bound” 39
Table 3.4 Performance of parallel search of HMCAPIP 41
Table 3.5 Specific information about the actual item pool . 43
Table 3.6 Numbers of assembled parallel test forms for
all methods using each item pool ... 44
Table 3.7 Numbers of assembled parallel test forms in
168 hr... 46

Table 4.1 Test information constraints for ATA-ZDD
experimentation.. 64
Table 4.2 Performance of ATA-ZDD by modifying the
threshold parameter Ith value ... 66
Table 4.3 Determined values of threshold parameter Ith 67
Table 4.4 Effects of modifying the threshold parameter
Ith on pruned vertices and reduction rules in the ZDD 69
Table 4.5 Numbers of assembled parallel test forms in
24 hr... 71
Table 4.6 Random sampling iterations conducted by
ATA-ZDD for each item pool ... 72
Table 4.7 Rates of valid paths that satisfy the test infor-
mation constraint.. 74
Table 4.8 Rates of valid paths satisfying the overlapping
item constraint.. 76

iv

Chapter 1

Introduction

Computer based testing, web-based systems, and computerized
adaptive testing, collectively known as e-testing, enable examinees
to participate as subjects of educational assessments at any time and
from any location (e.g., [1, 2, 3]). In light of these beneficial fea-
tures, many educational assessments have transitioned from traditional
paper-based formats to e-testing. For example, the Scholastic Aptitude
Test (SAT) [4] in the United States will adopt an e-testing format in
2024.

The e-testing guidelines adhere to international standards (ISO/IEC
23988:2007) [5], which mandate the use of parallel test forms [6]. Ac-
cording to Samejima [6], parallel test forms are expected to guaran-
tee equivalent measurement accuracy for estimating examinees’ test
scores based on Item Response Theory (IRT) while using different
sets of question items (e.g., [7]). For purposes of this paper, “question
item” is simply designated as “item” hereinafter. As a result, parallel
test forms guarantee that the test score remain consistent, even when
examinees with equal ability take different versions of the test.

Figure 1.1 depicts the measurement errors of 9,600 examinees’ test
scores obtained when using parallel test forms in an actual examina-
tion. In the figure, the horizontal axis shows the test scores of ex-
aminees who took different parallel test forms. The vertical axis rep-
resents the measurement errors of those test scores. In e-testing, it

1

Figure 1.1: Measurement error of examinees’ test scores obtained us-
ing parallel test forms for an actual examination.

is desirable to decrease the maximum value of the measurement er-
ror of the test score at the passing line. In fact, as shown in Figure
1.1, the measurement error becomes a small value of less than 2.0 at
around the test score 40 which is the passing line for this examination.
Additionally, when the vertical width of each plot for each test score
becomes small, the parallel test forms have equivalent measurement
accuracy. Therefore, parallel test forms are assembled to decrease the
variance of measurement errors of examinees who have the same test
score. Consequently, parallel test forms enable equivalent assessments
for tests administered at different times and locations.

The most important task for e-testing is to increase the number of
parallel test forms to as many as possible. The number of parallel test
forms is expected to outnumber the examinees. For example, more
than 200,000 examinees take the National Examination of Informa-
tion Processing Engineers, the so-called “IT Passport”, annually in
Japan. Also, more than 1,300,000 examinees take the American Col-
lege Testing (ACT) annually in the United States. Consequently, test

2

Figure 1.2: Outline of the automated parallel test form assembly.

organizations have tried to adopt e-testing by assigning different par-
allel test forms to each group of examinees who take the examination
at different times and locations.

Many automated parallel test form assembly methods (e.g., [8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31]) have been proposed using IRT. These methods have
formulated automated parallel test form assembly as a combinatorial
optimization problem from an item pool, which is a database in which
the items are stored, as shown in Figure 1.2. Specifically, from the
item pool, the automated parallel test form assembly selects combina-
tions of items that satisfy specific test constraints, such as constraint
of the measurement accuracy of examinees’ test scores, constraint of
test length (number of items in each parallel test form), and constraint
of the maximum number of overlapping items (the so-called overlap-
ping item constraint), where overlapping items mean common items
between any pair of parallel test forms. Here, when overlapping items
are not allowed, the automated parallel test form assembly cannot in-
crease the number of parallel test forms because each item is used only
once. Allowing some overlap items enables repeated use of items,
thereby increasing the total number of parallel test forms. However,
when the maximum number of overlap items is too large, the paral-
lel test forms might become nearly identical items. Accordingly, the

3

maximum number of overlapping items is usually set as 20%–30% of
the test length (e.g., [29, 30, 32, 33]).

Among these methods, the Big Shadow Test (BST) method [34]
using a Mixed-Integer Programming (MIP) problem is widely rec-
ognized. The MIP problem has binary variables indicating whether
each item is included in the assembled parallel test form, or not, and
a single real variable in the objective function. This real variable si-
multaneously minimizes two differences: the difference between the
examinees’ test scores of the currently assembled parallel test form
and the target examinees’ test scores, and the difference between the
examinees’ test scores of the remaining items in an item pool and a
proportional target examinees’ test scores based on the number of re-
maining items. This proportional target examinees’ test scores are de-
termined as the ratio of remaining items to the test length. Then, BST
sequentially assembles parallel test forms to minimize this difference
by solving the MIP problem. Accordingly, BST mitigates the rapid
decrease of items with high measurement accuracy of examinees’ test
scores from the item pool. Although BST can readily apply test con-
straints to the automated parallel test form assembly using MIP, it has
two important limitations. First, the measurement accuracy of exam-
inees’ test scores decreases as the number of parallel test forms in-
creases. Second, BST does not ensure maximization of the number of
parallel test forms.

To minimize differences of the measurement accuracies among
parallel test forms, several earlier studies have addressed the problem
by formulating it as a large-scale integer programming (IP) problem
(e.g., [35, 36, 22, 37, 38]). The IP problem has binary variables de-
noting whether each item is included in the assembled parallel test
form, or not. These approaches directly minimize the differences in
measurement accuracy of examinees’ test scores among parallel test
forms. Moreover, these methods are designed to assemble parallel test

4

forms that maintain the same measurement accuracy of examinees’
test scores, even as the number of forms increases.

To mitigate the high computational costs associated with auto-
mated parallel test form assembly, Sun et al. [25] proposed a heuristic
approach using a Genetic Algorithm (GA). The GA assembles multi-
ple parallel test forms simultaneously, aiming to minimize differences
in the measurement accuracy of examinees’ test scores among parallel
test forms while fitting with determined target values set by the test
organization. Based on this approach, Songmuang and Ueno [28] en-
hance performance by application of a Bees Algorithm (BA) to the
automated parallel test form assembly. The GA and the BA methods
can realize the equivalent measurement accuracy of examinees’ test
scores among parallel test forms. Nevertheless, these methods do not
guarantee maximizing the number of parallel test forms.

To guarantee the maximum number of parallel test forms, Belov
and Armstrong [39] proposed automated parallel test form assembly
using a Maximum Set-Packing (MSP) algorithm. The MSP method
partitions the item pool into the maximum number of parallel test
forms. Each parallel test form satisfies the given constraints. The MSP
method guarantees the maximum number of parallel test forms. Nev-
ertheless, the MSP method has a daunting limitation: it cannot include
overlapping items, meaning that each item can only appear in one par-
allel test form. This crucially important limitation is that it severely
decreases the number of assembled parallel test forms because it pre-
vents the reuse of items among these form.

To address this limitation, Ishii et al. [29] proposed a method to
allow overlapping items among parallel test forms using a Maximum
Clique Algorithm (MCA), which extracts a graph structure in which
any two vertices are connected with an edge. The MCA method is
recognized for assembling the largest number of parallel test forms
while maintaining the highest measurement accuracy of examinees’

5

test scores. The MCA method generates a graph in which the vertices
represent parallel test forms that satisfy the test constraints without
overlapping constraint. The edges represent the sufficiency of overlap-
ping item constraint between two vertices (parallel test forms). Then,
the MCA method extracts the maximum clique from this graph to as-
semble parallel test forms. This approach guarantees the maximum
possible number of assembled parallel test forms. However, the MCA
method has high time complexity and high space complexity [40].
Here, the time and space complexities are defined respectively as the
number of basic operations and the total amount of memory required
by an algorithm to complete its execution. Specifically, this paper em-
ploys theO-notation as time and space complexities. Complexity of a
non-negative function f(m) with the input size m ∈ N is defined as

O(g(m)) = {f(m) : ∃c ∈ R+,∃m0 ∈ N, ∀m ≥ m0,

0 ≤ f(m) ≤ c · g(m)}, (1.1)

where g(m) represents a non-negative function. According to the O-
notation, the MCA method has a high time complexity ofO(2|V |) and
a high space complexity of O(|V |2), where V represents a set of ver-
tices in the graph. Furthermore, the number of vertices |V | can be
at most the total number of combinations of selecting L (test length)
items from n items in item pool. Namely, |V | =

(
n
L

)
. As a result,

extracting the maximum clique C ⊆ V becomes computationally in-
feasible for large-scale item pools because the graph size becomes too
large to be stored in computer memory.

To mitigate the time and space complexities difficulty, Ishii et al.
proposed an approximation based on a random search method, which
is known as the Random Maximum Clique Algorithm (RndMCA)
[30]. After RndMCA constructs graphs by sequentially and ran-
domly assembling as many vertices (parallel test forms) as possible,
it then extracts the maximum clique from these graphs. Specifically,
RndMCA samples random subgraphs from the overall graph and ex-

6

tracts the maximum clique within each subgraph. The maximum
clique extraction from a randomly sampled subgraph in RndMCA has
a high time complexity ofO(

(
n
L

)
+ 2SS) and a high space complexity

of O(
(
n
L

)
+ SS2), where SS(|C| ≤ SS ≪ |V |) represents the sam-

pling size of each random sampling vertices from the overall graph.
Although RndMCA has the high time complexity, it is known [30] to
assemble more parallel test forms than conventional methods do, even
when the computation is interrupted within a short time limit. How-
ever, because of the high space complexity and its attendant computer
memory limitations, RndMCA cannot extract the maximum clique
with more than 100,000 vertices. As a result, the number of paral-
lel test forms is restricted to a mere hundred thousand. This num-
ber of parallel test forms is insufficient for practical use in examina-
tions with more than 1,000,000 examinees annually, such as the ACT.
Therefore, this study proposes three discrete algorithms aimed at as-
sembling more than 1,000,000 parallel test forms.

First, to mitigate the high space complexity of RndMCA, this study
proposes a new method: Random Integer Programming for Maximum
Clique Algorithm (RIPMCA). RIPMCA dynamically searches for a
vertex in a maximum clique one by one using IP, which has binary
variables indicating whether each item is included in a parallel test
form, or not. Specifically, RIPMCA searches for a vertex connected
to all vertices in the current clique, which is a set of vertices already
found by IP. Then, RIPMCA sequentially expands the maximum
clique by repeating the search. Also, RIPMCA has a lower space com-
plexity of O(|C|) compared to the space complexity O(

(
n
L

)
+ SS2)

of RndMCA, because it does not store the graph structure of the max-
imum clique on the computer memory. The benefit of reducing space
complexity increases the number of parallel test forms within limited
memory. Nevertheless, the improvement of RIPMCA is limited be-
cause of the high time complexity O(|C| ·mc · 2n). Here, mc repre-
sents the number of constraints in IP formulation. In this formulation,

7

mc increases as |C| becomes larger.

Second, to relax the computational costs for RIPMCA, this study
proposes a new two-stage parallel method: a Hybrid Maximum Clique
Algorithm with Parallel Integer Programming (HMCAPIP). In the first
stage, HMCAPIP assembles as many parallel test forms as possible
up to a computer memory limit using RndMCA within a computation
time limit. However, because of the high space complexity O(

(
n
L

)
+

SS2), RndMCA is constrained in increasing the number of parallel
test forms. Consequently, in the second stage, HMCAPIP searches for
a vertex that is connected to all vertices of the current clique from the
remaining vertices using the IP with a low space complexity ofO(|C|)
but with a high time of complexityO(|C|·mc·2n). To address this time
complexity, we parallelize the second stage. Specifically, the key idea
is efficient parallelization of the search for vertices connected to all
vertices of the current clique using the IP up to a determined number.
Afterward, the second stage identifies the maximum clique from the
searched vertices, which is then combined with the current clique. As
a result, HMCAPIP can reduce the computation time necessary for
assembling parallel test forms. Findings from numerical experiments
demonstrate that HMCAPIP can assemble 1.5–2.7 times more parallel
test forms than earlier methods can. Particularly under specific test
constraints from an actual item pool with 978 items, HMCAPIP can
assemble 200,000 parallel test forms.

Despite its advantages, HMCAPIP still has high time complexity
associated with the IP. For instance, HMCAPIP takes a week or more
to assemble 200,000 parallel test forms. Additionally, the efficiency of
HMCAPIP’s parallel search is highly dependent on the performances
of the computer’s multi-core processors. Therefore, HMCAPIP re-
mains unable to assemble a sufficient number of parallel test forms for
large-scale e-testing because of the high time complexity of IP.

Third, to increase the number of parallel test forms, we propose

8

a new method of Automated Parallel Test Form Assembly (ATA) us-
ing a Zero-suppressed Binary Decision Diagram (ZDD) [41], which
is designated as ATA-ZDD. The ZDD provides an efficient graphi-
cal structure for combination. It is obtained by application of two
reduction rules [41] to a Binary Decision Tree (BDT). The ZDD pro-
vides the important benefits of reducing both the computation time
and memory usage. Because of these benefits, the ZDD has been ap-
plied in various fields, including Stackelberg models in combinatorial
congestion games [42], architectural floor planning [43], grid power
loss minimization [44], and region partitioning for disaster evacuation
[45].

In ATA-ZDD, each vertex in the BDT represents an item from the
item pool. Each vertex has two outgoing edges, indicating whether the
corresponding item is included in a parallel test form, or not. The BDT
can enumerate all parallel test forms that satisfy the test constraints.
However, the BDT has high space complexity of O(2n). To mitigate
this space complexity, the proposed method uses a breadth-first search
[46] to compress the BDT into the ZDD. This breadth-first search is
recognized as an efficient approach for reducing both computer mem-
ory usage and computation time. Specifically, in ATA-ZDD, vertices
with identical test lengths and identical measurement accuracies of
examinees’ test scores are shared. However, identical the measure-
ment accuracy of examinees’ test scores between two vertices is rare.
Consequently, the conventional breadth-first search causes computer
memory overflow because nodes cannot be shared.

To resolve this issue, this study proposes a two-stage algorithm. In
the first stage, vertices are shared when the difference in the measure-
ment accuracy of examinees’ test scores between two vertices at the
same depth is less than a threshold value. Then, the shared vertex’s
measurement accuracy of examinees’ test scores is averaged from the
two vertices. The threshold value is determined to increase the num-

9

ber of paths (parallel test forms) to as large as possible within a com-
puter memory limit. However, the first stage does not guarantee that
the enumerated paths satisfy the measurement accuracy constraints.
To address this difficulty, in the second stage, paths that satisfy the
measurement accuracy constraints are sought and enumerated using
random sampling [41] from the constructed ZDD. The exact measure-
ment accuracy of examinee’s test score for each path without using
the value of the approximated shared vertex is recalculated to enumer-
ate paths that satisfy the measurement accuracy constraints exactly.
Therefore, ATA-ZDD enumerates parallel test forms that satisfy all
test constraints exactly in the second stage.

Numerical experiments show that ATA-ZDD can assemble more
parallel test forms than the other automated test assembly from sim-
ulated and actual item pools. It is noteworthy that ATA-ZDD can as-
semble 1,500,000 parallel test forms in 24 hr under specific test con-
straints from an actual item pool with 978 items, whereas HMCAPIP
is able to assemble only 100,000 parallel test forms.

