
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 17, 2024 951

Deep Knowledge Tracing Incorporating a
Hypernetwork With Independent Student

and Item Networks
Emiko Tsutsumi , Yiming Guo , Ryo Kinoshita , and Maomi Ueno , Member, IEEE

Abstract—Knowledge tracing (KT), the task of tracking the
knowledge state of a student over time, has been assessed actively
by artificial intelligence researchers. Recent reports have described
that Deep-IRT, which combines item response theory (IRT) with
a deep learning method, provides superior performance. It can
express the abilities of each student and the difficulty of each
item such as IRT. Nevertheless, its interpretability is inadequate
compared to that of IRT because the ability parameter depends on
each item. Deep-IRT implicitly assumes that items with the same
skills are equivalent, which does not hold when item difficulties
for the same skills differ greatly. For identical skills, items that
are not equivalent hinder the interpretation of a student’s ability
estimate. To overcome those difficulties, this study proposes a novel
Deep-IRT that models a student response to an item using two in-
dependent networks: 1) a student network and 2) an item network.
The proposed Deep-IRT method learns student parameters and
item parameters independently to avoid impairing the predictive
accuracy. Moreover, we propose a novel hypernetwork architecture
for the proposed Deep-IRT to balance both the current and the
past data in the latent variable storing student’s knowledge states.
Results of experiments with six benchmark datasets demonstrate
that the proposed method improves the prediction accuracy by
about 2.0%, on average. In addition, experiments for the simulation
dataset demonstrated that the proposed method provides a stronger
correlation with true parameters than the earlier Deep-IRT method
does at the p < 0.5 significance level.

Index Terms—Deep learning, hypernetwork, knowledge tracing
(KT), neural network, item response theory (IRT).

I. INTRODUCTION

IMPORTANT tasks for adaptive learning are intended for
accurate prediction of a student’s performance and for

capturing the student’s ability change based on the student’s
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prior learning history data. In the field of artificial intelligence,
knowledge tracing (KT) has been researched actively to predict
a student’s performance (correct or incorrect responses to an
unknown item) and to discover concepts that the student has not
mastered by tracing a student’s evolving knowledge state [1],
[2], [3], [4], [5]. These tasks are important to help students
learn effectively by presenting optimal problems and a teacher’s
support.

Recently, various KT methods have been developed us-
ing major approaches: probabilistic approaches, deep-learning-
based approaches, and attention-mechanism-based approaches.
Bayesian KT (BKT) is a well-known probabilistic approach that
employs a hidden Markov model to trace a student’s evolving
knowledge state [1].

BKT estimates whether the student has mastered the skill or
not according to the student’s past response data. It then predicts
the student’s responses to unknown items. Researchers have
proposed several BKT variants to improve interpretability [6],
[7], [8], [9]. The BKT models predict a student’s knowledge
state using only simple discrete values. Therefore, they are
inflexible with the student knowledge state changes. Moreover,
they assume a single dimension of the ability. They are unable
to capture the multidimensional ability sufficiently or predict
performance precisely.

Recently, item response theory (IRT) has been used for KT
to predict a student’s correct answer probability to an unknown
item [10], [11], [12]. In fact, IRT has been used in the field of test
theory, where it has high parameter interpretability by virtue of
its capability of estimating the student’s latent ability parameter
and item characteristic parameters.

Several studies have extended standard IRT models to as-
certain student ability changes for learning processes with the
hidden Markov process [11], [12], [13], [14], [15]. These are
regarded as generalized models of BKT and IRT because they
estimate the ability as a continuous hidden variable following a
hidden Markov process. Actually, a learning task is associated
with multiple skills. Students must master the knowledge of mul-
tiple skills to solve a task. However, BKT and IRT have a restric-
tion: They express only unidimensional ability. Therefore, BKT
and IRT are unable to capture the multidimensional ability suf-
ficiently. They are unable to predict the performance precisely.

To overcome this shortcoming, Piech et al. [2] developed
deep KT (DKT) as the first method among deep-learning-based
approaches.
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DKT employs long short-term memory (LSTM) to relax the
restrictions of skill separation and binary state assumptions [16].
That earlier report describes that DKT can predict a student’s
performance more precisely than probabilistic models such as
BKT can. However, the hidden states include a summary of the
past sequence of learning history data in LSTM. Therefore, DKT
does not explicitly treat the student’s ability of each skill.

