Supplementary Materials

These supplementary materials present proofs of Theorems 2, 3, 4, and 5. First, we derive Theorem 2 as explained hereinafter.

Theorem 2 Under Assumption 1, let $G^*(\mathbf{V})$ be the true structure. I-maps NPCDAG with the fewest NCP are classification equivalent to $G^*(\mathbf{V})$.

Proof Let $G_{NPC}^*(\mathbf{V})$ be an NCPDAG that is classification equivalent to $G^*(\mathbf{V})$. This theorem can be proven by contradiction. Assuming that there exists an I-map NPCDAG G' with the fewest NCP which is not classification equivalent to $G_{NPC}^*(\mathbf{V})$, then because G' has the fewest NCP in I-maps NPCDAG, G' represents some d-separations related with the class variable which $G_{NPC}^*(\mathbf{V})$ does not represent. Such d-separations are also not represented by $G^*(\mathbf{V})$ because $G^*(\mathbf{V})$ is classification equivalent to $G_{NPC}^*(\mathbf{V})$. This lack of representation contradicts that G' is an I-map, which completes the proof. \Box

Next, we introduce the following theorem and definitions. **theorem** (*Local independences in Bayesian networks*) (*Pearl 2000*)

Letting $G = (\mathbf{V}, \mathbf{E})$ be a Bayesian network structure, and letting $\mathbf{ND}_G(X)$ be a set of non-descendants of X, then the following holds:

$$\forall X \in \mathbf{V}, Dsep_G(X, (\mathbf{ND}_G(X) \setminus \mathbf{Pa}_X^G) \mid \mathbf{Pa}_X^G).$$

Definition (Asymptotic consistency of scoring criterion) (Chickering 2002)

Let $G_1 = (\mathbf{V}, \mathbf{E}_1)$, and $G_2 = (\mathbf{V}, \mathbf{E}_2)$ be the structures. A scoring criterion Score has asymptotic consistency if the following two properties hold when the sample size is sufficiently large.

- If G_1 is an I-map and G_2 is not an I-map, then $Score(G_1) > Score(G_2)$.
- If G_1 and G_2 both are I-maps and if G_1 has fewer parameters than G_2 , then $Score(G_1) > Score(G_2)$.

Definition (Asymptotic local consistency of scoring criterion) (Chickering 2002)

Let $G_1 = (\mathbf{V}, \mathbf{E}_1)$ be any structure. Also, let G_2 be the structure which results from adding edge $Y \to X$. A scoring criterion Score has an asymptotic local consistency if

the following two properties hold when the sample size is sufficiently large.

- $I(X, Y | \mathbf{Pa}_X^{G_1}) \Rightarrow Score(G_1) > Score(G_2).$
- $\neg I(X, Y \mid \mathbf{Pa}_X^{G_1}) \Rightarrow Score(G_1) < Score(G_2).$

To derive Theorem 3, we introduce the following lemma.

Lemma 1 Assuming disjoint variable sets **X**, **Y**, **A**, **B**, then the following holds.

$$\neg I(\mathbf{X}, \mathbf{Y} \mid \mathbf{A}) \Rightarrow \neg I(\mathbf{X}, \mathbf{B} \mid \mathbf{A} \cup \mathbf{Y}) \lor \neg I(\mathbf{X}, \mathbf{Y} \mid \mathbf{A} \cup \mathbf{B}).$$

Proof From the decomposition property of conditional independence (Pearl 1988), $I(\mathbf{X}, (\mathbf{Y} \cup \mathbf{B}) | \mathbf{A}) \Rightarrow I(\mathbf{X}, \mathbf{Y} | \mathbf{A}) \land I(\mathbf{X}, \mathbf{B} | \mathbf{A})$ holds. The contraposition of the implication above is $\neg I(\mathbf{X}, \mathbf{Y} | \mathbf{A}) \lor \neg I(\mathbf{X}, \mathbf{B} | \mathbf{A}) \Rightarrow$ $\neg I(\mathbf{X}, (\mathbf{Y} \cup \mathbf{B}) | \mathbf{A})$. One obtains

$$\neg I(\mathbf{X}, \mathbf{Y} \mid \mathbf{A}) \Rightarrow \neg I(\mathbf{X}, (\mathbf{Y} \cup \mathbf{B}) \mid \mathbf{A}).$$
(1)