10

Chapter 2

Related Work

2.1 Item Response Theory

In many automated parallel test form assemblies, an examinee’s
test score is estimated using Item Response Theory (IRT) [7, 47]. For
IRT, uij represents the response of examinee j(= 1, 2, . . . , J) to item
i(= 1, 2, . . . , n) as

uij =

{
1, examinee j answers item i correctly,

0, otherwise.
(2.1)

The widely adopted IRT model, the Three-Parameter Logistic
Model (3PLM), calculates the probability that an examinee j with test
score θj ∈ (−∞,∞) correctly answers item i as

p(uij = 1|θj) = ci +
1− ci

1 + exp(−Dai(θj − bi))
, (2.2)

where ai ∈ [0,∞), bi ∈ (∞,∞), and ci ∈ [0, 1] respectively repre-
sent the item discrimination parameter, the item difficulty parameter,
and the item guessing parameter. Additionally, constant D (typically
set to 1.701) scales the model to approximate the standard normal dis-
tribution. When the guessing parameter ci is zero, the model simplifies
to the two-parameter logistic model (2PLM).

The asymptotic variance of the test score estimate based on IRT has

11

been shown to converge to the inverse of Fisher information [7, 47].
Consequently, Fisher information is employed as an index to represent
the measurement accuracy of the examinee’s test score estimation. For
3PLM, the Fisher information function Ii(θ) for item i, given an ex-
aminee’s test score θ, is defined as

Ii(θ) =
[p′(ui = 1|θ)]2

p(ui = 1|θ)[1− p(ui = 1|θ)]
, (2.3)

where
p′(ui = 1|θ) = ∂

∂θ
p(ui = 1|θ). (2.4)

Using this information, we define the test information function
TI(θ) of a test form as

TI(θ) =
n∑

i=1

Ii(θ)xi, (2.5)

where

xi =

{
1, if the item i is selected for the test form, and

0, otherwise.
(2.6)

The asymptotic standard error SE(θ̂) of a estimate θ̂ is the recip-
rocal of the square root of the test information function at a given test
score level θ̂, as

SE(θ̂) =
1√

TI(θ̂)
. (2.7)

Consequently, the test information function is the sum of Fisher
information function for each item in the test form. It reflects the
precision with which the test form can estimate an examinee’s test
score at different test score points. Therefore, in parallel test forms,

12

maintaining a uniform test information value across all examinees’
test score levels ensures that examinees can take the test at any time
and from any location, without compromising the measurement accu-
racy of estimation. However, because the test information function is
continuous, it is difficult to compute these values uniformly across all
examinees’ test score levels. Earlier automated parallel test form as-
sembly methods (e.g., [48, 35, 49, 36, 34, 28, 25]) have addressed this
difficulty by discretizing the values of the test information function.
For example, these methods evaluate the test information function at
specific points θk (k = 1, 2, . . . , K) on the test score scale θ. Follow-
ing traditional approaches, this study applies a similar treatment to the
test information function.

2.2 Automated Parallel Test Form Assembly

2.2.1 Big Shadow Test

Van der Linden proposed the Big Shadow Test (BST) method [34]
using Mixed-Integer Programming (MIP), which is the most widely
used automated parallel test form assembly.

Step by step, BST assembles parallel test forms using MIP to re-
duce the gap in test information between the assembled parallel test
form and the remaining items in the pool. Specifically, BST solves the
MIP problem outlined below. The objective is to minimize

y .

13

Subject to

K∑
k=1

|
n∑

i=1

Ii(θk)xi − TItarget(θk)| ≤ Ly , (2.8)

K∑
k=1

|
n∑

i=1

Ii(θk)zi − TIST(θk)| ≤ LSTy , (2.9)

n∑
i=1

xi = L, (2.10)

n∑
i=1

zi = LST, (2.11)

xi + zi ≤ 1, (2.12)

where

xi =

1, if item i is selected for the currently assembled

parallel test form,
0, otherwise,

y ≥ 0,

zi =

{
1, if item i is remaining items in item pool,
0, otherwise,

TIST(θk) =
LST

L
TItarget(θk). (2.13)

Here, L and LST respectively represent the test length and the num-
ber of remaining items in the item pool. The objective variable y rep-
resents the minimum difference between the information function of
the assembled parallel test form and the target value TItarget(θk) of the
test information function at the test score level θk . Similarly, TIST(θk)
denotes the target value of the test information function for the remain-
ing items in the item pool, which is the target test information multi-
plied by the ratio of the remaining items LST to the total test length
L.

14

First, the constraint equation (2.8) minimizes the difference of test
information between the currently assembled parallel test form and
the target value TItarget(θk). Then the constraint equation (2.9) mini-
mizes the difference of test information between the set of the remain-
ing items and its target value TIST(θk). The MIP problem simultane-
ously minimizes the differences in test information function values as
formulated in constraint (2.8) and constraint (2.9).

The constraint equation (2.9) ensures that items with high Fisher
information are not depleted too quickly. Without the constraint equa-
tion (2.9), BST might leave only items with low Fisher information
in the item pool. Consequently, the constraint equation (2.9) relaxes
the rapid decrease of test information which occurs as the number of
assembled parallel test forms increases.

By solving the MIP problem, BST sequentially assembles parallel
test forms. In fact, BST can easily apply test constraints to the MIP.
However, because of the greedy algorithm property, this BST’s se-
quential algorithm reduces the measurement accuracy of examinees’
test scores as the number of parallel test forms increases.

2.2.2 Maximum Clique Algorithm

Automated parallel test form assembly using a maximum clique al-
gorithm (MCA) by Ishii et al. [29] (designated as ExMCA) assembled
the largest number of parallel test forms with the highest measurement
accuracy of examinees’ test scores at that time of its publication. The
MCA (e.g., [50, 51]) extracts a maximum clique in a graph. In the
maximum clique, a graph G = {V,E} consists of a finite set of ver-
tices V and edges E. The MCA extracts the largest clique C ⊆ V in

15

the graph G, formally defined as

maximize |C|,
subject to

∀v′,∀v′′ ∈ C, {v′, v′′} ∈ E.
(2.14)

For ExMCA, let V = {T1, T2, . . . , TH} be a set of vertices, where
each Th(h = 1, 2, . . . , H) is a subset of items from item pool I =
{1, 2, . . . , n}. Each Th represents a parallel test form that satisfies all
test constraints except for the overlapping item constraint. Let E be
a finite set of edges, where each edge exists between two vertices Th

and Th′(h ̸= h′) when the corresponding parallel test forms satisfy the
overlapping item constraint. In accord with earlier studies [29, 30, 32],
in this study, all test constraints are defined as presented below.

The test length constraint is given as

n∑
i=1

xi = L, (2.15)

where L represents the test length.

The test information constraint is given as

ILB(θk) ≤ TI(θk) ≤ IUB(θk), (2.16)

where ILB(θk) and IUB(θk) respectively denote the lower and
upper bounds of the test information function at test score level
θk.

The overlapping item constraint is defined as

∀Th,∀Th′ ∈ V, |Th ∩ Th′| ≤ OC, (2.17)

where OC is defined as the maximum number of common items
between any pair of parallel test forms.

16

T

T1

TT

T T

T1

TT

Extract Maximum Clique

2 2

3434

5

Figure 2.1: Example of ExMCA.

As a result, the maximum clique represents parallel test forms that
satisfy all test constraints.

Figure 2.1 presents an example of ExMCA. In the figure, a graph
has five vertices (test forms) and eight edges. In the figure, T1, T2, T3,

and T4 are the vertices included in the maximum clique in the graph.

The ExMCA proceeds with the following three procedures.

Procedure 1: (Generating parallel test forms)
Using a branch-and-bound approach (e.g., [52]), Procedure 1 as-
sembles all parallel test forms that satisfy test constraints, except
for the overlapping item constraint.

Procedure 2: (Constructing a graph)
Procedure 2 constructs the graph by counting overlapping items
between pairs of parallel test forms, which are represented as
vertices. Only pairs that satisfy the overlapping item constraint
are connected by edges.

Procedure 3: (Extracting the maximum clique)
Procedure 3 extracts a maximum clique from the graph, repre-
senting the largest number of parallel test forms that satisfy all
test constraints.

Although the ExMCA guarantees the maximum number of parallel

17

test forms, the computational cost of extracting the maximum clique
is considerable. Specifically, the time and space complexities of in
the ExMCA are, respectively, O(2|V |) and O(|V |2). Furthermore, the
number of vertices |V | can be at most the total number of combina-
tions of selecting L (test length) items from n items in an item pool.
Namely, |V | =

(
n
L

)
. As a result, ExMCA becomes computationally

infeasible for large-scale item pools because the graph size exceeds
practical computer memory limitations.

To address the high complexities of ExMCA, Ishii et al. [30] pro-
posed an approximation algorithm, the Random Maximum Clique Al-
gorithm (RndMCA), which requires the following inputs.

• Constant value parameter SS(|C| ≤ SS ≪ |V |) represents the
sampling size of each random sampling vertices from V .

• Constant time parameter Tlimit stands for the computation time
limit to search for vertices (parallel test forms) in Procedure 1 or
to extract a maximum clique in Procedure 3. Specifically, when
Procedure 1 does not find SS parallel test forms within the com-
putation time limit Tlimit, it returns parallel test forms found up
to that time. Similarly, when Procedure 3 does not extract the
maximum clique within Tlimit, it returns the largest clique that
time.

• Constant time parameter LT denotes the algorithm’s total com-
putation time limit.

• Finite set I represents a set of items in an item pool.

• Constant value parameter L stands for the test length.

• Constant value parameter n represents the number of items in the
item pool.

• Constant value parameter K denotes the number of discretized
points for the test information function.

18

• Constant value parameters ILB(θk) and IUB(θk) respectively de-
note the lower and upper bounds of the test information function
at test score level θk.

• Constant value parameter OC signifies the maximum number of
common items between any pair of parallel test forms.

Algorithm 1 provides a description of RndMCA. The output of
Algorithm 1 is the set Cmax, which represents the maximum number
of parallel test forms found within the computation time LT .

Algorithm 1: RndCMA

procedure RndMCA
Input: SS, Tlimit, LT, I, L, n,K, ILB(θk), IUB(θk), OC

Output: Cmax

C ← ∅, Cmax ← ∅
st← now()

▷ now() retrieves the current timestamp to track elapsed compu-
tation time.

while (now()− st) < LT do
▷ Procedure 1

V ← RandomSearch(SS, Tlimit, I, L, n,K,

ILB(θk), IUB(θk))
▷ RandomSearch searches for at most SS vertices that satisfy test
constraints except for overlapping item constraint from I, L, n
K, ILB(θk), and IUB(θk) within computation time limit Tlimit.
▷ Procedure 2

E ← ConnectVertices(V,OC)
▷ ConnectVertices constructs edges between pairs of vertices that
satisfy the overlapping item constraint.

G← (V,E)
▷ Procedure 3

C ← MCA(G, Tlimit)

19

▷ MCA extracts the maximum clique from the graph G within
computation time limit Tlimit.

if |Cmax| < |C| then
Cmax ← C

end if
end while
Output Cmax

▷ Cmax represents the found parallel test forms within computa-
tion time limit LT .
end procedure

RndMCA repeatedly extracts the maximum number of parallel test
forms from a subgraph of the overall graph. The time and space com-
plexities of a single iteration through Procedures 1 to 3 in RndMCA
can be analyzed based on the complexity of its three procedures.

In the worst-case, Procedure 1 requires exploring all combination
of selecting L items from the n items in the item pool. Consequently,
Procedure 1 has a high time complexity of O(

(
n
L

)
), which depends

on the input sizes L and n. Additionally, to avoid duplicate combina-
tions, Procedure 1 stores explored parallel test forms on the computer
memory. As a result, the space complexity of Procedure 1 is O(

(
n
L

)
),

which depends on the input sizes L and n.

Procedure 2 constructs a graph by verifying the number of over-
lapping items between each pair of SS parallel test forms. Then, Pro-
cedure 2 has a time complexity of O(SS2) depending on the input
size SS. Additionally, Procedure 2 requires a space complexity of
O(SS2) to store the adjacency structure of the graph depending on
the input size SS.

Procedure 3 has a high time complexity ofO(2SS) and a high space

20

complexity of O(SS2) to extract a maximum clique in the graph de-
pending on the input size SS.

Therefore, the single iteration in RndMCA has a high time com-
plexity ofO(

(
n
L

)
+2SS) and a high space complexity ofO(

(
n
L

)
+SS2)

through Procedures 1 to 3. RndMCA repeats Procedures 1 to 3 with
the high time and space complexity within the time limit LT . How-
ever, it is known [30] to assemble more parallel test forms than con-
ventional methods do, even when the computation is interrupted under
short time limits LT and Tlimit. However, when the number of parallel
test forms becomes too large, the high space complexity of RndMCA
makes it impossible to assemble more than 100,000 parallel test forms
because of a computer memory limit.

21

Chapter 3

Automated Parallel Test Form Assembly
using Integer Programming for Maximum
Clique

3.1 Random Integer Programming Maximum
Clique Algorithm for Automated Parallel
Test Form Assembly

RndMCA was recognized for assembling the largest number of
parallel test forms at the time of its publication [30], but it remains
restricted to, at most, 100,000 parallel test forms because of its high
space complexity O(

(
n
L

)
+ SS2). To mitigate RndMCA’s space com-

plexity, this study proposes a new automated parallel test form as-
sembly: Random Integer Programming Maximum Clique Algorithm
(RIPMCA). The key idea of RIPMCA is iterative search for a vertex
that is connected to all vertices in the current clique using IP, thereby
expanding the clique step by step. An IP problem formulation for
assembling parallel test forms is the following. The objective is to
maximize

n∑
i=1

λixi, (3.1)

where the binary variable xi is defined as follows: it equals 1 if item
i is selected for the parallel test form, and 0 otherwise. Additionally,

22

λi are random variables that are distributed uniformly in the range
[0,1]; these values are resampled after each problem is solved. The
IP with the sampled weight λi randomly assembles parallel test forms
from feasible solutions. Consequently, the weight λi ensures a more
uniform item exposure of parallel test forms, defined as how many
times each item is used. Subject to

n∑
i=1

xi = L, (3.2)

∀k ∈ {1, 2, . . . , K}, ILB(θk) ≤
n∑

i=1

Ii(θk)xi ≤ IUB(θk), (3.3)

∀r ∈ {1, 2, . . . , |C|},
n∑

i=1

Xi,rxi ≤ OC, (3.4)

where Xi,r equals 1 if the item i is included in the parallel test form
r of the current clique C, and 0 otherwise. The IP problem randomly
searches a vertex (parallel test form) that is connected to all vertices
(parallel test forms) in the current clique C. Equation (3.2) restricts
test length L in the parallel test form. The term of

∑n
i=1 Ii(θk)xi in

equation (3.3) restricts the value of test information function of as-
sembling parallel test form at each test score level θk. Specifically,
equation (3.3) restricts the value of the test information function by
setting the lower bound ILB(θk) and upper bound IUB(θk). The term∑n

i=1Xi,rxi restricts the number of overlapping items between the as-
sembling parallel test form and parallel test form r in the current clique
C. Equation (3.4) restricts the number of overlapping items between
any two parallel test forms in the current clique C. Consequently, the
constraint equations (3.2)–(3.4)guarantee an assembling vertex (par-
allel test form), which is connected to all vertices (parallel test forms)
in the current clique C.

By solving the IP problem, RIPMCA searches for a vertex con-
nected to all vertices in the current clique. Then, RIPMCA sequen-

23

tially expands the maximum clique by repeating the search. For this
sequential maximum clique expansion, RIPMCA requires the follow-
ing inputs.

• Constant time parameter LT represents the algorithm’s total
computation time limit.

• Finite set I denotes a set of items in an item pool.

• Constant value parameter L stands for the test length.

• Constant value parameter n represents the number of items in the
item pool.

• Constant value parameter K represents the number of discretized
points for the test information function.

• Constant value parameters ILB(θk) and IUB(θk) respectively sig-
nify the lower and upper bounds of the test information function
at test score level θk.

• Constant value parameter OC stands for the maximum number
of common items between any pair of parallel test forms.

Algorithm 2 provides a description of RIPMCA. The output of
Algorithm 2 is the set Cmax, which represents the maximum number
of parallel test forms found within the computation time limit LT .

