
Supplementary Materials

These supplementary materials present proofs of Theo-
rems 2, 3, 4, and 5. First, we derive Theorem 2 as explained
hereinafter.
Theorem 2 Under Assumption 1, let G∗(V) be the true
structure. I-maps NPCDAG with the fewest NCP are clas-
sification equivalent to G∗(V).

Proof Let G∗NPC(V) be an NCPDAG that is classification
equivalent to G∗(V). This theorem can be proven by con-
tradiction. Assuming that there exists an I-map NPCDAG
G′ with the fewest NCP which is not classification equiva-
lent to G∗NPC(V), then because G′ has the fewest NCP in
I-maps NPCDAG, G′ represents some d-separations related
with the class variable whichG∗NPC(V) does not represent.
Such d-separations are also not represented by G∗(V) be-
causeG∗(V) is classification equivalent toG∗NPC(V). This
lack of representation contradicts that G’ is an I-map, which
completes the proof. �

Next, we introduce the following theorem and definitions.
theorem (Local independences in Bayesian networks)
(Pearl 2000)
Letting G = (V,E) be a Bayesian network structure, and

letting NDG(X) be a set of non-descendants of X , then the
following holds:

∀X ∈ V, DsepG(X, (NDG(X) \PaGX) | PaGX).

Definition (Asymptotic consistency of scoring criterion)
(Chickering 2002)
Let G1 = (V,E1), and G2 = (V,E2) be the structures.
A scoring criterion Score has asymptotic consistency if the
following two properties hold when the sample size is suffi-
ciently large.
• If G1 is an I-map and G2 is not an I-map, then
Score(G1) > Score(G2).

• If G1 and G2 both are I-maps and if G1 has fewer pa-
rameters than G2, then Score(G1) > Score(G2).

Definition (Asymptotic local consistency of scoring crite-
rion) (Chickering 2002)
Let G1 = (V,E1) be any structure. Also, let G2 be the
structure which results from adding edge Y → X . A scor-
ing criterion Score has an asymptotic local consistency if
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the following two properties hold when the sample size is
sufficiently large.

• I(X,Y | PaG1

X )⇒ Score(G1) > Score(G2).
• ¬I(X,Y | PaG1

X )⇒ Score(G1) < Score(G2).

To derive Theorem 3, we introduce the following lemma.

Lemma 1 Assuming disjoint variable sets X,Y,A,B,
then the following holds.

¬I(X,Y | A)⇒ ¬I(X,B | A∪Y)∨¬I(X,Y | A∪B).

Proof From the decomposition property of conditional in-
dependence (Pearl 1988), I(X, (Y ∪B) | A) ⇒ I(X,Y |
A) ∧ I(X,B | A) holds. The contraposition of the im-
plication above is ¬I(X,Y | A) ∨ ¬I(X,B | A) ⇒
¬I(X, (Y ∪B) | A). One obtains

¬I(X,Y | A)⇒ ¬I(X, (Y ∪B) | A). (1)

From the intersection property of conditional independence
(Pearl 1988), I(X,B | A ∪ Y) ∧ I(X,Y | A ∪ B) ⇒
I(X, (Y ∪ B) | A) holds. The contraposition of the impli-
cation presented above is

¬I(X, (Y ∪B) | A)

⇒ ¬I(X,B | A ∪Y) ∨ ¬I(X,Y | A ∪B). (2)

From (1) and (2), we obtain ¬I(X,Y | A) ⇒ ¬I(X,B |
A ∪Y) ∨ ¬I(X,Y | A ∪B). �

Consequently, we derive Theorem 3 as explained below.

Theorem 3 For a sufficiently large sample, the highest
BDeu scoring structure consistent with order π is an I-map
with the minimum NCP among all the structures consistent
with π.

