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Abstract. Knowledge Tracing (KT) has been studied actively to help
students learn effectively by providing optimal support based on student
learning data. Important tasks of KT are tracing students’evolving abil-
ities and predicting their performance accurately. Recently, Deep item
response theory (Deep-IRT) methods combining deep learning and item
response theory have been proposed to provide educational parameter in-
terpretability and to achieve accurate performance prediction. A recent
study assessed a proposed Deep-IRT with hypernetwork architecture to
optimize the degree of forgetting of the past latent ability variables. How-
ever, earlier Deep-IRTs estimate a student’s ability value using only a
most recent latent ability parameter. Because current ability estimates
cannot adequately reflect past ability history data, the parameter inter-
pretability and the performance prediction accuracy might be impaired
or biased. To overcome this difficulty, we propose a new Deep-IRT with
a temporal convolutional network that convolves past multi-dimensional
ability states. The proposed method stores the student’s latent multi-
dimensional abilities at each time point and comprehensively reflects the
long-term ability history data during performance prediction. The effec-
tiveness of the proposed method was demonstrated using experiments
conducted with benchmark datasets.

Keywords: Knowledge Tracing · Deep Learning · Item Response The-
ory.

1 Introduction

Recently, adaptive learning has been attracting attention to provide optimal
problems and learning support based on the student’s ability growth in online
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learning systems. In the field of artificial intelligence, Knowledge Tracing (KT)
has been actively studied to provide optimal supports for students to maximize
learning efficiency [6, 26, 17, 22, 24, 27, 18]. The important task is discovering con-
cepts that the student has not mastered based on the student’s prior learning
history data collected by online learning systems. In addition, accurately esti-
mating students’ evolving multi-dimensional ability and predicting a student’s
performance (correct or incorrect responses to an unknown item) are significant
for adaptive learning.

Many researchers have developed various methods to solve KT tasks. Bayesian
Knowledge Tracing (BKT) [6] and Item Response Theory (IRT) [3] are the most
major probabilistic approaches. BKT traces a process of student ability growth
following a Hidden Markov process. It estimates whether the student has mas-
tered the skill or not and predicts the student’s responses to unknown items.
On the other hand, IRT predicts a student’s correct answer probability to an
item based on the student’s latent ability parameter and item characteristic pa-
rameters. BKT and IRT have high parameter interpretability but they can not
capture the multi-dimensional ability sufficiently. Therefore, they are unable to
predict the students’ performances accurately when a learning task is associated
with multiple skills.

To overcome the limitations, various deep-learning-based methods have been
proposed [17, 27, 24, 7, 18]. Recently, Deep item response theory (Deep-IRT) meth-
ods combining deep learning and item response theory have been proposed to
provide educational parameter interpretability and to achieve accurate perfor-
mance prediction [24, 20, 19, 18]. Yeung (2019) [24] proposed a Deep-IRT (des-
ignated as Yeung-DI ) combining a memory network architecture [27] with an
IRT module. Yeung-DI adds hidden layers to a memory network architecture
in order to estimate the students’ ability and item difficulty parameters such
as IRT. However, ability parameter of Yeung-DI is difficult to interpret because
it depends on each item difficulty parameter. The most difficult challenge is to
incorporate the ability and item parameters independently into a deep learning-
based method so as not to degrade prediction accuracy.

Tsutsumi et al. (2021) proposed a Deep-IRT (designated as Tsutsumi-DI)
that has two independent redundant networks: a student network and an item
network [20]. Tsutsumi-DI learns student parameters and item parameters inde-
pendently to avoid impairment of predictive accuracy. Most recently, Tsutsumi
et al. (2024) combined Tsutsumi-DI with a novel hypernetwork to optimizes the
degree of forgetting of the past latent variables (designated as Tsutsumi-HN).
Tsutsumi-HN achieves the highest ability parameter interpretability and stu-
dent’s response prediction accuracies compared to existing methods. Especially,
it is noteworthy that Tsutsumi-HN outperforms the attentive knowledge tracing
[7] (designated as AKT) which provides state-of-the-art performance of response
prediction.