24

Algorithm 2: RIPMCA

procedure RIPMCA
Input: LT, I, L, n,K, ILB(θk), IUB(θk), OC
Output: Cmax

C ← ∅, Cmax ← ∅
st← now()

▷ now() retrieves the current timestamp to track the elapsed com-
putation time.

while (now()− st) < LT do
T ← IP(C, I, L, n,K, ILB(θk), IUB(θk), OC)

▷ IP searches a vertex that is connected with all vertices in the
current clique C.

if T ̸= ∅ then
C ← C ∪ T

if |Cmax| < |C| then
Cmax ← C

end if
else

C ← ∅
end if

end while
Output Cmax

▷ Cmax represents the found parallel test forms within the compu-
tation time limit LT .
end procedure

In RIPMCA, the time complexity of solving the IP to search for a
vertex isO(mc · 2n). The reason is that the IP problem is solved using
the branch-and-bound method, which explores the solution space by
branching on decision variables and bounding sub problems to prune

25

infeasible regions. In the worst case, this process requires evaluating
up to 2n possible solutions while ensuring that they satisfy the mc con-
straints. Here, mc increases as |C| in equation (3.4) becomes larger.
Therefore, the time complexity of IP computation in RIPMCAP is
O(|C| · 2n). Furthermore, RIPMCA expands the maximum clique
sequentially by repeating this search. When the search continues un-
til no new vertex is found to expand the clique, RIPMCA has a high
time complexity of O(|C|2 · 2n), which depends on the input sizes C
and n, because the IP problem is solved |C| times repeatedly. On the
other hand, RIPMCA does not store the graph structure for the max-
imum clique search. Instead, RIPMCA only stores |C| parallel test
forms found on the computer memory. Consequently, RIPMCA has
a low space complexity of O(|C|), which depends on the input size
|C|. As a result, RIPMCA might reduce memory usage compared to
RndMCA, which has the high space complexity of O(

(
n
L

)
+ SS2).

26

3.2 Hybrid Maximum Clique Algorithm using
Integer Programming for Automated
Parallel Test Form Assembly

Actually, RIPMCA’s space complexity O(|C|) is lower than
RndMCA’s space complexityO(

(
n
L

)
+ SS2). This benefit is expected

to increase the number of parallel test forms within a computer mem-
ory limit. However, the improvement of RIPMCA remains limited
because of its high time complexity O(|C|2 · 2n). To address this
difficulty, this study proposes a new two-stage parallel method for au-
tomated parallel test form assembly: Hybrid Maximum Clique Algo-
rithm with Parallel Integer Programming (HMCAPIP).

The first stage is to extract a maximum clique found within a com-
putation time that is as large as possible up to a computer memory limit
using RndMCA, which has high space complexityO(

(
n
L

)
+SS2). Al-

though RndMCA assembles parallel test forms within the computation
time, because of the computer memory limit, it becomes impractical to
search for a clique with more than a hundred thousand vertices. There-
fore, once the computer memory limit is reached, HMCAPIP transi-
tions to the second stage using RIPMCA, where it searches repeatedly
for vertices connected to all vertices in the current clique from the re-
maining vertices using IP, which has low space complexity O(|C|)
but high time complexity O(|C|2 · 2n). Nevertheless, the number of
additionally assembled parallel test forms using IP is limited because
of its high time complexity. To address this limitation, HMCAPIP
parallelizes the second stage. However, the second stage is difficult
to parallelize because it requires adding overlapping item constraint
expressions to IP when a new vertex is found. Therefore, HMCAPIP
searches vertices through the following procedures, as presented in
Figure 3.1.

27

C
u

rr
e

n
t

C
liq

u
e

 C

P
ro

c
e
d
u
re

 1
s
e
a
rc

h
e
s
 v

e
rt

ic
e
s

c
o
n
n
e
c
te

d
 t
o

a
ll
 v

e
rt

ic
e
s
 i
n
 C

.

S
 (

IP
 S

o
lv

e
d

)

・・・

V
e

rt
e

x
 1

V
e

rt
e

x
 2

V
e

rt
e

x
 P

・・・

P
a

ra
lle

l
s
o

lv
e

P
ro

c
e

d
u

re
 2

 e
x
tr

a
c
ts

a
 m

a
x
im

u
m

 c
li
q

u
e

fr
o

m
 t
h

e
 f
o

u
n

d
 v

e
rt

ic
e
s

in
 S

P
ro

c
e

d
u

re
 3

U
p

d
a

te
 C

←

C
∪

M
C

R
e

p
e

a
t

M
C

(M
a
x
im

u
m

 c
li
q

u
e
)

S

(u
n

ti
l
S

U
B
≦

|S
 |
)

T
h

e
 u

p
d

a
te

d
 c

liq
u

e
 C

P
ro

c
e
d
u
re

 1
s
e
a
rc

h
e
s
 v

e
rt

ic
e
s

c
o
n
n
e
c
te

d
 t
o

a
ll
 v

e
rt

ic
e
s
 i
n
 C

.

P
ro

c
e

d
u

re
 2

 e
x
tr

a
c
ts

a
 m

a
x
im

u
m

 c
li
q

u
e

fr
o

m
 t
h

e
 f
o

u
n

d
 v

e
rt

ic
e
s

in
 S

M
C

(M
a

x
im

u
m

 c
li
q

u
e

)

S

・・・

S
 (

IP
 S

o
lv

e
d

)

・・・

V
e

rt
e

x
 1

V
e

rt
e

x
 2

V
e

rt
e

x
 P

・・・

P
a

ra
lle

l
s
o

lv
e

R
e

p
e

a
t

(u
n

ti
l
S

U
B
≦

|S
 |
)

P
ro

c
e

d
u

re
 3

U
p

d
a

te
 C

←

C
∪

M
C

M
C

T
h

e
 p

re
v
io

u
s
 c

liq
u

e

Figure 3.1: Outline of the second stage in HMCAPIP.
Reprinted from [53], Licensed under CC BY 4.0. © 2022 K. Fuchimoto et al.

28

Procedure 1: Using multi-core processors, Procedure 1 searches in
parallel for P vertices that are connected to all vertices of the
current clique using IP, where P is the number of parallelisms
for searching a vertex using the IP. Here, the optimal solution in
IP varies with each search because of the resampling of λi. Then,
the found vertices are added to a set S ⊆ V , which represents
the set of vertices connected to all vertices in the current clique.
Additionally, the previously found solutions in the set S remain
feasible under the new objective function because the constraints
of the IP problem remain unchanged. Consequently, the next IP
search can start with the maximum value of the new objective
function, taken from the previously found solutions, as the initial
lower bound. Procedure 1 continues until SUB ≤ |S|, where SUB

is the limit of the number of vertices imposed by IP.

Procedure 2: Procedure 2 extracts the maximum clique MC from
the set S, which is obtained in Procedure 1.

Procedure 3: The found maximum clique MC in Procedure 2 is
combined with the current clique C, thereby expanding the
clique size. This combined clique becomes the new current
clique.

Procedure 4: When Procedure 1 fails to find a solution for the IP, the
search might fall into a local solution of the maximum clique. In
such a case, to avoid the local solution, Procedure 4 randomly
removes some vertices from the current clique C.

HMCAPIP requires the following inputs.

• Constant value parameter SS(|C| ≤ SS ≪ |V |) represents
the sampling size of each random sampling vertices from V in
RndMCA.

29

• Constant time parameter Tlimit denotes the computation time
limit to extract the maximum clique.

• Constant time parameter LT ′ represents RndMCA’s total com-
putation time limit.

• Constant time parameter LT stands for the algorithm’s total com-
putation time limit.

• Tuning parameter SUB(SUB ≤ SS) represents the upper bound
of the number of vertices using IP in the second stage.

• Constant value parameter D denotes the number of vertices re-
moved from the current clique when the IP fails to find a so-
lution. Although the value of D can be adjusted, preliminary
experiments suggest it leads to slight differences in the number
of parallel test forms. Accordingly, D is set to 100 for this study.

• Tuning parameter P represents the number of parallelisms for
searching a vertex using IP.

• Finite set I represents a set of items in an item pool.

• Constant value parameter L stands for the test length.

• Constant value parameter n denotes the number of items in the
item pool.

• Constant value parameter K represents the number of discretized
points for the test information function.

• Constant value parameters ILB(θk) and IUB(θk) respectively de-
note the lower and upper bounds of the test information function
at test score level θk.

• Constant value parameter OC signifies the maximum number of
common items between any pair of parallel test forms.

30

Algorithm 3 provides a description of HMCAPIP. The output of
Algorithm 3 is the set Cmax, which represents the maximum number
of parallel test forms found within the computation time limit LT .

31

Algorithm 3: HMCAPIP

1: procedure HMCAPIP
2: Input: SS, Tlimit, LT

′, LT, SUB, D, P, I, L, n,
3: K, ILB(θk), IUB(θk), OC
4: Output: Cmax

5: st← now()
▷ now() retrieves the current timestamp to track the elapsed com-
putation time.

6: C ← RndMCA(SS, Tlimit, LT
′, I, L, n,K, ILB(θk), IUB(θk)

7: , OC)
▷ First stage

8: Cmax ← SecondStage(C,LT, SUB, D, P, I, L, n,

9: K, ILB(θk), IUB(θk), OC, st)
10: Return Cmax

11: end procedure

12: function SecondStage
13: Input: C,LT, SUB, D, P, I, L, n,K, ILB(θk), IUB(θk), OC, st
14: Output: Cmax

15: Cmax ← C
16: while (now()− st) < LT do
17: S ← ∅
18: repeat
19: Sol← ∅
20: parallel for p← 1 . . . P do

▷ Search P vertices in parallel.
21: Sol← Sol ∪ SearchVertex(C, S, I, L, n,K,
22: ILB(θk), IUB(θk), OC)

▷ SearchVertex searches a vertex that is connected to all vertices
in C using IP.

23: end parallel for
24: if Sol ̸= ∅ then

32

▷ IP has solutions
25: S ← S ∪ Sol
26: else
27: C ← Remove(C,D)

▷ Remove(C,D) removes D vertices from C
28: break
29: end if
30: until SUB ≤ |S|
31: if S ̸= ∅ then
32: E ← ConnectVertices(S,OC)

▷ ConnectVertices constructs edges between pairs of vertices that
satisfy the overlapping item constraint.

33: G← (S,E)
▷ (S,E) constructs a graph that corresponds to the set S with the
overlapping item constraint.

34: MC ←MCA(G, Tlimit)
▷ MCA(G, Tlimit) extracts the maximum clique from the graph G

within calculation time Tlimit.
35: C ← C ∪MC

36: if |Cmax| < |C| then
37: Cmax ← C

38: end if
39: end if
40: end while
41: return Cmax

42: end function

43: function SearchVertex
44: Input: C, S, I, L, n,K, ILB(θk), IUB(θk), OC
45: Output: A vertex is connected to all vertices in C using IP.
46: LB ← maxTh∈S

(∑
i∈Th

λixi
)

▷ Objective function is equation (3.1)
47: return IP(C, S, I, L, n,K, ILB(θk), IUB(θk), OC, LB)

33

▷ IP() solves IP with initial lower bound LB
48: end function

3.3 Tuning Parameter Optimization and Lower
Bound Evaluation for HMCAPIP

This section presents determination of the optimal tuning parame-
ters for HMCAPIP using a simulated item pool to maximize the num-
ber of parallel test forms. In addition, this section presents evaluation
showing that HMCAPIP can increase the number of assembled paral-
lel test forms using the initial lower bound in Procedure 1.

3.3.1 Optimization of Parameter SUB

This experiment ascertains the optimal value to maximize the num-
ber of parallel test forms by modifying the value of the tuning parame-
ter SUB using a simulated item pool with 1000 items, close to the num-
ber of items in the real-world dataset used by Ishii et al. [30]. Items in
the simulated item pools have discrimination parameters and difficulty
parameters based on IRT according to van der Linden [34]. Specif-
ically, the item discrimination parameters were generated indepen-
dently for each item as log2 a ∼ N(0, 1). The item difficulty parame-
ters were also generated independently for each item as b ∼ N(0, 1).
Furthermore, the discrimination and difficulty parameters were gener-
ated independently of each other. The values of guessing parameters
ci of all items in the simulated item pools are 0. Additionally, this
study sets all test constraints as presented below.

1. The test length L is 25 items.

34

2. Test information constraints are given by the lower and upper
bounds of the test information function, as shown in Table 3.1.

3. The maximum number of common items OC is increased from
0 to 10 in increments of 1, corresponding to 0%–40% of the test
length L, with increments of 4%.

Table 3.1: Test information constraints for HMCAPIP experimenta-
tion

ILB(θk)/IUB(θk)

θ1 = −2.0 θ2 = −1.0 θ3 = 0.0 θ4 = 1.0 θ5 = 2.0

2.0/2.4 3.2/3.6 3.2/3.6 3.2/3.6 2.0/2.4
Reprinted from [53], Licensed under CC BY 4.0. © 2022 K. Fuchimoto et al.

For HMCAPIP, we set SS to 100,000, Tlimit to 3 hr, LT ′ to 3 hr,
P to 1, D to 100, and LT to 24 hr. The values of SS, Tlimit, LT

′, and
LT are determined as described for an experiment by Ishii et al. [30].

The first experiment focuses on determining the value of SUB. To
isolate the effect of SUB, the solutions found in IP are not used as the
initial lower bound for subsequent searches. Additionally, the number
of parallelisms P is set to 1. This experiment compares the number of
parallel test forms for SUB = 10, 100, and 1000.

This experiment was conducted on a computer equipped with an
Core i9-9900X 3.50 GHz CPU (Intel Corp.), 128 GB of RAM, and
running a 64-bit Linux (Ubuntu) operating system. The same RAM
capacity was used by Ishii et al. [30]. HMCAPIP employed CPLEX
12.9 [54] to solve IP.

35

Ta
bl

e
3.

2:
Pe

rf
or

m
an

ce
of

H
M

C
A

PI
P

ac
hi

ev
ed

by
m

od
if

yi
ng

th
e

tu
ni

ng
pa

ra
m

et
er
S
U
B

va
lu

es

It
em

Po
ol

Si
ze

O
C

Pr
op

os
al

S
U
B
=

1
0

S
U
B
=

10
0

S
U
B
=

1
00

0

N
o.

te
st

s
A

vg
.S

T
A

vg
.S

T
N

o.
te

st
s

A
vg

.S
T

A
vg

.S
T

N
o.

te
st

s
A

vg
.S

T
A

vg
.S

T
(M

C
A

)[
s]

(I
P)

[s
]

(M
C

A
)[

s]
(I

P)
[s

]
(M

C
A

)[
s]

(I
P)

[s
]

10
00

0
34

0.
00

01
55

.2
4

34
0.

86
32

47
.5

2
34

45
7.

47
81

37
.2

3
1

24
3

0.
00

01
24

.8
1

26
1

0.
23

75
20

.2
4

25
3

18
0.

05
63

10
.0

7
2

15
95

0.
00

01
33

.2
9

16
39

0.
13

38
25

.6
3

13
49

17
7.

51
53

9.
14

3
75

22
0.

00
01

12
.4

1
73

55
0.

00
10

11
.0

5
69

36
18

0.
05

90
6.

36
4

33
15

0
0.

00
01

3.
11

33
16

0
0.

00
08

3.
04

31
01

2
0.

05
83

2.
96

5
63

70
6

0.
00

01
4.

01
65

45
8

0.
00

06
3.

58
63

71
9

0.
05

35
4.

00
6

10
53

67
0.

00
01

4.
46

10
53

91
0.

00
07

4.
46

10
52

39
0.

04
63

4.
51

7
10

82
86

0.
00

01
7.

97
10

87
65

0.
00

07
7.

56
10

82
79

0.
04

43
7.

99
8

10
87

59
0.

00
01

8.
08

10
92

45
0.

00
06

7.
66

10
87

61
0.

04
55

8.
10

9
10

86
98

0.
00

01
8.

12
10

92
02

0.
00

07
7.

66
10

87
46

0.
04

75
8.

10
10

10
86

99
0.

00
01

8.
10

10
92

03
0.

00
05

7.
68

10
87

44
0.

04
72

8.
12

R
ep

ri
nt

ed
fr

om
[5

3]
,L

ic
en

se
d

un
de

rC
C

B
Y

4.
0.

