Supplementary Materials

These supplementary materials present proofs of Theo-
rems 2, 3, 4, and 5. First, we derive Theorem 2 as explained
hereinafter.

Theorem 2 Under Assumption 1, let G*(V) be the true
structure. I-maps NPCDAG with the fewest NCP are clas-
sification equivalent to G*(V).

Proof Let G\ p(V) be an NCPDAG that is classification
equivalent to G*(V). This theorem can be proven by con-
tradiction. Assuming that there exists an I-map NPCDAG
G’ with the fewest NCP which is not classification equiva-
lent to G p(V), then because G' has the fewest NCP in
I-maps NPCDAG, G’ represents some d-separations related
with the class variable which Gy p (V') does not represent.
Such d-separations are also not represented by G*(V') be-
cause G* (V) is classification equivalent to Gy p (V). This
lack of representation contradicts that G’ is an I-map, which
completes the proof. [J

Next, we introduce the following theorem and definitions.

theorem (Local independences in Bayesian networks)
(Pearl 2000)

Letting G = (V,E) be a Bayesian network structure, and
letting ND (X)) be a set of non-descendants of X, then the
following holds:

VX € V,Dsepa(X, (NDg(X) \ Pa$) | Pa).

Definition (Asymptotic consistency of scoring criterion)
(Chickering 2002)

Let Gy = (V,Eq), and G2 = (V,Ez2) be the structures.
A scoring criterion Score has asymptotic consistency if the
following two properties hold when the sample size is suffi-
ciently large.

e If Gy is an I-map and Gs is not an I-map, then
Score(Gy) > Score(Ga).

e If G1 and G5 both are I-maps and if G1 has fewer pa-
rameters than Ga, then Score(G1) > Score(Ga).

Definition (Asymptotic local consistency of scoring crite-
rion) (Chickering 2002)

Let G1 = (V,Eq) be any structure. Also, let Gy be the
structure which results from adding edge Y — X. A scor-
ing criterion Score has an asymptotic local consistency if
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the following two properties hold when the sample size is
sufficiently large.

« I(X,Y | Pa§') = Score(Gy) > Score(Go).
« —I(X,Y | Pa$') = Score(Gy) < Score(Gy).
To derive Theorem 3, we introduce the following lemma.

Lemma 1 Assuming disjoint variable sets X,Y,A,B,
then the following holds.

~I(X,Y |A) = -I(X,B|AUY)V-I(X,Y | AUB).

Proof From the decomposition property of conditional in-
dependence (Pearl 1988), I(X,(YUB) | A) = I(X,Y |
A) AN I(X,B | A) holds. The contraposition of the im-
plication above is -I(X,Y | A) Vv -I(X,B | A) =
-I(X, (Y UB) | A). One obtains

I(X,Y |A) = ~I(X,(YUB)|A). (1)

From the intersection property of conditional independence
(Pearl 1988), IX,B | AUY)AI(X,Y | AUB) =
I(X, (Y UB) | A) holds. The contraposition of the impli-
cation presented above is

~I(X,(YUB) | A)
= -I(X,B|AUY)V-I(X,Y|AUB). (2

From (1) and (2), we obtain -I(X,Y | A) = —-I(X,B |
AUY)v-I(X, Y |AUuB).O

Consequently, we derive Theorem 3 as explained below.

Theorem 3 For a sufficiently large sample, the highest
BDeu scoring structure consistent with order 7 is an I-map
with the minimum NCP among all the structures consistent
with 7.

Proof We let G = (V,E%) be the structure with the high-
est BDeu among all structures consistent with order 7. Also,
we let G = (V,E;) be an arbitrary I-map consistent with
7. From the asymptotic consistency of BDeu (Chickering
2002), G is an I-map. A sufficient condition for Theorem
3 to hold is E. C E,. This proposition can be proved as
true by contradiction. Assuming that there exists an I-map
consistent with 7, denoted as G, = (V,E.), such that
E: ¢ E!. This assumption engenders 3X,Y € V,(Y —

X) € B A (Y — X) ¢ EL. Letting A = Pa$™ \ {Y},



then we obtain =I(X,Y | A) from (Y — X) € EX and the
asymptotic local consistency of BDeu (Chickering 2002). Let

B be a set of variables Pre’ \ Pai’*. From—-I1(X,Y | A)
and Lemma 1, -I(X,B | AU{Y})v-I(X,Y | AUB)
holds, i.e., I(X,B | AU{Y}) = —I(X,Y | AUB) holds.
Because I(X,B | A U{Y'}) holds from the local indepen-
dences in G, we obtain

-I(X,Y | AUB). 3

Also, Dsepg: (X,Y | A UB) holds because X and Y are
not adjacent in G and because no variable in A UB is a
descendant of both X and'Y in G'.. This result contradicts
(3), which completes the proof. (1

Moreover, we derive Theorems 4 and 5 as described be-
low.

Theorem 4 For any variable set V, let G*(V) be an I-map
with minimum NCP, and let GNB (V) be the naive Bayes
classifiers consisting of a set of feature variables V ., which
are children of the class variable in G*(V). The following
property holds.

NCP(GNB(V.)) < NCP(G*(V)).

Proof Because the parent of feature variables in GV 2 (V)
is only X, we obtain
NCP(GNP(V,)) = Z NCOP;({Xo}) + 70— 1,
X,eV,

where NCP;({Xo}) = (r; — )rg. For all X; € V., let
q; be the number of parent configurations of X; in G*(V).

Because X € Pagi (v), we obtain

NCP,({Xo}) < NCP(Pa§, V).
Consequently, we obtain
NCP(GNB(V,))= > NCP({Xo})+ro—1
X;€Ve.
< Y NoR(Pa§ ™)+ -1
X;eV,

= NCP(G*(V)).
O
Theorem 5 h* has consistency.

Proof For any pair of nodes (U,R) in which R has an
incoming edge from U in an NROG, let ¢(U,R) be a cost
of the edge from U to R. Moreover, let X; be a variable
included in U \ R. When X; ¢ V., we obtain

> NCPi(Xo)

Xq;G(UUVC)

Y NCPi(Xo)
X;e(RUV,)

> NCPi(Xo)+ NCP;(g;(U\{X;}))
X, e(RUV,)
=h*"(R) + ¢(U,R).

h*(U) =

IN

When X; € V., the following equation holds using X, €
97 (U\{X;}).

P - Y

X, e(UUV,)

X;€(UUVON{X,}
Z NCP;(Xo) + NCP;(Xo)
X;e(RUV,)
> NCP(Xo) + NCPi(g;(U\ {X,}))
X, e(RUV,)
= h*(R) + ¢(U,R).

NCP,(Xo)

NCPi(Xg) + NCP;(X,)

IN

Consequently, we obtain

h*(U) < h*(R) + ¢(U,R).
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