Nevertheless, room for improvement remains in the prediction accuracy of the
Deep-IRTs (Tsutsumi-DI and Tsutsumi-HN). They estimate a student’s ability
using only a most recent latent ability parameter. In general, the latest ability
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depends on the past ability values while a student addresses items in the same
skill. Because current ability estimates cannot adequately reflect past ability
values, it interrupts the accurate estimation of the ability transition. As a result,
the performance prediction accuracy might be impaired or biased.

To resolve that problem, we propose a new Deep-IRT with a Temporal
Convolutional Network (TCN) [15, 2] that reflects features of the past multi-
dimensional abilities to the latest ability estimate. TCN has been reported to
predict time-series data more accurately than RNN-based models such as LSTM
[11] and GRU [5]. TCN stores features of longer-term latent states, different from
LSTM and GRU which only refer to the previous latent state. Therefore, the
proposed method stores the student’s latent multi-dimensional abilities at each
time point and comprehensively reflects the long-term ability history data during
the student’s performance prediction. We conducted experiments to compare the
proposed method’s performance and those of earlier KT methods. The results
demonstrate that the proposed method improves the performance prediction
accuracy of earlier Deep-IRT methods while maintaining the high parameter
interpretability. In particular, the proposed method outperforms a state-of-the-
art method, Tsutsumi-HN which provides the highest performance among the
current knowledge tracing methods.

DKVMN Deep-IRT

𝑀!"#
$

𝑀!
$

𝑀!%#
$

𝜽!
(#) 𝜽%

(#) 𝜃&
(#,()

𝝎#
	

𝒒(	 𝜷!
(()

𝑀	
'

𝑝(#	

𝑝(#	

𝛽%
(()

Fig. 1. The structure of Yeung-DI
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Fig. 2. The structure of Tsutsumi-DI

2 Previous Deep-IRT methods

Several Deep-IRT methods have been proposed to provide educational parameter
interpretability and achieve accurate performance prediction by combining deep
learning and item response theory. Yeung proposed a Deep-IRT method (Yeung-
DI) combining a memory network architecture [27] with an IRT module [24].
Yeung-DI adds a hidden layer to a memory network architecture and estimates
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ability and item difficulty parameters. Fig.1 presents a simple illustration. Yeung-
DI predicts a student’s response probability pjt to an item j at time t using the
student’s ability θ

(t,j)
3 and item difficulty β

(j)
2 such as IRT [24].

pjt = sigmoid
(
3.0 ∗ θ(t,j)3 − β

(j)
2

)
. (1)

However, in Yeung-DI, the ability parameter θ(t,j)3 depends on each item because
it is estimated using the features of the item difficulty parameter. Therefore, the
ability and the item difficulty parameters cannot be interpreted separately.

To resolve the difficulty, Tsutsumi et al. propose a novel Deep-IRT method
(Tsutsumi-DI) comprising two independent neural networks: the student network
and the item network[20, 18], as presented in Fig.2. Tsutsumi-DI can estimate
student parameters and item parameters independently such that the prediction
accuracy does not decline because the two independent networks are designed
to be redundant [8, 13, 14]. In addition, the item network of Tsutsumi-DI esti-
mates two difficulty parameters of item j: the item characteristic difficulty βj

item

and the skill difficulty βj
skill. A most recent study assessed a Deep-IRT with hy-

pernetwork architecture (Tsutsumi-HN) to optimize the degree of forgetting of
the past latent ability variables [19, 18]. Tsutsumi-HN shows the highest ability
parameter interpretability and response prediction accuracies compared to ex-
isting methods. Furthermore, it can identify a relation among multi-dimensional
skills and capture the multi-dimensional ability transitions. Tsutsumi-DI and
Tsutsumi-HN predict a student’s response probability pjt to an item j at time t
using the difference between a student’s ability θ(t,j) and the sum of two difficulty
parameters βj

item and βj
skill as follow.