©
20

22
K

.F
uc

hi
m

ot
o

et
al

.

36

Table 3.2 presents the relative performance results of HMCAPIP
based on different SUB values. Table 3.2 includes the following de-
tails: “No. tests” represents the number of parallel test forms; “Avg.
ST (MCA) [s]” denotes the average calculation time required to search
for the maximum clique from S in Procedure 2 of HMCAPIP’s sec-
ond stage; and “Avg. ST (IP) [s]” stands for the average of search
calculation time using IP for searching a vertex in Procedure 1 of HM-
CAPIP’s second stage.

When OC ≤ 3, HMCAPIP provides a tradeoff between “Avg. ST
(MCA)” and “Avg. ST (IP)”. Particularly as the SUB value increases,
“Avg. ST (MCA)” increases whereas “Avg. ST (IP)” decreases. In
contrast, when OC > 3, the effect of this tradeoff is limited because
the difference between “Avg. ST (MCA)” and “Avg. ST (IP)” is small
at different SUB values. As a result, in most cases, when SUB = 100,
HMCAPIP assembles the greatest number of parallel test forms. Con-
sequently, for this study, the value of SUB was determined as 100.

3.3.2 Performance of HMCAPIP with Lower Bound

In Procedure 1 of HMCAPIP, the next IP search can start with the
maximum value calculated from equation (3.1) as the initial lower
bound, using the previously found solutions. For this experiment, we
refer to this method with the lower bound as “HMCAPIP with the
lower bound” and to that without as “HMCAPIP without the lower
bound”. Results obtained from this experiment demonstrate that “HM-
CAPIP with the lower bound” increases the number of parallel test
forms compared to “HMCAPIP without the lower bound” using the
same simulated item pool, computer, and test constraints as those de-
scribed in subsection 3.3.1. For “HMCAPIP with the lower bound”
and “HMCAPIP without the lower bound”, we set SS to 100,000,
Tlimit to 3 hr, LT ′ to 3 hr, SUB to 100, P to 1, D to 100, and LT to 24
hr.

37

Table 3.3 presents comparison of performance results obtained us-
ing “HMCAPIP with the lower bound” and “HMCAPIP without the
lower bound”. The following are presented in Table 3.3. In the table,
“No. tests” represents the number of parallel test forms. “Avg. SN”
and “Avg. CT [s]” respectively denote the number of search vertices
and the average of calculation time using IP for searching a vertex
in Procedure 1 of HMCAPIP’s second stage. “Avg. SN” and “Avg.
CT [s]” are measured to evaluate whether HMCAPIP with the lower
bound reduces the search space and calculation time in IP.

In fact, results show that “HMCAPIP with the lower bound” as-
sembles more parallel test forms than “HMCAPIP without the lower
bound” does. Furthermore, both “Avg. SN” and “Avg. CT [s]” of
“HMCAPIP with the lower bound” are lower than those of “HM-
CAPIP without the lower bound” because “HMCAPIP with the lower
bound” prunes the search space using the branch-and-bound process
of the IP, to reduce the computation time. These results confirm the
effectiveness of “HMCAPIP with the lower bound” to increase the
number of assembled test forms. “HMCAPIP with the lower bound”
is simply stated as “HMCAPIP” hereinafter.

38

Ta
bl

e
3.

3:
Pe

rf
or

m
an

ce
of

“H
M

C
A

PI
P

w
ith

th
e

lo
w

er
bo

un
d”

an
d

“H
M

C
A

PI
P

w
ith

ou
tt

he
lo

w
er

bo
un

d”
It

em
Po

ol
Si

ze
O
C

M
et

ho
d

H
M

C
A

PI
P

w
ith

ou
tl

ow
er

bo
un

d
H

M
C

A
PI

P
w

ith
lo

w
er

bo
un

d
N

o.
te

st
s

A
vg

.S
N

A
vg

.S
T

[s
]

N
o.

te
st

s
A

vg
.S

N
A

vg
.S

T
[s

]

10
00

0
34

25
42

32
.3

47
.5

2
34

23
42

32
.3

45
.8

2
1

26
1

14
47

63
.9

22
.7

2
29

3
13

43
52

.1
20

.2
4

2
16

39
14

64
58

.8
26

.0
5

16
70

13
59

61
.9

25
.6

3
3

73
55

18
97

4.
5

11
.0

5
73

83
17

79
3.

0
11

.0
4

4
33

16
0

13
07

.7
3.

04
36

32
5

96
5.

4
2.

66
5

65
45

8
23

3.
2

3.
58

74
65

4
21

9.
8

2.
33

6
10

53
91

15
4.

7
4.

46
10

75
27

14
9.

6
3.

84
7

10
87

65
13

3.
0

7.
56

11
42

96
12

8.
1

4.
52

8
10

92
45

12
8.

4
7.

66
11

48
35

12
6.

8
4.

55
9

10
92

02
12

9.
5

7.
66

11
47

96
12

6.
1

4.
54

10
10

92
03

12
9.

7
7.

68
11

47
81

12
6.

6
4.

57
R

ep
ri

nt
ed

fr
om

[5
3]

,L
ic

en
se

d
un

de
rC

C
B

Y
4.

0.
©

20
22

K
.F

uc
hi

m
ot

o
et

al
.

39

3.3.3 Optimization of the number of parallelisms

To mitigate the high time complexity of IP, HMCAPIP repeats the
parallel search of the vertices that are connected with all vertices of
the current clique using IP. The improvement of the parallel search is
influenced by the value of the tuning parameter P . This experiment
was conducted using the same simulated item pool, computer, and test
constraints as in subsection 3.3.1 to evaluate the HMCAPIP perfor-
mance achieved by modifying the tuning parameter P .

For HMCAPIP, we set SS to 100,000, Tlimit to 3 hr, LT ′ to 3 hr,
SUB to 100, D to 100, and LT to 24 hr. The experiment was conducted
to compare the number of parallel test forms by P = 1, 2, 5, and 10.

Table 3.4 presents the number of parallel test forms as the value
of tuning parameter P is modified. The following are shown in Table
3.4. “No. tests” refers to the number of parallel test forms, and “Avg.
ST [s]” represents the average search time for searching a vertex using
IP in Procedure 1 of HMCAPIP’s second stage. In fact, “Avg. ST [s]”
was measured to demonstrate that increasing the tuning parameter P
reduces the average search time for finding a single vertex.

When OC is small, the numbers of parallel test forms remain al-
most identical across all values of P because the maximum number
of assembled parallel test forms is limited by the tight OC. However,
as OC increases, P = 10 tends to assemble the greatest number of
parallel test forms. Results suggest that the efficiency of paralleliza-
tion improves as the number of parallel test forms increases. Based on
results obtained from the experiment, this study sets P to 10.

40

Ta
bl

e
3.

4:
Pe

rf
or

m
an

ce
of

pa
ra

lle
ls

ea
rc

h
of

H
M

C
A

PI
P

It
em

Po
ol

Si
ze

O
C

M
et

ho
d

P
=

1
P

=
2

P
=

5
P

=
10

N
o.

te
st

s
A

vg
.S

T
[s

]
N

o.
te

st
s

A
vg

.S
T

[s
]

N
o.

te
st

s
A

vg
.S

T
[s

]
N

o.
te

st
s

A
vg

.S
T

[s
]

10
00

0
34

45
.8

2
34

24
.3

2
34

10
.3

1
34

6.
24

1
29

3
20

.2
4

29
0

14
.3

6
23

6
5.

44
27

2
2.

97
2

16
70

25
.6

3
15

84
18

.2
9

16
05

9.
63

16
57

5.
33

3
73

83
11

.0
4

79
72

8.
74

94
62

6.
35

90
00

4.
09

4
36

32
5

2.
66

36
05

7
1.

99
37

33
3

1.
44

39
97

0
1.

28
5

74
65

4
2.

33
76

99
7

2.
02

94
12

7
1.

08
10

68
81

0.
66

6
10

75
27

3.
84

10
69

67
3.

78
11

96
24

1.
82

13
40

50
0.

98
7

11
42

96
4.

52
11

46
68

4.
18

12
64

96
2.

00
13

91
72

1.
07

8
11

48
35

4.
55

11
52

03
4.

20
12

67
59

2.
01

13
97

57
1.

09
9

11
47

96
4.

54
11

50
90

4.
21

12
67

03
2.

02
14

00
59

1.
07

10
11

47
81

4.
57

11
50

92
4.

20
12

67
02

2.
04

14
00

67
1.

04
R

ep
ri

nt
ed

fr
om

[5
3]

,L
ic

en
se

d
un

de
rC

C
B

Y
4.

0.
©

20
22

K
.F

uc
hi

m
ot

o
et

al
.

41

3.4 Comparison of HMCAPIP to Earlier
Methods

This study then compares HMCAPIP’s performance with the re-
spective performances of previously reported methods, using both
simulated and actual item pools.

3.4.1 Comparing HMCAPIP to earlier methods

This experiment demonstrates that HMCAPIP can assemble more
parallel test forms than the other methods can. For this purpose, this
experiment compares the number of parallel test forms assembled us-
ing HMCAPIP, RIPMCA, and earlier methods (BST [34] in section
2.2.1 and RndMCA [30] in subsection 2.2.2) using the test constraints
and computer as described in subsection 3.3.1 for both simulated and
actual item pools.

These simulation item pools have 1000 and 2000 items. The items
in the simulated item pools include discrimination and difficulty pa-
rameters based on IRT. Actually, the item discrimination parameters
were generated independently for each item as log2 a ∼ N(0, 12). The
item difficulty parameters were also generated independently for each
item as b ∼ N(0, 12). Furthermore, the discrimination and difficulty
parameters were generated independently of each other. The values of
guessing parameters ci of all items from simulated item pool are 0. As
reported by van der Linden [34], simulations frequently assume these
distributions to approximate real-world item pools.

Table 3.5 presents specific information about the actual item pool.
This actual item pool is used for the synthetic personality inventory
(SPI) examination: a widely used aptitude test in Japan [55]. The ta-
ble shows that real-world item pools sometimes fail to satisfy the pa-
rameter distribution assumptions commonly used in simulations. This

42

Table 3.5: Specific information about the actual item pool
Item

pool Item discrimination parameter a Item difficulty parameter b

size Range Mean SD Range Mean SD

978 0.12− 3.08 0.46 0.19 −4.00− 4.55 −0.22 1.57
Reprinted from [53], Licensed under CC BY 4.0. © 2022 K. Fuchimoto et al.

study demonstrates that HMCAPIP can assemble more parallel test
forms than the earlier methods can, even in the actual item pool.

This experiment used 24 hr as a computation time limit for all
methods. For RndMCA, this experiment determined the values SS =
100, 000, Tlimit = 3 hr, and LT = 24 hr according to the explanation
provided by Ishii et al. [30]. We determine the target value TItarget(θk)
of information function for BST as

TItarget(θk) =
ILB(θk) + IUB(θk)

2
.

In addition, BST [34], RIPMCA, and HMCAPIP employed CPLEX
12.9 [54] to solve the IP.

43

Table 3.6: Numbers of assembled parallel test forms for all methods
using each item pool

Item Pool
Size

OC
BST
[56]

RndMCA
[30]

RIPMCA HMCAPIP

1000

0 25 17 34 34
1 25 61 318 272
2 25 282 1892 1431
3 25 1585 7557 9000
4 25 9793 20653 39970
5 25 46162 55024 106881
6 25 90127 96527 134050
7 25 99396 106834 139172
8 25 99979 107942 139757
9 25 99998 107735 140059

10 25 100000 107672 140067

2000

0 61 32 70 70
1 61 186 1531 988
2 61 1463 6963 7569
3 61 12456 25364 51401
4 61 62424 72520 108165
5 61 96859 103354 129257
6 61 99891 106362 131791
7 61 99993 107434 132273
8 61 100000 107774 132090
9 61 100000 107998 133550

10 61 100000 107783 140700

978 (actual)

0 31 18 35 35
1 31 63 348 286
2 31 297 1844 1334
3 31 1717 6960 7050
4 31 10252 14866 31724
5 31 45746 52126 73693
6 31 88947 93704 108935
7 31 99993 104339 118165
8 31 100000 105823 119797
9 31 100000 105805 119758

10 31 100000 105956 124200
Reprinted from [53], Licensed under CC BY 4.0. © 2022 K. Fuchimoto et al.

44

Table 3.6 provides the number of assembled parallel test forms for
all methods using each item pool by varying the value of OC. When
OC ≥ 3, results show that HMCAPIP assembles more parallel test
forms than the other methods do. Especially, the difference of the
number of parallel test forms between RIPMCA and HMCAPIP re-
mains large even when the number of parallel test forms becomes
larger than 100,000. Results reflect that HMCAPIP reduces the com-
putation time of RIPMCA by the two-stage algorithm and parallel
search of IPs.

By contrast, when OC ≤ 2, HMCAPIP assembles an almost iden-
tical number of assembled parallel test forms as RIPMCA does. The
numbers converge to the maximum number of assembled parallel test
forms because, as a result of the tight overlapping item constraint, the
maximum number of parallel test forms is not large.

In fact, because RIPMCA has lower space complexity than
RndMCA has, RIPMCA assembles more parallel test forms than the
earlier methods do. However, the difference in the number of paral-
lel test forms between RIPMCA and RndMCA becomes smaller as
their numbers increase. The results suggest that the performance of
RIPMCA is constrained by its high time complexity.

Regarding the methods described above, except when OC = 0,
RndMCA assembles more parallel test forms than BST does. The
reason is that BST cannot increase the number of parallel test forms
because it disallows overlapping items.

3.4.2 Comparison of HMCAPIP to earlier methods
with extended computation time

Both RIPMCA and HMCAPIP have lower space complexity than
RndMCA has, which allows for more assembled parallel test forms

45

within memory constraints. However, RIPMCA’s improvement is
constrained by the high time complexity of IP. By contrast, HMCAPIP
relaxes the computation time across multi-core processors. As a result,
the difference in the number of parallel test forms between RIPMCA
and HMCAPIP might increase as the computation time increases. To
explore this possibility, this experiment compares the number of paral-
lel test forms using RndMCA, RIPMCA, and HMCAPIP by extending
the computation time limit to 168 hr (seven days). The comparison is
conducted using a simulation item pool with 2000 items, which as-
sembles the greatest number of parallel test forms in the simulated
pools, as well as an actual item pool including 978 items.

Table 3.7: Numbers of assembled parallel test forms in 168 hr
item

pool size OC RndMCA RIPMCA HMCAPIP
2000 0 32 70 70

5 96859 149403 254418
10 100000 151592 274900

978 0 18 35 35
(actual) 5 45746 103763 139048

10 100000 140185 214350
Reprinted from [53], Licensed under CC BY 4.0. © 2022 K. Fuchimoto et al.

Table 3.7 presents the number of assembled parallel test forms
for each method, given the time limitation of 168 hr. The results
demonstrate that RIPMCA and HMCAPIP can assemble more par-
allel test forms than RndMCA can because RIPMCA and HMCAPIP
have lower space complexity than RndMCA has. Because of the space
complexity limitation, the number of parallel test forms by RndMCA
does not increase as the computation time increases. In contrast, HM-
CAPIP assembles 1.5–2.7 times more parallel test forms than Rnd-
CMA does, except for the case of OC = 0. When OC = 0, the
numbers of parallel test forms assembled by the proposed methods

46

are equal because they converge to a maximal number of parallel test
forms. When OC becomes large, the differences of the number of
parallel test forms between RIPMCA and HMCAPIP become large
because HMCAPIP divides the high time complexity of IP.

Figure 3.2 depicts the number of parallel test forms of HMCAPIP
and RIPMCA with OC = 10, for (a) simulated item pool size 2000,
and for (b) actual item pool size 978, which assembled the largest
number of parallel test forms in Table 3.7. The figure is presented
as a line plot, where the horizontal axis represents the computation
time. The vertical axis shows the number of parallel test forms for
each method. As the figure shows, the difference in the number of
assembled parallel test forms between HMCAPIP and RIPMCA be-
comes large as the computation time increases. Results demonstrate
that HMCAPIP assembles more parallel test forms, given a longer
computation time.