From the intersection property of conditional independence (Pearl 1988), $I(\mathbf{X}, \mathbf{B} \mid \mathbf{A} \cup \mathbf{Y}) \land I(\mathbf{X}, \mathbf{Y} \mid \mathbf{A} \cup \mathbf{B}) \Rightarrow$ $I(\mathbf{X}, (\mathbf{Y} \cup \mathbf{B}) \mid \mathbf{A})$ holds. The contraposition of the implication presented above is

$$\neg I(\mathbf{X}, (\mathbf{Y} \cup \mathbf{B}) \mid \mathbf{A}) \Rightarrow \neg I(\mathbf{X}, \mathbf{B} \mid \mathbf{A} \cup \mathbf{Y}) \lor \neg I(\mathbf{X}, \mathbf{Y} \mid \mathbf{A} \cup \mathbf{B}).$$
(2)

From (1) and (2), we obtain $\neg I(\mathbf{X}, \mathbf{Y} \mid \mathbf{A}) \Rightarrow \neg I(\mathbf{X}, \mathbf{B} \mid \mathbf{A} \cup \mathbf{Y}) \lor \neg I(\mathbf{X}, \mathbf{Y} \mid \mathbf{A} \cup \mathbf{B}). \Box$

Consequently, we derive Theorem 3 as explained below.

Theorem 3 For a sufficiently large sample, the highest BDeu scoring structure consistent with order π is an I-map with the minimum NCP among all the structures consistent with π .

Proof We let $G_{\pi}^{*} = (\mathbf{V}, \mathbf{E}_{\pi}^{*})$ be the structure with the highest BDeu among all structures consistent with order π . Also, we let $G_{\pi} = (\mathbf{V}, \mathbf{E}_{\pi})$ be an arbitrary I-map consistent with π . From the asymptotic consistency of BDeu (Chickering 2002), G_{π}^{*} is an I-map. A sufficient condition for Theorem 3 to hold is $\mathbf{E}_{\pi}^{*} \subseteq \mathbf{E}_{\pi}$. This proposition can be proved as true by contradiction. Assuming that there exists an I-map consistent with π , denoted as $G'_{\pi} = (\mathbf{V}, \mathbf{E}'_{\pi})$, such that $\mathbf{E}_{\pi}^{*} \not\subseteq \mathbf{E}'_{\pi}$. This assumption engenders $\exists X, Y \in \mathbf{V}, (Y \rightarrow$ $X) \in \mathbf{E}_{\pi}^{*} \land (Y \rightarrow X) \notin \mathbf{E}'_{\pi}$. Letting $\mathbf{A} = \mathbf{Pa}_{X}^{G_{\pi}^{*}} \setminus \{Y\}$,

Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

then we obtain $\neg I(X, Y \mid \mathbf{A})$ from $(Y \to X) \in \mathbf{E}_{\pi}^{*}$ and the asymptotic local consistency of BDeu (Chickering 2002). Let **B** be a set of variables $\mathbf{Pre}_{X}^{\pi} \setminus \mathbf{Pa}_{X}^{G_{\pi}^{*}}$. From $\neg I(X, Y \mid \mathbf{A})$ and Lemma 1, $\neg I(X, \mathbf{B} \mid \mathbf{A} \cup \{Y\}) \lor \neg I(X, Y \mid \mathbf{A} \cup \mathbf{B})$ holds, i.e., $I(X, \mathbf{B} \mid \mathbf{A} \cup \{Y\}) \Rightarrow \neg I(X, Y \mid \mathbf{A} \cup \mathbf{B})$ holds. Because $I(X, \mathbf{B} \mid \mathbf{A} \cup \{Y\})$ holds from the local independences in G_{π}^{*} , we obtain

$$\neg I(X, Y \mid \mathbf{A} \cup \mathbf{B}). \tag{3}$$

Also, $Dsep_{G'_{\pi}}(X, Y \mid \mathbf{A} \cup \mathbf{B})$ holds because X and Y are not adjacent in G'_{π} and because no variable in $\mathbf{A} \cup \mathbf{B}$ is a descendant of both X and Y in G'_{π} . This result contradicts (3), which completes the proof. \Box

Moreover, we derive Theorems 4 and 5 as described below.