pjt = sigmoid
(
3.0 ∗ θ(t,j) − (βj

item + βj
skill)

)
. (2)

3 The proposed method

3.1 Temporal Convolutional Network

Recently, convolutional neural network (CNN) [12] and Transformer [21] have
attracted attention as prediction methods for time-series data. CNN is a neural
network with a convolutional layer and a pooling layer. It extracts features from
two-dimensional data such as images by compressing local elements into a feature
using the sliding window method. In addition, temporal convolutional network
(TCN) has been developed as a method to reflect past data in prediction by
convolving long-term time-series data in multiple layers [15, 2]. TCN has been
reported to predict time-series data more accurately than RNN-based models
such as LSTM [11] and GRU [5]. TCN stores features of longer-term latent
states, different from LSTM and GRU which only refer to the previous latent
state. On the other hand, the Transformer stores features of longer-term data
by calculating the relative distance and the weight of the relationships between
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Fig. 3. The structure of the proposed method

each element of the input vector. Transformers provide highly accurate data
prediction in many fields.

In a recent study comparing the performances of CNNs and Transformers,
the prediction accuracies of Transformers are superior to those of CNNs when
the training data size is sufficiently large [1, 4]. However, Transformer is known to
often cause overfitting for small or sparse datasets. On the other hand, although
CNN has slightly lower prediction accuracy than a Transformer, it can handle
sparse data and train efficiently a model with less memory cost. Furthermore, for
the field of KT, the earlier methods based on Transformer ([7, 16]) have shown
high prediction accuracies. However, they have low parameter interpretability
and then their educational applicability remains limited.

3.2 Deep-IRT with Temporal Convolutional Network

Although Tsutsumi-DI and Tsutsumi-HN provide the high parameters indepen-
dently and performance prediction, they estimate the student’s ability using
only a most recent latent ability parameter. Therefore, current ability estimates
cannot adequately reflect past ability history data. However, the latest ability
depends on the past ability values while a student addresses items in the same
skill. This problem might impair the performance prediction accuracy.

To resolve the problem of Tsutsumi-DI and Tsutsumi-HN, we propose a new
Deep-IRT with temporal convolutional network. Fig. 3 shows the structure of
the proposed method. We add TCN as the Skill Convolutional Network to Deep-
IRT [18] in order to reflect features of the past multi-dimensional abilities to the
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Fig. 4. Skill Convolutional Network

ability estimate. The Skill Convolutional Network stores the student’s latent
multi-dimensional abilities at each time point and estimates the latent ability
comprehensively reflecting the long-term past ability history data. In Section
3.3, we describe the details of the Skill Convolutional Network. In addition, the
proposed method has the student network and the item network. In the student
network, the ability parameters θit of the student i at time t are estimated based
on the latent multi-dimensional ability variable M t

v. In the item network, the
model estimates the item characteristic difficulty parameter βj

item and the skill
difficulty βj

skill. In Section 3.4 and Section 3.5, we describe the details of the
student network and the item network, respectively.

3.3 Skill Convolutional Network

In Skill Convolutional Network, the proposed method estimates the optimal
weight parameters related to students’ past ability values by convolving the la-
tent ability valuables using the sliding window method. The structure of Skill
Convolutional Network is shown in Fig. 4. Skill Convolutional Network employs
Causal Dilated Convolution [25, 15] and Residual Connection[10, 9]. Causal Di-
lated Convolution extracts features of long time-series data by convolving each
input sequence according to "dilation" to avoid increasing the number of pa-
rameters. Dilation represents the distance between the elements of the input
sequence used to compute the output value. When the dilation is 1, this convo-
lution method is the same as the general convolution. Residual Connection adds
the input value of the first layer to the last output value to avoid the vanishing
gradient for the deep layers. The proposed method uses the above two methods
to convolve the latent ability values in multiple layers.

The input vector θ
(t)
1 is encoded values of the latent variable Mv

t which
represents the latent multu-dimensional ability at each time t. A student’s latent
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ability θ
(t)
1 ∈ RN is calculated by the following formula.