47

90000

120000

150000

180000

210000

240000

270000

0 1 2 3 4 5 6 7

N
o

.
a

s
s
e

m
b

le
d

 t
e

s
ts

Computation time [day]

HMCAPIP

RIPMCA

RndMCA

(a) Simulated item pool

100000

120000

140000

160000

180000

200000

220000

0 1 2 3 4 5 6 7

N
o

.
a

s
s
e

m
b

le
d

 t
e

s
ts

Computation time [day]

HMCAPIP

RIPMCA

RndMCA

(b) Actual item pool

Figure 3.2: Line plot of number of parallel test forms for each method
in 168 hr.

Reprinted from [53], Licensed under CC BY 4.0. © 2022 K. Fuchimoto et al.

48

Chapter 4

Automated Parallel Test Form Assembly
using Zero-suppressed Binary Decision
Diagram

As described in section 3.2, HMCAPIP improved the performance
of the current automated parallel test form assembly based on the max-
imum clique method. However, its improvement is inadequate be-
cause of the high time complexity of IP in the second stage. Further-
more, the HMCAPIP’s parallel search performance depends heavily
on the performance of the computer’s multi-core processors.

To address this issue, this study proposes a new Automated Parallel
Test Form Assembly method using Zero-suppressed Binary Decision
Diagram (ATA-ZDD). A Zero-suppressed Binary Decision Diagram
(ZDD) is a compact and efficient representation of Binary Decision
Tree (BDT) that reduces both memory usage and computation time by
eliminating redundancy through shared identical subtrees. This com-
pact graph structure works efficiently for enumerating large families
of sets such as parallel test forms. For ATA-ZDD, each vertex in the
ZDD represents an item. Each edge shows whether the item is in-
cluded in the parallel test forms or not. This ZDD is expanded through
a breadth-first search, sharing vertices that have identical test lengths
and identical test information values. However, extremely few vertices
have identical test information, leading to insufficient sharing of ver-
tices. Consequently, ATA-ZDD often causes the difficulty of computer

49

memory overflow. This study examines a two-stage algorithm to ad-
dress this difficulty. (1) The first stage constructs a ZDD with approx-
imated test information values of shared vertices. Specifically, during
the breadth-first search, vertices are shared when the difference in test
information values between two vertices at the same depth is smaller
than a determined threshold parameter value. Then, the test informa-
tion values of the shared vertex are averaged from the two vertices. (2)
The second stage enumerates paths which satisfy the test constraints
from the approximated ZDD. Specifically, paths that satisfy all test in-
formation constraint are sampled randomly and enumerated from the
constructed ZDD. The exact test information values for each path are
then recalculated to ensure that all constraints are satisfied.

4.1 Zero-suppressed Binary Decision
Diagram (ZDD)

A ZDD is derived from a Binary Decision Tree (BDT) by the ap-
plication of two reduction rules that eliminate redundancy. These re-
duction rules provide the ZDD with the advantages of reducing com-
putation time and memory usage. As a result, the ZDD achieves com-
pactness and efficiency by representing subsets using binary variables,
as explained below.

Given a finite set I = {x1, x2, . . . , xn} with ordered binary vari-
ables, a family of sets F ⊆ 2I exists, where each subset R ⊆ I is a
set of binary variables xi from the finite set I . Each binary variable xi
represents whether xi ∈ R or xi /∈ R for each subset R, defined as

xi =

{
1 if xi ∈ R,

0 otherwise.

Consequently, each subset R ∈ F can be represented as a unique
combination of binary values for each binary variable xi in the finite
set I .

50

x

2

3333

0 0 0 1 0 1 1 0

(a) BDT

x

2

3

10

(b) ZDD

1 - edge
0 - edge

2

1 1

x2x2 x2 x2

x3 x3 x3 x3 x3

Figure 4.1: BDT and ZDD.
Reprinted from [57], Licensed under CC BY 4.0. © 2023 K. Fuchimoto et al.

A ZDD is a directed acyclic graph (DAG) that represents the fam-
ily of sets F compactly and has two types of terminal vertices: a 1-
terminal vertex representing valid subsets in F ; and a 0-terminal ver-
tex representing subsets not included in F . Consequently, each path
from the root to the 1-terminal vertex corresponds to a unique subset
R ∈ F .

Figures 4.1(a) and 4.1(b) respectively represent examples of a BDT
and a ZDD, where the finite set is given as I = {x1, x2, x3}. In ad-
dition, these graph structures have two terminal vertices, which are
shown as rectangles in Figure 4.1: 1-terminal and 0-terminal. A path
from the root vertex to the 1-terminal vertex in these graph structures
corresponds to a unique subset R ∈ F . Every non-terminal vertex
is presented as a circle in Figure 4.1. Each non-terminal vertex is
labeled using a binary variable xi. Moreover, each vertex has two
outgoing edges: a 1-edge and a 0-edge. The 1-edge and the 0-edge
respectively signify the parent vertex is an element of each subset R,
and not. For example, in Figure 4.1, the subset {x1, x3} is repre-
sented in both the BDT and the ZDD by following the 1-edge at x1
(indicating x1 ∈ R), the 0-edge at x2 (indicating x2 /∈ R), and the

51

1-edge at x3 (indicating x3 ∈ R) before reaching the 1-terminal ver-
tex. This traversal ensures that x1 and x3 are included in the subset
R and that x2 is excluded. Accordingly, in Figure 4.1, both the BDT
and the ZDD correspond to the same family of sets F , which consists
of {{x1, x2}, {x1, x3}, {x2, x3}}. This comparison demonstrates that
the ZDD can represent the same family of sets with fewer vertices than
the BDT can.

The ZDD is obtained by applying the two reduction rules by Mi-
nato [41] to the BDT. Specifically, the two reduction rules are defined
as the following.

Reduction rule 1 When two non-terminal vertices represent the iden-
tical binary variable xi and their 1-edge and 0-edge point to
vertices that represent identical subtrees, these two vertices are
shared into a single vertex. Reduction rule 1 eliminates duplicate
vertices representing the same subtrees, thereby reducing redun-
dancy in the graph structure.

Reduction rule 2 Vertices with a 1-edge pointing to the 0-terminal
vertex are removed because these vertices are not elements of
any valid subset R in the family of sets F . Reduction rule 2
simplifies the graph structure by eliminating redundant vertices
that cannot engender the 1-terminal vertex.

By applying these two reduction rules, a canonical ZDD represent-
ing the family of sets F is obtained. The canonical ZDD provides a
unique and compact representation of the family of sets F , ensuring
that redundant vertices and subtrees are fully eliminated.

52

4.2 Automated Parallel Test Form Assembly
using ZDD

To increase the number of parallel test forms, this study pro-
poses the new method of Automated Parallel Test Form Assembly
using ZDD (ATA-ZDD). For ATA-ZDD, we define a finite set I =
{x1, x2, . . . , xn} with ordered binary variables, where n represents
the number of items in the item pool. Each binary variable xi is de-
fined as presented below.

xi =

{
1, if the item i is selected for the parallel test form, and

0, otherwise.
(4.1)

Additionally, we define the family of sets F ⊆ 2I as the set of parallel
test forms, where each subset R ∈ F is defined as a set of binary
variables that satisfy the following constraints.

n∑
i=1

xi = L, (4.2)

∀k ∈ {1, 2, . . . , K}, ILB(θk) ≤
n∑

i=1

Ii(θk)xi ≤ IUB(θk). (4.3)

Equation (4.2) and equation (4.3) respectively represent the test length
constraint and the test information constraint. Consequently, each sub-
set R corresponds to a parallel test form that satisfies all test con-
straints except for the overlapping item constraint.

To efficiently enumerate all such parallel test forms, the first stage
in ATA-ZDD compresses a BDT into a ZDD using frontier-based
search [58, 46], which is one of the most commonly used methods for
ZDD compression. Frontier-based search directly constructs a ZDD
using top-down and breadth-first approaches without increasing the
computer memory usage and computation time compared to the BDT.
Specifically, ATA-ZDD merges two vertices into a single vertex when

53

(1) root vertex (3) share vertices(2) child vertices

1

(4) connect 1-terminal vertex

10

(5) connect 0-terminal vertex

1 - edge
0 - edge

i

1 1 1 1

2 2 2 2 2 2

3 3 3 3

1

2 2

3 3

x1 x1 x1 x1 x1

2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2

3x3 3x3 3x3 3x3 3x3 3x3

Figure 4.2: Outline of ATA-ZDD.
Reprinted from [57], Licensed under CC BY 4.0. © 2023 K. Fuchimoto et al.

they have identical test lengths and identical test information values at
all test score levels during the top-down and breadth-first approaches.

The time complexity of frontier-based search depends on the num-
ber of vertices NV(NV ≤ 2n) in the constructed ZDD because each
vertex is processed only once during construction. Similarly, the space
complexity is also O(NV), as the method retains only unique vertices
on the computer memory.

For frontier-based search, we designate a test length variable as tl
and a test information array as tis(tis = [ti1, ti2, . . . , tiK]), where K
represents the number of discretized points for the test information
function. The test length variable value and each element value in the
test information array respectively correspond to

∑n
i=1 xi in equation

(4.2) and
∑n

i=1 Ii(θk)xi in equation (4.3). Frontier-based search cal-
culates the values of these variables for each vertex. Specifically, the
main algorithm of ATA-ZDD consists of five procedures, as presented
in Figure 4.2.

1. Procedure 1 creates a root vertex. Then, Procedure 1 sets zero to
test length variable tl value and zero to each element tis[k] value
in the test information array.

54

2. Procedure 2 creates a 0-child vertex with a 0-edge and a 1-child
vertex with a 1-edge. Then, Procedure 2 adds one to the test
length variable tl value for 1-child vertices. Subsequently, Proce-
dure 2 adds Fisher information Ii(θk) of depth i to every element
tis [k] value in the test information array for 1-child vertices.

3. Procedure 3 merges two vertices into a single vertex when they
have the identical test length variable tl value and identical each
element tis [k] value in the test information array. Here, the first
stage in the proposed method merges two nodes into a single
node when the difference in each element tis [γ] value in the test
information array is less than the threshold value Ith. Then, each
element tis[γ] value in the test information array for the merged
node is calculated as the average of the corresponding values
from the two original nodes. However, since the test informa-
tion values are approximated by averages, accurate calculations
cannot be performed. To address this, the exact test information
values are recalculated in the second stage.

4. Procedure 4 connects a 1-edge to the 1-terminal vertex when the
test length variable tl value and each element tis[k] value in the
test information array satisfy the following constraints, which
correspond to equation (4.2) and equation (4.3):

Condition 1. L = tl,

Condition 2. ∀k ∈ {1, 2, . . . , K}, ILB(θk) ≤ tis[k] ≤
IUB(θk).

5. In Procedure 5, a 1-edge and a 0-edge are connected to the 0-
terminal vertex when one of the following constraints is satisfied
because the test constraints are not satisfied:

Condition 1. L < tl,

Condition 2. ∃k ∈ {1, 2, . . . , K} s.t. IUB(θk) < tis[k],

55

Condition 3. ∃k ∈ {1, 2, . . . , K} s.t. L = tl and tis[k] <
ILB(θk).

6. In Procedure 6, the ATA-ZDD executes Procedures 2–5 sequen-
tially for all items in the finite set I , resulting in a ZDD represent-
ing the family of parallel test forms F . Then, the two reduction
rules are applied to the constructed ZDD to remove redundant
vertices and identical subtrees because frontier-based search does
not guarantee a canonical graph structure [58]. Consequently, a
canonical ZDD representing the family of parallel test forms F
is obtained by application of the two reduction rules.

The first stage in ATA-ZDD requires the following inputs.

• Tuning parameter Ith represents the threshold value in Procedure
3.

• Finite set I represents a set of items in an item pool.

• Constant value parameter L denotes the test length.

• Constant value parameter n stands for the number of items in the
item pool.

• Constant value parameter K represents the number of discretized
points for the test information function.

• Constant value parameters ILB(θk) and IUB(θk) respectively de-
note the lower and upper bounds of the test information function
at test score level θk.

Algorithm 4 provides a description of the first stage in ATA-ZDD
according to an earlier report of the relevant literature [46]. The output
of Algorithm 4 is the set F , which represents parallel test forms that
satisfy all test constraints without overlapping item constraint.

56

Algorithm 4: ATA-ZDD (first stage)

1: procedure ATA-ZDD (FIRST STAGE)
2: Input: Ith, I, n, L,K, ILB(θk), IUB(θk)
3: Output: F
4: Create a new vertex vroot

▷ root vertex
5: vroot.state.tl ← 0
6: vroot.state.tis ← Array[K]

▷ Declare an array of size K
7: for k ← 1 to K do
8: vroot.state.tis [k]← 0
9: end for

10: V1 ← {vroot}
▷ Vi is a set of vertices of depth i

11: for i ← 2 to n do
12: Vi ← ∅
13: end for
14: Vn+1 ← {0-terminal vertex, 1-terminal vertex}
15: for i ← 1 to n do
16: for each v ∈ Vi do
17: for each xi ∈ {0, 1} do

▷ 0-edge, 1-edge
18: {i ′, state′} ← Child(i ,L, v .state, xi)

▷ i ′ is the depth of the child vertex. state′ is tl and tis of the child
vertex.

19: v ′ ←create a new vertex
▷ child vertex

20: if {i ′, state′} is {n + 1, 0} then
21: v ′ ← 0-terminal vertex
22: else if {i ′, state′} is {n + 1, 1} then
23: v ′ ← 1-terminal vertex
24: else

57

25: v ′.state← state′

26: share vertex← False
27: for each w ∈ Vi+1 do
28: if v ′.state.tl = w .state.tl then
29: for k ← 1 to K do
30: if Ith ≤ |v ′.state.tis [k] −

w .state.tis [k]| then
31: next w
32: end if
33: end for
34: UpdateState(v ′,w)
35: v ′ ← w

▷ share vertex
36: share vertex← True
37: break
38: end if
39: end for each
40: if share vertex is False then
41: Vi+1 ← Vi+1 ∪ v ′

42: end if
43: end if
44: v .child[xi]← v ′

45: end for each
46: end for each
47: end for
48: F ← ReductionRule(vroot)

▷ ReductionRule applies the two reduction rules to the constructed
ZDD.

49: Output F
50: end procedure
51: procedure CHILD(i ,L, state, xi)
52: if xi = 1 then
53: state′.tl ← state.tl + 1

58

54: for k ← 1 to K do
55: state′.tis [k]← state.tis [k] + Ii(θk)

▷ Ii(θk) in eq(2.3)
56: end for
57: end if
58: if state′.tl = L then
59: for k ← 1 to K do
60: if not ILB(θk) < state′.tis [k] < IUB(θk) then
61: return {n + 1, 0}

▷ 0-terminal vertex
62: end if
63: end for
64: Return {n + 1, 1}

▷ 1-terminal vertex
65: end if
66: if state′.tl + n − i < L then
67: for k ← 1 to K do
68: if IUB(θk) < state′.tis [k] then
69: Return {n + 1, 0}

▷ 0-terminal vertex
70: end if
71: end for
72: end if
73: Return {i + 1, state′}
74: end procedure
75: procedure UPDATESTATE(v ′,w)
76: for k ← 1 to K do
77: w .state.tis [k]← (v ′.state.tis [k] + w .state.tis [k])/2
78: end for
79: end procedure

59

In Algorithm 4, each element value in the test information array of
a shared vertex is approximated by the average of the test information
values of two vertices. Consequently, paths that include the shared
vertex might not exactly satisfy test information constraint in equation
(4.3). Additionally, the first stage in ATA-ZDD is unable to control
overlapping items. To overcome these limitations, the second stage
in ATA-ZDD enumerates paths that exactly satisfy the test informa-
tion and overlapping item constraints. Specifically, the second stage
in ATA-ZDD sequentially recalculates the exact test information value
for each path in the constructed canonical ZDD without the value of
the approximated shared vertex using random sampling [41] from the
constructed canonical ZDD. As a result, ATA-ZDD enumerates paral-
lel test forms that exactly satisfy all test constraints.

For the second stage in ATA-ZDD, we define parallel test forms as
the families of sets P ⊆ F that satisfy all test constraints. The second
stage of ATA-ZDD searches parallel test forms using the following
procedures.