Theorem 4 For any variable set \mathbf{V} , let $G^*(\mathbf{V})$ be an I-map with minimum NCP, and let $G^{NB}(\mathbf{V})$ be the naive Bayes classifiers consisting of a set of feature variables \mathbf{V}_c , which are children of the class variable in $G^*(\mathbf{V})$. The following property holds.

$$NCP(G^{NB}(\mathbf{V}_c)) \leq NCP(G^*(\mathbf{V})).$$

Proof Because the parent of feature variables in $G^{NB}(\mathbf{V}_c)$ is only X_0 , we obtain

$$NCP(G^{NB}(\mathbf{V}_c)) = \sum_{X_i \in \mathbf{V}_c} NCP_i(\{X_0\}) + r_0 - 1,$$

where $NCP_i({X_0}) = (r_i - 1)r_0$. For all $X_i \in \mathbf{V}_c$, let q_i^* be the number of parent configurations of X_i in $G^*(\mathbf{V})$. Because $X_0 \in \mathbf{Pa}_{X_i}^{G^*(\mathbf{V})}$, we obtain

$$NCP_i(\{X_0\}) \leq NCP_i(\mathbf{Pa}_{X_i}^{G^*(\mathbf{V})}).$$

Consequently, we obtain

$$NCP(G^{NB}(\mathbf{V}_c)) = \sum_{X_i \in \mathbf{V}_c} NCP_i(\{X_0\}) + r_0 - 1$$
$$\leq \sum_{X_i \in \mathbf{V}_c} NCP_i(\mathbf{Pa}_{X_i}^{G^*(\mathbf{V})}) + r_0 - 1$$
$$= NCP(G^*(\mathbf{V})).$$

Theorem 5 h^* has consistency.

Proof For any pair of nodes (\mathbf{U}, \mathbf{R}) in which \mathbf{R} has an incoming edge from \mathbf{U} in an NROG, let $c(\mathbf{U}, \mathbf{R})$ be a cost of the edge from \mathbf{U} to \mathbf{R} . Moreover, let X_j be a variable included in $\mathbf{U} \setminus \mathbf{R}$. When $X_j \notin \mathbf{V_c}$, we obtain

$$h^{*}(\mathbf{U}) = \sum_{X_{i} \in (\mathbf{U} \cup \mathbf{V}_{c})} NCP_{i}(X_{0})$$

$$= \sum_{X_{i} \in (\mathbf{R} \cup \mathbf{V}_{c})} NCP_{i}(X_{0})$$

$$\leq \sum_{X_{i} \in (\mathbf{R} \cup \mathbf{V}_{c})} NCP_{i}(X_{0}) + NCP_{j}(g_{j}^{*}(\mathbf{U} \setminus \{X_{j}\}))$$

$$= h^{*}(\mathbf{R}) + c(\mathbf{U}, \mathbf{R}).$$

When $X_j \in \mathbf{V}_c$, the following equation holds using $X_0 \in g_j^*(\mathbf{U} \setminus \{X_j\})$.

$$\begin{aligned} h^*(\mathbf{U}) &= \sum_{X_i \in (\mathbf{U} \cup \mathbf{V}_c)} NCP_i(X_0) \\ &= \sum_{X_i \in (\mathbf{U} \cup \mathbf{V}_c) \setminus \{X_j\}} NCP_i(X_0) + NCP_j(X_0) \\ &= \sum_{X_i \in (\mathbf{R} \cup \mathbf{V}_c)} NCP_i(X_0) + NCP_j(X_0) \\ &\leq \sum_{X_i \in (\mathbf{R} \cup \mathbf{V}_c)} NCP_i(X_0) + NCP_j(g_j^*(\mathbf{U} \setminus \{X_j\})) \\ &= h^*(\mathbf{R}) + c(\mathbf{U}, \mathbf{R}). \end{aligned}$$

Consequently, we obtain

$$h^*(\mathbf{U}) \le h^*(\mathbf{R}) + c(\mathbf{U}, \mathbf{R}).$$

References

Chickering, D. M. 2002. Optimal Structure Identification With Greedy Search. *JMLR*, 3: 507–554.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. ISBN 1558604790.

Pearl, J. 2000. *Models, Reasoning, and Inference*. Cambridge University Press.