θ
(t)
1 =

N∑
l=1

wtl (M
v
tl)

⊤
. (3)

Where, the vector {θ(t)
1 ,θ

(t−1)
1 ,θ

(t−2)
1 , · · · } is N -dimensional abilities. Simplicity,

we explain using one-dimensional column vector {θ(t)1 , θ
(t−1)
1 , θ

(t−2)
1 , · · · }. In the

first layer, the input vector is calculated as

θ̃
(t)
1 =

k−1∑
i=0

f
(1)
i · θ(t−d1·i)

1 . (4)

In the n-th layer, the latent ability values are calculated as

θ̃(t)n =

k−1∑
i=0

f
(n)
i · θ̃(t−dn·i)

n−1 . (5)

Where, f (n)
i is weight parameter and dn = {1, 2, 4, · · · , 2n} is the dilation pa-

rameter in n-th layer. k is the kernel size: k = klast in last layer; k = 2 otherwise.
Finaly, the output of the Skill Convolutional Network is calculated as

θ̃(t)conv = θ̃
(t)
last + θ

(t)
1 . (6)

θ̃
(t)
conv is a latent ability value reflecting the student’s past ability history data.

3.4 Estimation of student parameters

In the student network, the student ability θ(t)
m = {θ(t)m,1, θ

(t)
m,2, · · · , θ

(t)
m,N |2 ≤

m} estimated from the latent variable M t
v in the neural networks same as

Tsutsumi et al. [20]. Then, we calculate weighted linear summations of the
student ability θ(t)

m and the output of Skill Convolutional Network θ̃
(t)

conv =

{θ̃(t)conv,1, θ̃
(t)
conv,2, · · · , θ̃

(t)
conv,N} respectively.

θ′(t) =

N∑
l=1

ωtlθ
(t)
m,l, (7)

θ̃(t) =

N∑
l=1

ωtlθ̃
(t)
conv,l (8)

Where, wtl is a attention weight which signifies the degree of the relation between
the latent skill and the actual skill of item j.
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3.5 Estimation of item and skill parameters

In the item network, the input of the item network is an embedding vector
qj ∈ RJ calculated from the item j’s tag and the student’s response. Here,
J represents for the number of items. We estimate the the item characteristic
difficulty parameter βj

item as

β
(j)
1 = GELU

(
W (β1)qj + τ (β1)

)
, (9)

β(j)
m = GELU

(
W (βm)β

(j)
m−1 + τ (βm)

)
, (10)

β
(j)
item = W (βitem)β(j)

m + τ (βitem). (11)

Next, the skill difficulty βj
skill is estimated using the embedding vector sj ∈

RS calculated from the skill tag of item j and the student’s response. Here, S
represents the number of skills.

γ
(j)
1 = GELU

(
W (γ1)sj + τ (γ1)

)
, (12)

γ(j)
m = GELU

(
W (γm)γ

(j)
m−1 + τ (γm)

)
, (13)

β
(j)
skill = W (βskill)γ(j)

m + γ(βskill). (14)

The each output of the last layer βj
item and βj

skill denote the j-th item charac-
teristic difficulty parameter and the difficulty parameter of the required skills to
solve the j-th item. Then, the item i’s difficulty is calculated from two difficulty
parameters βj

item and βj
skill.

β(j) = tanh
(
β
(j)
item + β

(j)
skill

)
. (15)

The proposed method predicts a student’s response probability using the student
ability θ(t) and item difficulty β(j) as follows.

pjt = sigmoid(θ(t) − β(j)). (16)

The proposed method updates the latent variable M t
v according to the earlier

method [27]. In addition, the loss function of the proposed method employs
cross-entropy, which reflects classification errors [18].