1. Procedure 1 sets P to the empty set.

2. Procedure 2 searches a subset R from the constructed canonical
ZDD F using random sampling [41].

3. Procedure 3 proceeds to Procedure 4 when the binary variables
of the sampled subset R satisfy the test information constraint in
equation (4.3); otherwise, it returns to Procedure 2.

4. In Procedure 4, the sampled subset R is added to the family of
sets P (P ← P ∪ {R}) when the binary variables of the sam-
pled subset R satisfy the following overlapping item constraint;
otherwise, it returns to Procedure 2.

∀P ∈ P ,
∑
i∈I

xRi x
P
i ≤ OC, (4.4)

60

where xRi denotes a binary variable xi in the subset R and xPi
represents a binary variable xi in the subset P .

5. ATA-ZDD repeats Procedures 2–4 until a determined computa-
tion time is reached.

The second stage in ATA-ZDD requires the following inputs.

• Constant value time LT stands for the algorithm’s total compu-
tation time limit.

• Finite set I represents a set of items in an item pool.

• Constant value parameter n stands for the number of items in the
item pool.

• Constant value parameter K represents the number of discretized
points for the test information function.

• Constant value parameters ILB(θk) and IUB(θk) respectively de-
note the lower and upper bounds of the test information function
at test score level θk.

• Constant value parameter OC is the maximum number of com-
mon items between any pair of parallel test forms.

Algorithm 5 provides a description of the second stage in ATA-
ZDD. The output of Algorithm 5 is the family of sets P , which repre-
sents parallel test forms that satisfy all test constraints.

Algorithm 5: ATA-ZDD (second stage)

1: procedure ATA-ZDD (SECOND STAGE)
2: Input: Ith, I, n,K, ILB(θk), IUB(θk), OC
3: Output: P

61

4: st← now()
▷ now() retrieves the current timestamp to track the elapsed com-
putation time.

5: F ←ATA-ZDD (first stage) (Ith, I, n,K, ILB(θk), IUB(θk))
6: P ← ∅
7: while (now()− st) < LT do
8: R← RandomSampling(F)

▷ random sampling subset R from the constructed canonical ZDD
F

9: for k ← 1 to K do
10: TI(θk)← TestInfo(R, n, θk)

▷ TestInfo calculates the test information
∑n

i=1 Ii(θk)xi, xi ∈ R

at test score level θk from the binary variables in subset R.
11: if TI(θk) < ILB(θk) or IUB(θk) < TI(θk) then
12: Next while
13: end if
14: end for
15: for each P ∈ P do
16: if

∑
i∈I x

R
i x

P
i > OC then

17: Next while
18: end if
19: end for
20: P ← P ∪ {R}
21: end while
22: Output P
23: end procedure

Consequently, the two-stage algorithm ATA-ZDD enumerates par-
allel test forms that exactly satisfy all test constraints. To evaluate the
efficiency of the second stage of ATA-ZDD, the time and space com-
plexities of a single iteration through Procedure 2 to Procedure 4 are

62

detailed below.

In Procedure 2, the time and space complexities of random sam-
pling from a ZDD are O(n), which depends on the input size
n because the process involves traversing from the root vertex to
the 1-terminal vertex. In Procedure 3, the total test information∑n

i=1 Ii(θk)xi for the items included in the sampled subset R is cal-
culated at K discretized points, as defined in equation (4.3). As a
result, The time and space complexities of Procedure 3 respectively
are O(n ·K) and O(K), which depends on the input sizes n and K.
In Procedure 4, all subsets S ⊆ P are verified to satisfy the overlap-
ping item constraint with the sampled subset R. Consequently, the
time and space complexities of Procedure 4 is O(|P|).

Finally, the time and space complexities of the second stage of
ATA-ZDD respectively are O(κ · (n · K + |P|)) and O(|P|) when
κ(|P| ≤ κ) iterations are performed within the computation time limit
LT .

4.3 ATA-ZDD Experiments

4.3.1 Threshold Parameter Effectiveness

This experiment is aimed ascertaining the value of threshold pa-
rameter Ith to obtain the optimal value, which maximizes the number
of parallel test forms. Specifically, this experiment was conducted
to compare the performances of ATA-ZDD by modifying the values
of the threshold parameter Ith using both simulated and actual item
pools. The threshold parameter Ith value of ATA-ZDD is decreased
from 0.45 to 0.01 in decrements of 0.01 to maximize the number of
parallel test forms for each item pool.

Items in the simulated item pools have discrimination parameters

63

Table 4.1: Test information constraints for ATA-ZDD experimentation
ILB(θk)/IUB(θk)

θ1 = −2.0 θ2 = −1.0 θ3 = 0.0 θ4 = 1.0 θ5 = 2.0

8.0/9.6 12.8/14.4 12.8/14.4 12.8/14.4 8.0/9.6
Reprinted from [57], Licensed under CC BY 4.0. © 2023 K. Fuchimoto et al.

and difficulty parameters based on the IRT. This study generated the
item discrimination parameters as log2 a ∼ N (0, 12) and the item
difficulty parameters as b ∼ N (0, 12). Table 3.5 provides the specifics
of the actual item pool. Additionally, this study sets the three test
constraints as presented below.

1. Test length L is 100 items.

2. Test information constraints are given by the lower and upper
bounds of the test information function, as shown in Table 4.1.

3. Overlapping items are not controlled for this experiment.

Here, Ishii et al. [30] used 25 items as the test length in their exper-
iment. However, large-scale standardized examinations such as IT
Passport, ACT, and SAT typically have total test lengths exceeding
100 items. Accordingly, in the experiments described hereinafter, we
set the test length as 100 items to reflect the constraints imposed by
large-scale examinations. Additionally, the upper and lower bounds
of the test information constraints were also set to four times the val-
ues used for an experiment conducted by Ishii et al. [30], consistent
with adjustment of the test length. This experiment was conducted us-
ing a computer equipped with a Ryzen 9 5950X 3.40 GHz CPU (AMD
Inc.), 128 GB of RAM, and running a 64-bit Linux (Ubuntu) operating
system.

Table 4.2 presents performance indicators of ATA-ZDD by modi-
fying the value of Ith. In the table, “No. tests” stands for the number

64

of parallel test forms. Also, “RC” represents the compression rate,
defined as

RC =
NZDD

2n+1 − 1
,

where NZDD is the number of vertices in the canonical ZDD obtained
after applying the two reduction rules to the constructed ZDD in Pro-
cedure 6 of the first stage. Also, n represents the maximum depth of
a full binary decision tree. Additionally, “Time” represents the cal-
culation time (minute) for the ZDD construction. Here, for threshold
values below 0.27, all conditions caused computer memory overflow.
Accordingly, they are listed in the table as “below 0.27”.

65

Ta
bl

e
4.

2:
Pe

rf
or

m
an

ce
of

A
TA

-Z
D

D
by

m
od

if
yi

ng
th

e
th

re
sh

ol
d

pa
ra

m
et

er
I t
h

va
lu

e
It

em
po

ol
si

ze
=

10
00

It
em

po
ol

si
ze

=
20

00
It

em
po

ol
si

ze
=

97
8

I t
h

N
o.

te
st

s
R

C
Ti

m
e

N
o.

te
st

s
R

C
Ti

m
e

N
o.

te
st

s
R

C
Ti

m
e

be
lo

w
0.

27
M

em
or

y
O

ve
r

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

0.
28

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

4
.6
5
×

1
0
1
2
7

3
.7
7
×

1
0
−
2
8
8

1
2
0
2

0.
29

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

4
.2
1
×

1
0
1
2
6

2
.3
7
×

1
0
−
2
8
8

2
2
0

0.
30

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

3
.0
1
×

1
0
1
2
8

1
.5
7
×

1
0
−
2
8
8

1
9
3

0.
31

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

1
.3
4
×

1
0
1
3
0

1
.1
8
×

1
0
−
2
8
8

1
4
2

0.
32

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

9
.1
1
×

1
0
1
2
3

8
.0
4
×

1
0
−
2
8
9

9
9

0.
33

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

1
.5
6
×

1
0
1
2
3

8
.2
2
×

1
0
−
2
8
9

7
8

0.
34

1
.6
7
×

1
0
1
3
6

1
.2
0
×

1
0
−
2
9
3

1
1
2
2

M
em

or
y

O
ve

r
5
.2
9
×

1
0
1
2
0

5
.5
0
×

1
0
−
2
8
9

6
1

0.
35

1
.4
3
×

1
0
1
3
6

8
.3
3
×

1
0
−
2
9
4

6
5
4

M
em

or
y

O
ve

r
7
.8
2
×

1
0
1
2
4

3
.7
3
×

1
0
−
2
8
9

4
0

0.
36

1
.3
8
×

1
0
1
3
6

6
.8
4
×

1
0
−
2
9
4

3
3
8

M
em

or
y

O
ve

r
3
.1
1
×

1
0
1
1
7

2
.0
5
×

1
0
−
2
8
9

3
9

0.
37

8
.1
2
×

1
0
1
3
5

6
.0
0
×

1
0
−
2
9
4

2
5
8

M
em

or
y

O
ve

r
5
.3
3
×

1
0
1
2
0

3
.2
4
×

1
0
−
2
8
9

2
4

0.
38

3
.2
0
×

1
0
1
3
6

4
.4
1
×

1
0
−
2
9
4

1
3
2

2
.1
1
×

1
0
1
6
7

2
.1
6
×

1
0
−
5
9
4

1
3
6
1

1
.1
7
×

1
0
1
2
9

3
.0
8
×

1
0
−
2
8
9

1
1

0.
39

1
.0
3
×

1
0
1
3
6

3
.2
5
×

1
0
−
2
9
4

7
8

6
.3
4
×

1
0
1
6
6

1
.8
5
×

1
0
−
5
9
4

9
5
9

1
.0
7
×

1
0
1
2
8

2
.6
5
×

1
0
−
2
8
9

5

0.
40

9
.1
0
×

1
0
1
3
5

2
.5
1
×

1
0
−
2
9
4

4
9

3
.6
6
×

1
0
1
6
7

1
.4
4
×

1
0
−
5
9
4

5
5
0

9
.8
7
×

1
0
1
2
3

1
.5
7
×

1
0
−
2
8
9

5

0.
41

1
.5
1
×

1
0
1
3
6

1
.7
3
×

1
0
−
2
9
4

2
5

2
.5
6
×

1
0
1
6
7

1
.2
1
×

1
0
−
5
9
4

3
3
0

2
.7
3
×

1
0
1
1
9

1
.1
9
×

1
0
−
2
8
9

5

0.
42

1
.9
3
×

1
0
1
3
5

1
.3
7
×

1
0
−
2
9
4

1
7

2
.1
1
×

1
0
1
6
7

8
.9
5
×

1
0
−
5
9
5

2
6
0

1
.7
5
×

1
0
1
2
1

9
.5
9
×

1
0
−
2
9
0

3

0.
43

1
.5
1
×

1
0
1
3
6

1
.0
8
×

1
0
−
2
9
4

1
2

1
.0
5
×

1
0
1
6
7

7
.9
9
×

1
0
−
5
9
5

2
1
0

1
.3
1
×

1
0
1
2
0

8
.5
3
×

1
0
−
2
9
0

3

0.
44

9
.5
4
×

1
0
1
3
5

8
.5
4
×

1
0
−
2
9
5

8
4
.1
8
×

1
0
1
6
7

6
.1
3
×

1
0
−
5
9
5

1
3
3

8
.6
2
×

1
0
1
1
6

8
.2
1
×

1
0
−
2
9
0

3

0.
45

3
.4
8
×

1
0
1
3
5

7
.7
3
×

1
0
−
2
9
5

7
1
.1
3
×

1
0
1
6
7

4
.7
7
×

1
0
−
5
9
5

8
5

2
.1
9
×

1
0
1
1
9

4
.1
5
×

1
0
−
2
9
0

2

R
ep

ri
nt

ed
fr

om
[5

7]
,L

ic
en

se
d

un
de

rC
C

B
Y

4.
0.

©
20

23
K

.F
uc

hi
m

ot
o

et
al

.

66

Table 4.3: Determined values of threshold parameter Ith

Item pool size Ith

1000 0.38

2000 0.44

978 (actual) 0.31

The table shows that varying the threshold parameter Ith causes
tradeoffs involving “No. tests” with both “RC” and “Time” in the
ZDD. Particularly, smaller values of the threshold parameter Ith tend
to increase the number of parallel test forms, but ATA-ZDD might
cause computer memory overflow. By contrast, larger Ith values re-
duce the calculation time and the number of vertices by increasing the
number of shared vertices. However, this also results in fewer paral-
lel test forms. Accordingly, as presented in Table 4.3, the threshold
parameter Ith was determined to maximize the number of parallel test
forms for each item pool. In practice, Ith depends on various fac-
tors such as the item pool, the test information constraint, and the test
length. A realistic approach is to start with a large value and then to
decrease it gradually. This approach is useful to ascertain Ith to max-
imize the number of parallel test forms within the limits imposed by
available computation time and memory resources.

To analyze the ZDD construction process, Table 4.4 presents the
number of pruned vertices and the effects of the reduction rules. In
the table, “No. pruned vertices” represents the number of vertices
connected to the 0-terminal vertex during Procedure 5. “Reduction
rules” denotes the compression rate of the constructed canonical ZDD,
defined as

NZDD

Npre
,

where Npre represents the number of vertices in the constructed ZDD

67

before applying the two reduction rules in Procedure 6 of the first
stage.

The table shows that a smaller value of threshold parameter Ith
increases the number of pruned vertices because of the fewer shared
vertices and additional branches. However, the compression ratio re-
mains consistent irrespective of the threshold parameter Ith value.

68

Ta
bl

e
4.

4:
E

ff
ec

ts
of

m
od

if
yi

ng
th

e
th

re
sh

ol
d

pa
ra

m
et

er
I t

h
on

pr
un

ed
ve

rt
ic

es
an

d
re

du
ct

io
n

ru
le

s
in

th
e

Z
D

D
It

em
po

ol
si

ze
=

10
00

It
em

po
ol

si
ze

=
20

00
It

em
po

ol
si

ze
=

97
8

I t
h

N
o.

pr
un

ed
ve

rt
ic

es
R

ed
uc

tio
n

ru
le

N
o.

pr
un

ed
ve

rt
ic

es
R

ed
uc

tio
n

ru
le

N
o.

pr
un

ed
ve

rt
ic

es
R

ed
uc

tio
n

ru
le

be
lo

w
0.

27
M

em
or

y
O

ve
r

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

0.
28

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

5
8
9
2
8
0
1

0
.0
8

0.
29

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

5
3
8
9
2
1
0

0
.0
1

0.
30

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

4
8
6
8
8
1
7

0
.0
6

0.
31

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

4
1
0
0
6
6
5

0
.0
6

0.
32

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

3
4
1
3
2
8
7

0
.0
4

0.
33

M
em

or
y

O
ve

r
M

em
or

y
O

ve
r

3
0
3
4
3
0
5

0
.0
5

0.
34

9
2
3
9
8
9
2

0
.7
9

M
em

or
y

O
ve

r
2
6
9
2
4
2
6

0
.0
4

0.
35

8
2
3
4
7
2
9

0
.7
8

M
em

or
y

O
ve

r
2
0
7
0
7
7
0

0
.0
3

0.
36

7
5
3
7
9
9
3

0
.7
9

M
em

or
y

O
ve

r
1
9
3
9
6
1
0

0
.0
2

0.
37

6
6
3
6
4
1
9

0
.7
8

M
em

or
y

O
ve

r
1
8
6
5
9
2
3

0
.0
4

0.
38

4
8
5
2
5
1
1

0
.8
0

1
7
0
2
3
8
9
0

0
.6
4

1
1
7
9
7
1
1

0
.0
6

0.
39

3
6
3
4
4
7
2

0
.7
9

1
5
8
9
2
0
3
9

0
.6
3

7
1
9
3
5
7

0
.0
0

0.
40

2
7
9
4
3
3
2

0
.7
9

1
4
5
9
1
0
9
0

0
.6
3

8
5
7
4
6
8

0
.0
4

0.
41

1
9
2
1
6
5
0

0
.7
9

1
4
0
2
3
9
0
0

0
.6
3

8
2
7
7
3
9

0
.0
3

0.
42

1
5
2
3
5
1
7

0
.7
8

1
3
7
1
6
3
4
5

0
.6
3

6
1
2
4
0
5

0
.0
3

0.
43

1
1
9
6
3
8
0

0
.7
8

1
2
9
6
1
6
7
5

0
.6
3

5
4
7
9
4
2

0
.0
0

0.
44

9
5
6
1
1
5

0
.7
8

1
0
8
8
9
6
0
4

0
.6
4

5
4
7
4
3
4

0
.0
3

0.
45

9
0
1
0
3
7

0
.7
7

8
3
5
9
0
9
9

0
.6
4

4
3
5
4
0
7

0
.0
2

R
ep

ri
nt

ed
fr

om
[5

7]
,L

ic
en

se
d

un
de

rC
C

B
Y

4.
0.