To improve DKT performance, a dynamic key-value mem-
ory network (DKVMN) was developed to exploit the relation
between underlying skills and to trace the respective knowledge
states [4]. By employing a memory-augmented neural network,
DKVMN can estimate the relations between underlying skills
and items addressed by students. In addition, DKVMN has a
memory-updating component to allow forgetting and updat-
ing of the latent variable memory, which stores the students’
knowledge states during the learning process [4]. Furthermore,
Deep-IRT has been proposed to improve the explanatory capa-
bilities of the parameters [3]. Deep-IRT can estimate a student’s
ability and an item’s difficulty, just as standard IRT models can
by combining DKVMN with an IRT module. However, it has
remained insufficient to improve interpretability because the stu-
dent’s ability of Deep-IRT depends on each item characteristic.
Although DeepIRT implicitly functions on the assumption that
items with the same skills are equivalent, that assumption does
not hold true when the item difficulties for the same skills differ
greatly. Items of the same skill that are not equivalent interfere
with the interpretation of the student’s ability estimates.

The self-attentive KT (SAKT) method is the first method to
employ an attention mechanism, the transformer method, for
KT [18], [19]. To predict student performance, SAKT iden-
tifies the relation between skills and an item addressed by a
student from past learning data. Most recently, attentive KT
(AKT) was developed to improve SAKT performance [5]. To
incorporate a forgetting function of past data, AKT employs
attention mechanisms. It optimizes parameters to weight past
learning data needed to predict student performance. In addition,
Ghosh et al. [5] pointed out the error of the assumption in earlier
KT methods that items with identical skills are equivalent. To
overcome that shortcoming, they employed both items and skills
as inputs. In fact, AKT provides state-of-the-art performance for
student response prediction. However, the interpretability of the
parameters remains inadequate because AKT cannot express a
student’s ability transition for each skill.

The most challenging aspect of KT is to estimate the inter-
pretable student’s ability without decreasing predictive accuracy.
This study specifically addresses this point of difficulty. Recent
studies of deep learning have clarified that parameter redundancy
in training data reduces generalization error, contrary to Occam’s
razor [20], [21], [22]. Based on those reports, this study proposes
a novel Deep-IRT that has two independent redundant networks:
1) a student network and 2) an item network [23]. The proposed
method learns the student’s ability parameters and the item’s
characteristic parameters independently. This method provides
the high interpretable ability parameters to a greater extent than
the earlier Deep-IRT does.

In addition, a student network employs memory network
architecture to reflect dynamic changes in student abilities as

DKVMN does. The memory updating component in DKVMN
is more effective than the forgetting function of AKT because
it updates the current latent variable, which stores the students’
skills and abilities using only the immediately preceding values.

However, room for improvement remains in the prediction
accuracy of the proposed Deep-IRT. In fact, the forgetting pa-
rameters that control the degree of forgetting the past latent
variable are optimized from only the current input data: the
student’s latest response to an item. It might degrade the pre-
diction accuracy of the Deep-IRT because the latent variable
only insufficiently reflects the past data. As a result, it might
interrupt the accurate estimation of the ability transition in a
long learning process. It should use not only the current input
data but also past latent variables to optimize the forgetting
parameters.

A simple solution to this problem is to add new weight
parameters that balance the current input data and past latent
variables at each time. However, this solution increases the
number of weight parameters dynamically when the learning
process progresses. It often yields too many weight parameters
to support a successful estimate.

To resolve that difficulty, we combine a novel hypernetwork
with the proposed method because it optimizes the degree of
forgetting of the past latent variables and thereby avoids greatly
increasing the number of parameters.

Recent studies in the field of natural language processing
(NLP) have proposed several hypernetworks to optimize
the latent variables and the weights of the hidden layers
for LSTM [24], [25]. Some hypernetworks scale the latent
variables and columns of all weight matrices expressing a
context-dependent transition [24], [26]. No report of the relevant
literature has described a study of the use of hypernetworks
for KT methods. Using the proposed method, the proposed
hypernetwork balances both current input data and past latent
variables that store a student’s knowledge state in the learning
process. Before the model updates the latent variable, it
optimizes not only the weights of the forgetting parameters but
also the past latent variables in the hypernetwork.

We conducted experiments to compare the proposed method’s
performance and those of earlier KT methods. Surprisingly,
the results demonstrate that the proposed method improves
the prediction accuracy and the interpretability of earlier KT
methods, although the parameters of the proposed method are
far more numerous than those used for earlier methods.

This study is an extension of our work reported in earlier
papers accepted at the International Conference on Educational
Data Mining in 2021 and 2022 [23], [27]. The main differences
between this article and the earlier papers are the following. Tsut-
sumi et al. [23] did not propose a new deep-learning technology
but combined only existing technologies. Although Tsutsumi
et al. [27] proposed a hypernetwork for KT, they described no
related details: only the conceptual idea of incorporating a hy-
pernetwork into Deep-IRT [23]. Furthermore, the authors in [23]
and [27] improved the parameter interpretability. However, their
prediction accuracies did not outperform AKT, which provided
the best prediction performance among the earlier methods. In
contrast, this study proposes a novel hypernetwork architecture
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to optimize the balance between the latest input data and the
past latent variables. The proposed method provides the highest
prediction accuracy and outperforms AKT with high parameter
interpretability to a considerable degree.