4 Experiment

5 Prediction accuracy

This section presents a comparison of the prediction accuracies for student per-
formance of the proposed methods with those of earlier methods (Yeung-DI [24],
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Table 1. Summary of Benchmark Datasets

Dataset No. students No. skills No. Items Rate Correct Learning length
ASSISTments2009 4151 111 26684 63.6% 52.1
ASSISTments2017 1709 102 3162 39.0% 551.0

Statics2011 333 1223 N/A 79.8% 180.9
Junyi 48925 705 N/A 82.78% 345
Eedi 80000 1200 27613 64.25% 177

AKT [7], and Tsutsumi-HN [19]). We used five benchmark datasets as ASSIST-
ments2009, ASSISTments2017, Statics2011, Junyi, Eedi. For ASSISTments2009,
ASSISTments2017, and Eedi with item and skill tags, we adopt both tags as in-
put data. Also, For Statics2011, and Junyi with only skill tags, we employ the
skill as input data. Table 1 presents the number of students (No. Students), the
number of skills (No. Skills), the number of items (No. Items), the rate of correct
responses (Rate Correct), and the average length of the items which students
addressed (Learning length).

In this experiment, we evaluate the prediction accuracies of the methods
based on standard five-fold cross-validation. For each fold, 20% students are
used as the test set, 20% are used as the validation set, and 60% are used
as the training set according to the earlier study [7]. The optimal number of
layers and klast of Skill Convolutional Network are decided to maximize AUC
for the validation set as shown in Table 2. For all methods, we employ the tuning
parameters according to the earlier studies [7, 24, 18]. If the predicted correct
answer probability for the next item is 0.5 or more, then the student’s response
to the next item is predicted as correct. Otherwise, the student’s response is
predicted as incorrect. For this study, we leverage two metrics for prediction
accuracy: AUC score and Accuracy score.

Tables 3 show the results, the model with the higher performance being
given in bold. Results indicate that the proposed method provides the best av-
erage AUC and Accuracy scores. The proposed method outperforms Yeung-DI,
AKT, and the Tsutsumi-HN for ASSISTments2019, ASSISTments2017, Eedi and
Junyi. These results show that reflecting the past ability history data by TCN
is effective at improving the prediction accuracy. In addition, these datasets are
large-scale datasets including more than 1000 students. The sufficient number
of students for model training is one of the reasons for the improved accuracy
of the proposed method. By contrast, the proposed method tends to have lower
prediction accuracies for statics2011 than AKT has. For Statics2011 and Junyi,
the prediction accuracy of the proposed method is comparable to those of AKT.
The reason for the limited improvement was suggested that the TCN did not
work effectively because the student’s ability might changed independently of
the past ability at each time point.
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Table 2. The optimal numbers of layers and klast of the proposed method

Data set layer klast
ASSISTments2009 5 3
ASSISTments2017 8 2

Statics2011 3 7
Junyi 8 2
Eedi 8 2

Table 3. Prediction accuracies of student performance

Dataset metrics Yeung-DI [24] AKT[7] Tsutsumi-HN[19] Proposed

ASSISTments2009 AUC 82.09+/-0.28 82.20+/-0.25 81.98+/-0.54 82.95+/-0.30
Accuracy 77.41+/-0.53 77.30+/-0.55 77.15+/-0.55 77.60+/-0.56

ASSISTments2017 AUC 73.56+/-0.27 74.54+/-0.21 75.13+/-0.20 75.49+/-0.36
Accuracy 69.78+/-0.41 69.83+/-0.06 70.69+/-0.60 70.85+/-0.50

Statics2011 AUC 81.15+/-0.37 82.15+/-0.35 81.57+/-0.50 82.02+/-0.39
Accuracy 80.01+/-0.92 80.41+/-0.67 80.11+/-0.92 80.40+/-0.80

Junyi AUC 77.92+/-0.41 78.13+/-0.39 77.91+/-0.37 78.14+/-0.43
Accuracy 86.79+/-0.15 86.79+/-0.17 86.65+/-0.15 86.85+/-0.14