©
20

23
K

.F
uc

hi
m

ot
o

et
al

.

69

4.3.2 Comparison of ATA-ZDD to earlier methods

This experiment demonstrates the benefits of ATA-ZDD by com-
paring the number of parallel test forms with those assembled using
earlier methods, specifically BST (BST in subsection 2.2.1 and HM-
CAPIP in section 3.2) with the item pools described in the preceding
subsection 4.3.1. The test length and the test information constraints
are set similarly, as shown in the preceding subsection 4.3.1. Addi-
tional test constraints are set as presented below.

1. The maximum number of common items OC is increased from
4 to 40 in increments of 4, corresponding to 4%–40% of the test
length L, with increments of 4%.

2. The time limitation for all methods is 24 hr.

The parameter values for HMCAPIP were set based on the expla-
nation provided in section 3.2. For this study, we applied CPLEX 12.9
[54] to the IP for HMCAPIP and BST.

Table 4.5 presents the numbers of assembled parallel test forms
produced using ATA-ZDD and using the earlier methods by modifying
the item pool sizes and overlapping item constraints.

70

Table 4.5: Numbers of assembled parallel test forms in 24 hr
Item Pool

Size OC BST HMCAPIP ATA-ZDD

4 5 19 4

8 5 24 7

12 5 43 28

1000 16 5 200 220

20 5 2198 3654

24 5 4240 57996

28 5 5658 121255

32 5 6189 124400

36 5 6235 124449

40 5 6514 125192

4 6 28 10

8 6 103 77

12 6 1802 1879

2000 16 6 10163 34422

20 6 11122 52271

24 6 11798 53311

28 6 12121 54126

32 6 12333 54392

36 6 12365 54446

40 6 12412 54928

4 4 20 3

8 4 26 6

978 12 4 59 21

(actual) 16 4 403 473

20 4 7038 8783

24 4 97423 147086

28 4 99852 1545602

32 4 100021 1548327

36 4 100222 1548498

40 4 100314 1548902
Reprinted from [57], Licensed under CC BY 4.0. © 2023 K. Fuchimoto et al.

71

Table 4.6: Random sampling iterations conducted by ATA-ZDD for
each item pool

Item pool size Random sampling iterations No. test (first stage)

1000 1,640,142,109 3.20× 10136

2000 632,367,331 4.18× 10167

Reprinted from [57], Licensed under CC BY 4.0. © 2023 K. Fuchimoto et al.

As presented in the table, ATA-ZDD can assemble more parallel
test forms than the earlier methods can when the number of paral-
lel test forms exceeds 200. It is noteworthy that, under specific test
constraints, when OC ≥ 28, ATA-ZDD can assemble more than
1,500,000 parallel test forms within 24 hr (precisely 23 hr) from the
actual item pool with 978 items, whereas HMCAPIP is limited to as-
sembling only 100,000 parallel test forms. Accordingly, ATA-ZDD
can assemble the number of parallel test forms which are sufficient
for practical use in examinations with more than 1,000,000 examinees
annually, such as the ACT. In fact, ATA-ZDD enables the assessment
to be administered to these examinees from any location, at any time,
and on the same scale.

By contrast, when OC ≥ 24, ATA-ZDD with the simulated item
pool size of 1,000 can assemble more parallel test forms than ATA-
ZDD can with the pool size of 2,000. To elucidate the reason this result
was obtained, we counted the random sampling iterations conducted
by ATA-ZDD within the time limit, as presented in Table 4.6, for each
simulated item pool when OC = 24. In the table, “No. test (first
stage)” represents the number of parallel test forms assembled in the
first stage of ATA-ZDD.

In the table, ATA-ZDD with pool size of 1000 performs more ran-
dom sampling iterations than with the pool size of 2000 within the lim-
ited computation time. By contrast, ATA-ZDD with pool size of 2000

72

assembles more parallel test forms than with the pool size of 1000 in
the first stage. Accordingly, when the computation time is extended,
ATA-ZDD with pool size of 2000 might assemble more parallel test
forms than with pool size of 1000 in the second stage. To validate
this hypothesis, future studies must examine whether extension of the
computation time allows ATA-ZDD with a pool size of 2000 to assem-
ble more parallel test forms than with a pool size of 1000.

By contrast, in Table 4.5, when OC is small, the difference in the
number of parallel test forms between ATA-ZDD and HMCAPIP is
also small. The results demonstrate that the number of parallel test
forms converges to the maximum possible number when a tight over-
lapping item constraint restricts the exact maximum number of paral-
lel test forms. With this overlapping item constraint, ATA-ZDD cannot
assemble more parallel test forms than HMCAPIP can because ATA-
ZDD cannot exactly guarantee that all paths satisfy the test constraints
to approximate by the average when vertices are shared. Under this
constraint, ATA-ZDD cannot assemble more parallel test forms than
HMCAPIP can because ATA-ZDD averages test information values
when sharing vertices, which makes it unable to guarantee that all
paths satisfy the test constraint. To evaluate the accuracy of this ap-
proximation, we calculate Pvalid,info, which represents the rate of valid
paths that satisfy the test information constraint as

Pvalid,info =
Nvalid,info

Nsampled
.

Here, Nvalid,info represents the number of valid paths which satisfy the
test information constraint. Nsampled stands for the total number of
random sampling iterations.

Table 4.7 presents the rate of valid paths Pvalid,info that satisfy the
test information constraint. For the actual item pool, 51% of the paths
found from ATA-ZDD through random sampling satisfy the test in-
formation constraint. In fact, because of this high rate of valid paths

73

Table 4.7: Rates of valid paths that satisfy the test information con-
straint

Item pool size Pvalid,info

1000 0.07

2000 0.07

978 (actual) 0.51
Reprinted from [57], Licensed under CC BY 4.0. © 2023 K. Fuchimoto et al.

Pvalid,info, ATA-ZDD enables assembly of over 1,500,000 parallel test
forms within 24 hr from the actual item pool. In contrast, only 7% of
the paths found from ATA-ZDD through random sampling in the sim-
ulated item pools satisfy the test information constraint. Despite this
markedly lower rate of valid paths Pvalid,info, ATA-ZDD can assemble
more parallel test forms than HMCAPIP can.

Furthermore, the second stage of ATA-ZDD assembles parallel test
forms by selecting paths that satisfy the overlapping item constraint
from those which satisfy the test information constraints. To assess
the rate of such paths, we calculate Pvalid,oc, which represents the rate
of valid paths that satisfy overlapping item constraint as

Pvalid,oc =
Nvalid,oc

Nvalid,info
.

Here, Nvalid,oc represents the number of valid paths that satisfy the test
information constraint and the overlapping item constraint.

Table 4.8 presents the rates of valid paths Pvalid,oc that satisfy the
overlapping item constraint. As shown in the table, as OC increases
for each item pool, the rate of paths Pvalid,oc satisfying the overlapping
item constraint increases because more overlap between test items is
allowed. Consequently, as shown in the preceding Table 4.5, a larger
OC allows for assembling more parallel test forms. However, in Table
4.8, when OC ≥ 28, Pvalid,oc shows nearly equal values. Similarly, as

74

shown in Table 4.5, the number of parallel test forms becomes almost
identical.

These experimentally obtained results demonstrate the effective-
ness of ATA-ZDD. By sharing vertices when the difference in test
information values is below a threshold parameter value and by us-
ing averaged values to maximize the number of parallel test forms
within a computer memory limit, ATA-ZDD constructs a ZDD effi-
ciently. Then, ATA-ZDD randomly samples paths that satisfy all test
constraints by recalculating their exact test information and the over-
lapping item constraint. As a result, ATA-ZDD is capable of assem-
bling more parallel test forms than the earlier methods do.

75

Table 4.8: Rates of valid paths satisfying the overlapping item con-
straint.

Item Pool Size OC Pvalid,oc

4 3.46× 10−8

8 6.06× 10−8

12 2.42× 10−7

16 1.90× 10−6

1000 20 3.16× 10−5

24 5.02× 10−4

28 1.05× 10−3

32 1.08× 10−3

36 1.08× 10−3

40 1.08× 10−3

4 2.26× 10−7

8 1.74× 10−6

12 4.24× 10−5

16 7.78× 10−4

2000 20 1.18× 10−3

24 1.20× 10−3

28 1.22× 10−3

32 1.23× 10−3

36 1.23× 10−3

40 1.24× 10−3

4 4.61× 10−9

8 9.23× 10−9

12 3.23× 10−8

16 7.27× 10−7

978 20 1.35× 10−5

(actual) 24 2.26× 10−4

28 2.38× 10−3

32 2.38× 10−3

36 2.38× 10−3

40 2.38× 10−3

76

Chapter 5

Conclusions

For e-testing, assembling parallel test forms of a quantity exceed-
ing the number of examinees is extremely important. The state-of-
the-art method, Random Maximum Clique Algorithm (RndMCA), is
limited by its high space complexityO(

(
n
L

)
+SS2), which restricts the

maximum number of parallel test forms to 100,000. That number of
parallel test forms is insufficient for large-scale examinations requir-
ing over 1,000,000 forms. For instance, over 200,000 examinees take
the IT Passport examination in Japan annually. More than 1,300,000
examinees annually take the ACT in the United States. To achieve this
objective, this study proposed three automated parallel test form as-
sembly methods based on discrete algorithms capable of assembling
more than 1,000,000 parallel test forms.

First, to mitigate the high space complexity of RndMCA, this study
proposed a new method: Random Integer Programming for Maximum
Clique Algorithm (RIPMCA). The main idea of RIPMCA is that it
dynamically sought a vertex connected to all vertices in a maximum
clique using IP. RIPMCA has lower space complexity to O(|C|)
than the space complexity O(

(
n
L

)
+ SS2) of RndMCA. Accordingly,

RIPMCA allowed more parallel test forms to be assembled within
memory resource constraints. However, the high time complexity
O(|C|2 · 2n) of RIPMCA constrained improvement in the number of
assembled parallel test forms.

77

Second, to address the high time complexity of RIPMCA, this
study proposed a new method: Hybrid Maximum Clique Algorithm
using Parallel Integer Programming (HMCAPIP). In HMCAPIP, the
first stage used the RndMCA with constant time but high space com-
plexity O(

(
n
L

)
+ SS2), which assembled parallel test forms until a

computer memory limit were reached. The second stage switched to
RIPMCA with low space complexity O(|C|) but high time complex-
ity O(|C|2 · 2n) of IP to assemble parallel test forms further. Further-
more, this study parallelized the second stage of HMCAPIP to reduce
the computation time. Specifically, in the second stage of HMCAPIP,
IPs are used in parallel to search for vertices that are connected to all
vertices in the current clique. Afterward, the second stage identifies
the maximum clique from the searched vertices, which is then com-
bined with the current clique. HMCAPIP assembled 1.5–2.7 times
more parallel test forms than earlier methods did. Particularly under
specific test constraints from the actual item pool with 978 items, HM-
CAPIP assembled 200,000 parallel test forms, exceeding the annual
number of examinees for the IT Passport examination. Nevertheless,
because of the high space complexity of IP, HMCAPIP is inadequate
for assembly of more than 1,000,000 parallel test forms.

Third, to increase more parallel test forms, this study proposed a
new method: Automated parallel Test Form Assembly using Zero-
suppressed binary Decision Diagram (ATA-ZDD). Each vertex repre-
sented an item. Each edge determined whether to include the item
in the parallel test form. Specifically, ATA-ZDD was expanded via
breadth-first search and two vertices that have identical numbers of test
lengths and the identical test information values. However, extremely
few vertices have identical test information. Accordingly, ATA-ZDD
caused computer memory overflow. To mitigate this difficulty, this
study examined a two-stage algorithm. (1) During the breadth-first
search, vertices are shared when the difference in the test information
values between the two vertices at the same depth is less than a thresh-

78

old. The shared vertex’s test information values are then averaged
from the two vertices. The threshold parameter values are determined
to maximize the number of paths (parallel test forms) to as many as
possible within a computer memory limit. (2) Paths satisfying the test
information constraint are sought from the constructed ZDD. Then the
exact accuracy is recalculated. ATA-ZDD assembles up to 1.5 million
parallel test forms in one day, far surpassing earlier methods.

These results were obtained under specific test constraints using
one actual item pool. By contrast, the simulated item pools were
generated based on idealized parameter distribution assumptions com-
monly used in earlier studies, which were expected to allow ATA-ZDD
to assemble more parallel test forms. Contrary to this expectation, as
demonstrated by the experiment of subsection 4.3.2, ATA-ZDD using
the actual item pool assembled more parallel test forms than methods
using the simulated item pools did.

To analyze this unexpected result, Figure 5.1 presents the aver-
ages and standard deviations of test information values for 100 ran-
domly sampled items (the test length constraint specified in the ex-
periment of subsection 4.3.2) from each item pool 10,000 times. Let
I = {1, 2, . . . , n} represent the set of items in each item pool, and
let Rt ⊆ I denote the set of 100 items randomly sampled at the t-
th iteration (t = 1, 2, . . . , 10, 000). For a given test score θk, where
k = −2.00,−1.75, . . . , 2.00, the average test information value is
calculated as:

µ(θk) =
1

10, 000

10,000∑
t=1

∑
i∈Rt

Ii(θk),

where Ii(θk) is defined in equation (2.3). Similarly, the standard devi-

79

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
θ

8

10

12

14

16

18

20

Te
st
 In
fo
rm

at
io
n

Lower Bo nd
Upper Bo nd
item pool size = 978

item pool size = 1000
item pool size = 2000

Figure 5.1: Averages and standard deviations of test information val-
ues for 100 randomly sampled items for each item pool.

ation for each test score θk is given by:

σ(θk) =

√√√√ 1

10, 000

10,000∑
t=1

(∑
i∈Rt

Ii(θk)− µ(θk)

)2

.

In this figure, the horizontal axis represents the test scores θ, and the
vertical axis represents the test information values. The points in each
plot indicate the average test information values µ(θk), with error bars
representing their standard deviations σ(θk), for each item pool. The
figure also includes the upper and lower bounds of the test informa-
tion constraints used in the experiment of subsection 4.3.2. Figure 5.1
shows that the item pool size of 978 represents the actual item pool.
The item pool sizes of 1000 and 2000 represent simulated item pools.

The figure shows that the upper and lower bounds of the test infor-
mation constraints are close to the average and standard deviation of
test information values for 100 items sampled randomly from the ac-

80

tual item pool. Conversely, for the simulated item pools, the averages
and standard deviations of test information values for 100 randomly
sampled items around θ = 0 deviate from the upper and lower bounds
of the test constraints. From this deviation, one can infer that the test
information constraints might reduce the number of assembled paral-
lel test forms for the simulated item pools.

Accordingly, future work should be aimed develop systematic
methods for determining the upper and lower bounds of test informa-
tion constraints. For example, the test information constraints ILB(θk)
and IUB(θk) could be defined as follows:

ILB(θk) = µ(θk), IUB(θk) = µ(θk) + σ(θk).

Using this test information constraints, when OC = 28, ATA-ZDD
successfully assembled approximately 950,000 parallel test forms
from simulated item pools with 1000 items, although HMCAPIP as-
sembled only 130,000 parallel test forms. This suggests that adjusting
the test information constraints based on the characteristics of the item
pool could further increase the number of parallel test forms.