Proof We letG∗π = (V,E∗π) be the structure with the high-
est BDeu among all structures consistent with order π. Also,
we let Gπ = (V,Eπ) be an arbitrary I-map consistent with
π. From the asymptotic consistency of BDeu (Chickering
2002), G∗π is an I-map. A sufficient condition for Theorem
3 to hold is E∗π ⊆ Eπ . This proposition can be proved as
true by contradiction. Assuming that there exists an I-map
consistent with π, denoted as G′π = (V,E′π), such that
E∗π * E′π . This assumption engenders ∃X,Y ∈ V, (Y →
X) ∈ E∗π ∧ (Y → X) /∈ E′π . Letting A = Pa

G∗π
X \ {Y },



then we obtain ¬I(X,Y | A) from (Y → X) ∈ E∗π and the
asymptotic local consistency of BDeu (Chickering 2002). Let
B be a set of variables PreπX \Pa

G∗π
X . From ¬I(X,Y | A)

and Lemma 1, ¬I(X,B | A ∪ {Y }) ∨ ¬I(X,Y | A ∪ B)
holds, i.e., I(X,B | A∪{Y })⇒ ¬I(X,Y | A∪B) holds.
Because I(X,B | A ∪ {Y }) holds from the local indepen-
dences in G∗π , we obtain

¬I(X,Y | A ∪B). (3)

Also, DsepG′π (X,Y | A ∪B) holds because X and Y are
not adjacent in G′π and because no variable in A ∪ B is a
descendant of both X and Y in G′π . This result contradicts
(3), which completes the proof. �

Moreover, we derive Theorems 4 and 5 as described be-
low.
Theorem 4 For any variable set V, let G∗(V) be an I-map
with minimum NCP, and let GNB(V) be the naive Bayes
classifiers consisting of a set of feature variables Vc, which
are children of the class variable in G∗(V). The following
property holds.

NCP (GNB(Vc)) ≤ NCP (G∗(V)).

Proof Because the parent of feature variables inGNB(Vc)
is only X0, we obtain

NCP (GNB(Vc)) =
∑

Xi∈Vc

NCPi({X0}) + r0 − 1,

where NCPi({X0}) = (ri − 1)r0. For all Xi ∈ Vc, let
q∗i be the number of parent configurations of Xi in G∗(V).
Because X0 ∈ Pa

G∗(V)
Xi

, we obtain

NCPi({X0}) ≤ NCPi(Pa
G∗(V)
Xi

).

Consequently, we obtain

NCP (GNB(Vc)) =
∑

Xi∈Vc

NCPi({X0}) + r0 − 1

≤
∑

Xi∈Vc

NCPi(Pa
G∗(V)
Xi

) + r0 − 1

= NCP (G∗(V)).

�

Theorem 5 h∗ has consistency.

Proof For any pair of nodes (U,R) in which R has an
incoming edge from U in an NROG, let c(U,R) be a cost
of the edge from U to R. Moreover, let Xj be a variable
included in U \R. When Xj /∈ Vc, we obtain

h∗(U) =
∑

Xi∈(U∪Vc)

NCPi(X0)

=
∑

Xi∈(R∪Vc)

NCPi(X0)

≤
∑

Xi∈(R∪Vc)

NCPi(X0) +NCPj(g
∗
j (U \ {Xj}))

= h∗(R) + c(U,R).

When Xj ∈ Vc, the following equation holds using X0 ∈
g∗j (U \ {Xj}).

h∗(U) =
∑

Xi∈(U∪Vc)

NCPi(X0)

=
∑

Xi∈(U∪Vc)\{Xj}

NCPi(X0) +NCPj(X0)

=
∑

Xi∈(R∪Vc)

NCPi(X0) +NCPj(X0)

≤
∑

Xi∈(R∪Vc)

NCPi(X0) +NCPj(g
∗
j (U \ {Xj}))

= h∗(R) + c(U,R).

Consequently, we obtain

h∗(U) ≤ h∗(R) + c(U,R).

�
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