Eedi AUC 78.93+/-0.12 77.58+/-0.21 78.97+/-0.10 79.14 +/-0.11
Accuracy 73.38+/-0.17 72.35+/-0.21 73.38+/-0.13 73.55+/-0.13

Average AUC 78.73 78.92 79.11 79.60
Accuracy 77.47 77.54 77.60 77.81

6 Parameter interpretation

6.1 Estimation accuracy of ability parameters

In this section, to evaluate the interpretability of the ability parameters of the
proposed method according to the earlier study [18] . We use simulation data
generated from Temporal IRT [23] to compare the parameter estimates with
those of the earlier Deep-IRTs [24, 18] and the proposed method. Temporal IRT is
a Hidden Markov IRT which models the student ability changes following Hidden
Markov process with a parameter to forget past response data. It estimates the
student i’s ability θit at time t, the item j’s discrimination parameter aj and
the item j’s difficulty parameter bj . The prior of θit is a normal distribution
described as θi0 ∼ N (0, 1), θit ∼ N (θit−1, ϵ). Therein, ϵ represents the variance
of θit. It controls the smoothness of a student’s ability transition. Especially, it is
noteworthy that ϵ reflects the degree of the dependence of the student’s current
ability on the past ability values. As ϵ becomes small (large), the current ability
increases the degree of the dependence (independence) on the past abilities.
Therefore, as ϵ increases, the fluctuation range of the true ability increases at each
time point. In addition, the priors of the item parameters are log a ∼ N (0, 1),
b ∼ N (0, 1).

In this experiment, each dataset includes 2000 student responses to {50, 100, 200, 300}
items. First, we estimate the item parameters a and b using 1800 students’ re-
sponse data. Next, given the estimated the item parameter, we estimate the
students’ ability parameters θit at each time using the remaining 200 students’
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Table 4. Correlation coefficients of the estimated abilities

No. items 50 100 200 300 50 100 200 300 50 100 200 300
ϵ Method Pearson Spearman Kendall

Yeung-DI 0.63 0.67 0.74 0.74 0.63 0.66 0.75 0.75 0.44 0.47 0.55 0.55
0.1 Tsutsumi-HN 0.73 0.77 0.85 0.82 0.74 0.78 0.88 0.87 0.54 0.59 0.70 0.69

Proposed 0.86 0.90 0.91 0.89 0.87 0.91 0.94 0.94 0.68 0.74 0.79 0.79
Yeung-DI 0.73 0.80 0.81 0.82 0.75 0.83 0.86 0.87 0.55 0.63 0.66 0.67

0.3 Tsutsumi-HN 0.82 0.86 0.86 0.86 0.85 0.91 0.94 0.95 0.66 0.74 0.79 0.80
Proposed 0.84 0.91 0.90 0.91 0.88 0.93 0.95 0.95 0.67 0.77 0.80 0.80
Yeung-DI 0.77 0.80 0.81 0.81 0.81 0.86 0.88 0.89 0.61 0.65 0.68 0.69

0.5 Tsutsumi-HN 0.85 0.84 0.83 0.82 0.90 0.93 0.94 0.95 0.71 0.76 0.78 0.80
Proposed 0.85 0.84 0.82 0.81 0.89 0.92 0.92 0.89 0.71 0.73 0.73 0.70
Yeung-DI 0.79 0.81 0.82 0.81 0.83 0.88 0.89 0.89 0.63 0.68 0.70 0.69

1.0 Tsutsumi-HN 0.82 0.80 0.81 0.79 0.89 0.92 0.94 0.94 0.70 0.75 0.79 0.79
Proposed 0.80 0.79 0.80 0.79 0.88 0.92 0.92 0.93 0.68 0.74 0.75 0.76

response data. In addition, we obtain results using ϵ = {0.1, 0.3, 0.5, 1.0} for each
dataset.

We calculate the Pearson’s correlation coefficients, the Spearman’s rank cor-
relation coefficients, and the Kendall rank correlation coefficients using a stu-
dent’s abilities θt at time t ∈ {1, 2, · · · , T}, as estimated using the true model
and the Deep-IRT methods. Next, we average these correlation coefficients of all
students. The proposed method employs a 8 layers and klast = 2 in TCN for all
datasets.