By contrast, ATA-ZDD does not guarantee exactly all enumera-
tions with the satisfaction of test constraints: each element of the
test information array is approximated by the mean when vertices are
shared. Consequently, the proposed method still has room for im-
provement. To resolve this difficulty, we expect an exact solution al-
gorithm using ZDD with depth-first search such as [59] in future work.

Additionally, this study only specifically examines automated par-
allel test form assembly considering only constraints related to test
length, test information, and overlapping items. However, in real-
world scenarios, other constraints are necessary for examinations. For
example, the proposed method does not impose adversarial item or
categorical item constraints in parallel test forms. Adversarial items

81

are those with related content that must not appear simultaneously in
the same parallel test form, although categorical constraints limit the
number of items selected from each category, such as vocabulary or
reading comprehension in language examinations. Particularly, ATA-
ZDDs might cause computer memory overflow ZDD construction in
the first stage because the number of shared vertices decreases as the
number of constraints increases. Therefore, HMCAPIP might be more
efficient than ATA-ZDD when test organizations require many test
constraints.

Furthermore, the proposed methods do not control how often each
item is used in the assembled test forms. This lack of control of item
exposure frequency leads to a biased distribution of item usage: a dif-
ficulty known as item exposure bias [60]. The item exposure bias
adversely affects the reliability of both the items and the measurement
accuracy [60]. To address this issue, future work could incorporate
a probabilistic approach to item exposure control, such as the proba-
bilistic eligibility model suggested by van der Linden [61] for comput-
erized adaptive testing (CAT). Similar challenges related to item expo-
sure bias are also observed in Computerized Adaptive Testing (CAT).
To mitigate this issue in CAT, a two-stage stratified adaptive testing
approach [62, 63, 64] has been proposed, which leverages automated
test assembly techniques to construct parallel test forms. Inspired by
this approach, the proposed methods could potentially be adapted to
reduce item exposure bias in two-stage stratified adaptive testing. Ex-
ploring this possibility remains an avenue for future research.

82

Acknowledgments

This dissertation comprehensively describes the research contents
of my doctoral studies at the University of Electro Communications,
Tokyo, Japan. I am grateful to numerous people who have helped
me to accomplish my work. First, I would like to express my sincere
gratitude to my supervisor, Professor Maomi Ueno, for his valuable
comments, suggestions, and encouragement throughout the research
period. Secondly, I would like to acknowledge Professor Yoshio
Okamoto, Professor Yusaku Yamamoto, Associate Professor Yasuhiko
Takenaga, and Associate Professor Masaki Uto. Their comments and
suggestions related to my research presentations were very helpful in
improving my research and completing this thesis. Thirdly, I would
like to thank Professor Shin-ichi Minato for his valuable advice and
generous support. Additionally, I would like to thank the students of
the Ueno Laboratory for their continuous support and encouragement
during my studies. This research was supported by JSPS KAKENHI
Grant Numbers JP19H05663 and JP24KJ1124. Finally, I would like
to express my gratitude to my parents for their tremendous encourage-
ment.

83

Related journal papers

1. Kazuma Fuchimoto, Takatoshi Ishii, and Maomi Ueno. Hybrid
maximum clique algorithm using parallel integer programming
for uniform test assembly. IEEE Transactions on Learning Tech-
nologies, 15(2):252–264, 2022. (Chapter 3)

2. Kazuma Fuchimoto, Shin-ichi Minato, and Maomi Ueno. Au-
tomated parallel test forms assembly using zero-suppressed bi-
nary decision diagrams. IEEE Access, 11:112804–112813, 2023.
(Chapter 4)

84

Bibliography

[1] Maomi Ueno. Ai based e-testing as a common yardstick for mea-
suring human abilities. In 2021 18th International Joint Confer-
ence on Computer Science and Software Engineering (JCSSE),
pages 1–5. IEEE, 2021.

[2] Maomi Ueno, Kazuma Fuchimoto, and Emiko Tsutsumi. E-
testing from artificial intelligence approach. Behaviormetrika,
48(2):409–424, 2021.

[3] Bopelo Boitshwarelo, Alison Kay Reedy, and Trevor Billany. En-
visioning the use of online tests in assessing twenty-first century
learning: a literature review. Research and Practice in Technol-
ogy Enhanced Learning, 12:1–16, 2017.

[4] College Board and National Merit Scholarship Corporation.
Scholastic aptitude test. https://satsuite.collegeboard.org/, 2024.
Accessed: 2024-12-01, Last updated: 2024.

[5] ISO/IEC. Iso/iec 29992:2018 assessment of
outcomes of learning services — guidance.
https://www.iso.org/standard/68490.html, 2018. Accessed:
2024-12-01, Last updated: 2024.

[6] Fumiko Samejima. Weakly parallel tests in latent trait theory
with some criticisms of classical test theory. Psychometrika,
42(2):193–198, 1977.

[7] F.M. Lord and M.R. Novick. Statistical theories of mental test
scores. Addison-Wesley Pub. Co., 1968.

85

[8] Frederic M. Lord. Applications of Item Response Theory To
Practical Testing Problems. Routledge, 1980.

[9] T. J. J. M. Theunissen. Binary programming and test design.
Psychometrika, 50(4):411–420, December 1985.

[10] T. J. J. M. Theunissen. Some applications of optimization algo-
rithms in test design and adaptive testing. Applied Psychological
Measurement, 10(4):381–389, 1986.

[11] Wim J. van der Linden and Ellen Boekkooi-Timminga. A zero-
one programming approach to Gulliksen’s matched random sub-
test method. Department of Education of the University of
Twente, 1986.

[12] Ellen Boekkooi-Timminga. Simultaneous test construction by
zero-one programming. Methodika, 1:101–112, 1987.

[13] Frank B. Baker, Alan S. Cohen, and B. Ross Barmish. Item char-
acteristics of tests constructed by linear programming. Applied
Psychological Measurement, 12(2):189–199, 1988.

[14] Jos J. Adema and Wim J van der Linden. Algorithms for comput-
erized test construction using classical item parameters. Journal
of Educational Statistics, 14:279–290, 1989.

[15] Terry A. Ackerman. An alternative methodology for creating
parallel test forms using the irt information function. Paper pre-
sented at the Annual Meeting of the National Council on Mea-
surement in Education, pages 1–25, 1989.

[16] Jos J. Adema. Models and algorithms for the construction of
achievement tests. Ph.D., University of Twente, 1990.

[17] Jos J. Adema, Ellen Boekkooi-Timminga, and Wim J van der
Linden. Achievement test construction using 0–1 linear program-
ming. European Journal of Operational Research, 55(1):103–
111, 1991.

86

[18] Jos J. Adema. Methods and models for the construction of
weakly parallel tests. Applied Psychological Measurement,
16(1):53–63, 1992.

[19] Len Swanson and Martha L. Stocking. A model and heuristic for
solving very large item selection problems. Applied Psychologi-
cal Measurement, 17(2):151–166, 1993.

[20] H.L. Jeng and S.G. Shih. A comparison of pair-wise and group
selections of items using simulated annealing in automated con-
struction of parallel tests. Psychological Testing, 44(2):195–210,
1997.

[21] Richard M. Luecht. Computer-assisted test assembly using
optimization heuristics. Applied Psychological Measurement,
22(3):224–236, 1998.

[22] Wim J. van der Linden and Jos J. Adema. Simultaneous assembly
of multiple test forms. Journal of Educational Measurement,
35(3):185–198, 1998.

[23] Richard B. Fletcher. A review of linear programming and its
application to the assessment tools for teaching and learning
(as TTLE) projects. University of Auckland, Auckland, New
Zealand, 2000.

[24] Gwo-Jen Hwang, Peng-Yeng Yin, and Shu-Heng Yeh. A tabu
search approach to generating test sheets for multiple assessment
criteria. IEEE Transactions on Education, 49(1):88–97, 2006.

[25] Koun-Tem Sun, Yu-Jen Chen, Shu-Yen Tsai, and Chien-Fen
Cheng. Creating irt-based parallel test forms using the genetic al-
gorithm method. Applied Measurement in Education, 2(21):141–
161, 2008.

[26] Angela J. Verschoor. Genetic algorithms for automated test as-
sembly. Ph.D. dissertation, University of Twente, 2007.

87

[27] Kejing He, Li Zheng, Shoubin Dong, Liqun Tang, Jianfeng Wu,
and Chunmiao Zheng. Pgo: A parallel computing platform for
global optimization based on genetic algorithm. Computers and
Geosciences, 33(3):357–366, 2007.

[28] Pokpong Songmuang and Maomi Ueno. Bees algorithm for con-
struction of multiple test forms in e-testing. IEEE Transactions
on Learning Technologies, 4:209–221, 2011.

[29] Takatoshi Ishii, Pokpong Songmuang, and Maomi Ueno. Maxi-
mum clique algorithm for uniform test forms. The 16th Interna-
tional Conference on Artificial Intelligence in Education, pages
451–462, 2013.

[30] Takatoshi Ishii, Pokpong Songmuang, and Maomi Ueno. Max-
imum clique algorithm and its approximation for uniform test
form assembly. IEEE Transactions on Learning Technologies,
7(1):83–95, 2014.

[31] M. Luan Nguyen, S. Cheung Hui, and A. C.M. Fong. Large-
scale multiobjective static test generation for web-based testing
with integer programming. IEEE Transactions on Learning Tech-
nologies, 6(1):46–59, 2013.

[32] Takatoshi Ishii and Maomi Ueno. Clique algorithm to minimize
item exposure for uniform test forms assembly. In International
Conference on Artificial Intelligence in Education, pages 638–
641. Springer, 2015.

[33] Takatoshi Ishii and Maomi Ueno. Algorithm for uniform test as-
sembly using a maximum clique problem and integer program-
ming. In Artificial Intelligence in Education, pages 102–112,
2017.

[34] Wim J. Van der Linden. Linear Models for Optimal Test Design.
Springer, 2005.

88

[35] Ellen Boekkooi-Timminga. The construction of parallel tests
from irt-based item banks. Journal of Educational Statistics,
15(2):129–145, 1990.

[36] Ronald D. Armstrong, Douglas H. Jones, and Charles S. Kunce.
Irt test assembly using network-flow programming. Applied Psy-
chological Measurement, 22(3):237–247, 1998.

[37] Ting-Yi Chang and You-Fu Shiu. Simultaneously construct irt-
based parallel tests based on an adapted clonalg algorithm. Ap-
plied Intelligence, 36(4):979–994, 2012.

[38] Jordi Pereira and Mariona Vila. Variable neighborhood search
heuristics for a test assembly design problem. Expert Systems
with Applications, 42(10):4805–4817, 2015.

[39] Dmitry I. Belov and Ronald D. Armstrong. A constraint pro-
gramming approach to extract the maximum number of non-
overlapping test forms. Computational Optimization and Appli-
cations, 33:319–332, 2006.

[40] Qingfu Zhang, Jianyong Sun, and Edward Tsang. An evolu-
tionary algorithm with guided mutation for the maximum clique
problem. Evolutionary Computation, IEEE Transactions on,
9(2):192–200, april 2005.

[41] Shin-ichi Minato. Zero-suppressed bdds for set manipulation in
combinatorial problems. In Proceedings of the 30th International
Design Automation Conference, pages 272–277, 1993.

[42] Shinsaku Sakaue and Kengo Nakamura. Differentiable equilib-
rium computation with decision diagrams for stackelberg models
of combinatorial congestion games. Advances in Neural Infor-
mation Processing Systems, 34:9416–9428, 2021.

[43] Atsushi Takizawa, Yushi Miyata, and Naoki Katoh. Enumer-
ation of floor plans based on a zero-suppressed binary deci-

89

sion diagram. International Journal of Architectural Computing,
13(1):25–44, 2015.

[44] Takeru Inoue, Keiji Takano, Takayuki Watanabe, Jun Kawahara,
Ryo Yoshinaka, Akihiro Kishimoto, Koji Tsuda, Shin-ichi Mi-
nato, and Yasuhiro Hayashi. Distribution loss minimization with
guaranteed error bound. IEEE Transactions on Smart Grid,
5(1):102–111, 2014.

[45] A. Takizawa, Y. Takechi, A. Ohta, N. Katoh, T. Inoue,
T. Horiyama, J. Kawahara, and S.-I. Minato. Enumeration of re-
gion partitioning for evacuation planning based on ZDD, pages
65–72. 2014.

[46] Hiroaki Iwashita and Shin-ichi Minato. Efficient top-down ZDD
construction techniques using recursive specifications, 2013.

[47] F.B. Baker and S.H. Kim. Item Response Theory: Parameter
Estimation Techniques, Second Edition. Taylor & Francis, 2004.

[48] Wim J. Van der Linden and Ellen Boekkooi-Timminga. A max-
imin model for irt-based test design with practical constraints.
Psychometrika, 54(2):237–247, 1989.

[49] Ronald D. Armstrong, Douglas H. Jones, and Zhaobo Wang.
Automated parallel test construction using classical test theory.
Journal of Educational Statistics, 19(1):73–90, 1994.

[50] Etsuji Tomita, Kohei Yoshida, Takuro Hatta, Atsuki Nagao, Hiro
Ito, and Mitsuo Wakatsuki. A much faster branch-and-bound
algorithm for finding a maximum clique. In International Work-
shop on Frontiers in Algorithmics, pages 215–226, 2016.

[51] Chu-Min Li, Hua Jiang, and Felip Manyà. On minimization of
the number of branches in branch-and-bound algorithms for the
maximum clique problem. Computers & Operations Research,
84:1–15, 2017.

90

[52] Jos J. Adema. Implementations of the branch-and-bound method
for test construction problems. Project Psychometric Aspects of
Item Banking, Department of Education, 1989.

[53] Kazuma Fuchimoto, Takatoshi Ishii, and Maomi Ueno. Hybrid
maximum clique algorithm using parallel integer programming
for uniform test assembly. IEEE Transactions on Learning Tech-
nologies, 15(2):252–264, 2022.

[54] IBM. Ilog cplex optimization studio cplex 12.9. https://ww
w.ibm.com/products/ilog-cplex-optimizatio
n-studio, 2019. Accessed: 2024-12-01, Last updated: 2019.

[55] Recruit. Synthetic personality inventory (spi).
http://www.spi.recruit.co.jp/, 2024. Accessed: 2024-12-01,
Last updated: 2024.

[56] Dmitry I. Belov. Uniform test assembly. Psychometrika,
73(1):21–38, 2008.

[57] Kazuma Fuchimoto, Shin-ichi Minato, and Maomi Ueno. Auto-
mated parallel test forms assembly using zero-suppressed binary
decision diagrams. IEEE Access, 11:112804–112813, 2023.

[58] Donald Ervin Knuth. The art of computer programming: Bitwise
tricks & techniques. Binary Decision Diagrams, 4, 2009.

[59] Shin ichi Minato, Mutsunori Banbara, Takashi Horiyama, Jun
Kawahara, Ichigaku Takigawa, and Yutaro Yamaguchi. Interval-
memoized backtracking on zdds for fast enumeration of all lower
cost solutions, 2022.

[60] Howard Wainer. Rescuing computerized testing by breaking
zipf’s law. Journal of Educational and Behavioral Statistics,
25:203–224, 2000.

91

[61] Wim J Van der Linden and Seung W Choi. Improving item-
exposure control in adaptive testing. Journal of Educational
Measurement, 57(3):405–422, 2020.

[62] Maomi Ueno and Yoshimitsu Miyazawa. Uniform adaptive test-
ing using maximum clique algorithm. In International Con-
ference on Artificial Intelligence in Education, pages 482–493.
Springer, 2019.

[63] Maomi Ueno and Yoshimitsu Miyazawa. Two-stage uniform
adaptive testing to balance measurement accuracy and item expo-
sure. In Artificial Intelligence in Education: 23rd International
Conference, pages 626–632, 2022.

[64] Wakaba Kishida, Kazuma Fuchimoto, Yoshimitsu Miyazawa,
and Maomi Ueno. Item difficulty constrained uniform adaptive
testing. In International Conference on Artificial Intelligence in
Education, pages 568–573, 2023.

92

	和文概要-提出用
	Thesis-f2241012