The main contributions of the work described in this article
are presented as follows.

1) The proposed method can estimate student and item
parameters with high interpretability as in IRT by two
independent redundant networks. The proposed method
provides higher parameter interpretability than other KT
methods.

2) The proposed method with hypernetworks improves the
prediction accuracy of earlier KT methods. Especially,
it functions more effectively for long learning processes
because hypernetworks reflect past learning data.

The rest of this article is organized as follows. In Section II,
we review IRT and deep learning methods for KT. In Section III,
we describe the proposed method to improve parameter inter-
pretability. In Section IV, we describe the proposed method with
a hypernetwork to improve the prediction accuracy. Section V
shows experiments using benchmark datasets to compare the
performances of the proposed methods against existing methods.
Section VI explains experiments that were performed to evaluate
the interpretability of the ability parameters of the proposed
method. Finally, Section VII concludes this article.

Our code is also available on GitHub.1

II. RELATED WORK

A. Item Response Theory

Many IRT models exist [10], [28], [29]. This section briefly
introduces the two-parameter logistic model (2PLM): an ex-
tremely popular IRT model. For 2PLM, uij represents the re-
sponse of student i to item j (1. . ., J) as

uij =

{
1, (student i answers correctly to item j)

0, (otherwise).

In 2PLM, the probability of a correct answer given to item j by
student i with ability parameter θi ∈ (−∞,∞) is assumed as

Pj(θi) = P (uij = 1 | θi)

=
1

1 + exp(−1.7aj(θi − bj))
(1)

where aj ∈ (0,∞) represents the jth item’s discrimination pa-
rameter expressing the discriminatory power for student’s abil-
ities, and bj ∈ (−∞,∞) is the jth item’s difficulty parameter
representing the degree of difficulty.

Actually, IRT models are known to have high interpretability.
However, in standard IRT models, the ability is assumed to be
constant throughout the learning process. Therefore, student’s
ability changes are not reflected in the models. Recently, several
studies have extended standard IRT models to capture student’s
ability changes for the learning processes with the hidden

1[Online]. Available: https://github.com/UEC-Ueno-lab/Deep-IRT_with_
Hypernetwork.git

Markov process [11], [12], [13], [14], [30], [31], [32]. These are
regarded as generalized models of BKT and IRT because they
estimate the ability as a continuous hidden variable following a
hidden Markov process.

For example, temporal IRT (TIRT) is a hidden Markov IRT
with a parameter to forget past response data [12]. In TIRT, the
probability of a correct answer assigned to item j by student i
at time t with ability parameter θit is assumed as

Pij(xij = 1 | θit) = 1

1 + exp (−ãΔt
(θit − bj))

(2)

ãΔt
=

aj√
1 + εa2jΔt

(3)

where Δt = t− j and ãΔt
∈ (0,∞) is the discrimination pa-

rameter at time t. In addition, bj ∈ (−∞,∞) is the jth item’s
difficulty parameter representing the degree of difficulty. Fur-
thermore, θit ∈ (−∞,∞) represents the student i ability at
time t. The prior of θit is a normal distribution described as
θi0 ∼ N (0, 1) θit ∼ N (θit−1, ε). Moreover, ε is a variance of θit
and a forgetting parameter (tuning parameter), which determines
the forgetting degree of the past data. The smoothness of a
student’s ability transition can be controlled by ε. Therefore,
as ε increases, the fluctuation range of the true ability increases
at each time point.

However, these IRT models incorporate the assumption of a
single dimension of the ability. In other words, they completely
consider independent multiple skills. Apparently, these are un-
able to accommodate items that require different skills.

B. Deep KT

DKT [2] was proposed as the first deep-learning-based
method. It exploits recurrent neural networks and LSTM [16]
to simulate transitions of ability. It can capture complex multi-
dimensional features of both items and students and can relax the
limitations of traditional methods such as independence between
skills. An earlier study demonstrated that DKT outperformed
BKT in terms of predictive accuracy [2]. However, DKT sum-
marizes a student’s ability of all skills in one hidden state, which
makes it difficult to trace the degree to which a student has
mastered a certain skill and pinpoint concepts with which a
student is proficient or unfamiliar.

C. Dynamic Key-Value Memory Network

To improve the DKT interpretability, researchers have un-
dertaken great efforts to propose novel methods for use with
KT [17]. Specifically, a DKVMN exploits a memory-augmented
neural network along with attention mechanisms to trace student
abilities in different dimensions [4]. Fig. 1 presents a simple
illustration.