Table 4 presents the average correlation coefficients of the methods for the
respective conditions. Table 4 shows that the proposed method has a higher
correlation than the earlier Deep-IRTs for the small variances of the ability pa-
rameters (ϵ = {0.1, 0.3}). A small variance ϵ indicates that the ability strongly
depends on the past ability history data. Therefore, TCN works effectively and
improves the estimation accuracy by reflecting past ability values. On the other
hand, a large variance (ϵ = {0.5, 1.0} ) means a weak relationship between the
current and past ability values and then it leads to rapid ability fluctuates at each
time point. In this case, Tsutsumi-HN estimating ability by only the most recent
ability and response data, provides higher correlations. The results suggest that
the proposed method is superior when the current ability depends on the past
abilities, and Tsutsumi-HN is superior otherwise. It is noteworthy that there is
no significant difference in the correlation coefficients between the ability esti-
mates of the proposed method and those of Tsutsumi-HN. The proposed method
provides comparable high estimation accuracies to those of Tsutsumi-HN.

6.2 Student ability transitions

In this section, we visualize the ability transitions estimated by the proposed
method and verify the accuracy of the ability estimation. Visualization of ability
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Fig. 5. The example of student’s one-dimensional ability transitions

transition helps both students and teachers to identify students’ strengths and
weaknesses. We use ASSISTments2009 dataset according to the earlier studies
[24, 19].

First, Fig.5 depicts an example of student’s one-dimensional ability transi-
tions estimated by Tsutsumi-HN and the proposed method. The vertical axis
shows the student’s ability value on the right side and the horizontal axis shows
the item number. The student response is shown by filled circles "•" when the
student answers the item correctly; it is shown by hollow circles "◦" otherwise.
DeepIRT-HN shows that the ability barely changes after it increases rapidly in
items 1–5. Because DeepIRT-HN estimates an ability using only a most recent
ability parameter, it might cause overfitting when a student continuously answers
correctly (incorrectly) to items. As a result, the estimated ability converges to
an extremely high (low) value. By contrast, the proposed method shows that the
ability gradually increases as the student answers items correctly by estimating
an ability reflecting past ability history data.

Second, Fig. 6 depicts an example of student multi-dimensional ability tran-
sitions of each skill estimated by the proposed method. We use the first 30 re-
sponses and the student attempted four skills: "equation solving more than two
steps" (shown in grey), "equation solving two or few steps" (shown in green),
"ordering factions" (shown in orange), and "finding percents" (shown in yellow).
The proposed method estimates abilities considering relations among the skills.
Therefore, when a student answers an item correctly (or incorrectly), the abilities
of the other skills change with the ability of the corresponding skill. In addition,
as shown in Fig.5, each ability gradually fluctuates reflecting the student’s re-
sponses while a student is addressing items in the same skill. However, when the
student answers an item in a different skill, the estimated ability value fluctuates
significantly. Actually, it is unlikely that the ability of a particular skill changes
rapidly. In future work, we improve the estimation accuracy and interpretability
of multi-dimensional ability.
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Fig. 6. The example of a student’s multi-dimensional ability transition

7 Conclusion

This article proposed a new Deep-IRT with a temporal convolutional network
for knowledge tracing. The proposed method stores the student’s latent multi-
dimensional abilities at each time point and estimates the latent ability reflecting
the long-term ability history data comprehensively. To demonstrate the perfor-
mance of the proposed method, we have conducted experiments using benchmark
datasets and simulation data. To summarize the results, the proposed method
improves the performance prediction accuracy of earlier Deep-IRT methods while
maintaining the high parameter interpretability. Especially, when the ability fluc-
tuates depending on the past abilities, the proposed method works effectively
and outperforms the performance of the earlier methods. As future work, we
will improve the estimation accuracy and interpretability of multi-dimensional
ability.
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