The salient feature of DKVMN is that it assumes N under-
lying skills and relations among the input (skills). Underlying
skills are stored in key memory Mk ∈ RN×dk . Value memory
Mv

t ∈ RN×dv holds abilities of underlying skills at time t. Here,
dk and dv are tuning parameters. To express the skill of jth item,
the input of DKVMN is an embedding vector sj ∈ Rdk of skill

https://github.com/UEC-Ueno-lab/Deep-IRT_with_Hypernetwork.git
https://github.com/UEC-Ueno-lab/Deep-IRT_with_Hypernetwork.git
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Fig. 1. Network architecture of Deep-IRT with DKVMN. The underside of the
structure describes DKVMN. The whole structure describes Deep-IRT. The blue
components represent the process of getting the attention weight. The yellow
components are associated with the student network and the process of updating
the value memory. The green components are associated with the item network.
The designation � represents subtraction.

tag of item j. DKVMN predicts the performance of item j at
time t as explained ahead.

First, DKVMN calculates the attention, which indicates how
strongly an item j is related to each skill as

wjl = Softmax
(
Mk

l sj
)

(4)

where Mk
l represents an lth row vector, and wjl signifies the

degree of strength of the relation between the latent skill l
and the skill of item j addressed by a student at time t. Next,
student vector θ(t)

1 is calculated using the weighted sum of value
memory

θ
(t)
1 =

N∑
l=1

wjl (M
v
tl)

� (5)

where Mv
tl represents an lth row vector. Finally, it concatenates

θ
(t)
1 with sj and predicts a correct probability Pjt for an item j

as

θ
(t)
2 = tanh

(
W (θ2)

[
θ
(t)
1 , sj

]
+ τ (θ2)

)
(6)

Pjt = σ
(
W (Pjt)θ

(t)
2 + τ (Pjt)

)
(7)

where [·] denotes concatenation of vectors, and σ(·) represents
the sigmoid function. In this report, we express W (·) as the
weight matrix and weight vector, and τ (·) as the bias vector
and scalar. Reportedly, DKVMN has the capability of predicting
performance accurately. However, unfortunately, it lacks inter-
pretability of the parameters.

D. Deep-IRT

To improve the DKVMN interpretability, Deep-IRT is im-
plemented by combining DKVMN with an IRT module [3].
Deep-IRT exploits both the strong prediction ability of DKVMN
and the interpretable parameters of IRT. Fig. 1 presents a simple
illustration.

Deep-IRT adds a hidden layer to DKVMN to gain applicable
ability and item difficulty. Specifically, when a student attempts
item j at time t, an ability θ

(t,j)
3 and item difficulty βj are

calculated as described in the following:

θ
(t,j)
3 = tanh

(
W (θ3)θ

(t)
2 + τ (θ3)

)
(8)

βj = tanh
(
W (β)sj + τ (β)

)
. (9)

The prediction is based on the difference between θ
(t,j)
3 and βj

such as IRT

Pjt = σ
(
3.0 ∗ θ(t,j)3 − βj

)
. (10)

Here, ability θ
(t)
2 is calculated using sj in (6), which depends

on the item to solve because it implicitly assumes that items with
the same skills are equivalent. In other words, the ability estimate
for the same student and time might differ if the student attempts
a different item. An important difficulty is that a student’s ability,
which depends on each item, hinders the interpretability of the
parameters.

E. Attentive KT

Ghosh et al. [5] proposed AKT, which combines the attention-
based model with the Rasch model, which is also known as the
1PLM IRT model [33]. It is noteworthy that AKT incorporates a
forgetting function for past data into attention-based neural net-
works. Attention weights in AKT express the relation between
student’s latest data and past data, decaying exponentially during
the learning process. Specifically, AKT calculates the attention
weight α as

αt,λ =
exp (ft,λ)∑
λ′ exp (ft,λ)

(11)

(ft,λ) =
exp (−ηd(t, λ)) · q�

t kλ√
Dk

(12)

where η > 0 is a decay rate parameter and d(t, λ) is a temporal
distance measure between time steps t and λ. In addition, qt ∈
RDk denotes the query corresponding to items to which the
student responds at time 1 to t, kλ ∈ RDk denotes the key for
the item at time step λ, and Dk denotes the dimensions of the
key matrix [5]. The attention weight α decays as the distance
between the current input time and the past input time increases.
Furthermore, d(t, λ) with λ ≤ t is obtained as explained in the
following:

d(t, λ) = |t− λ|
t∑

t′=λ+1

q�
t kt′√
Dk∑

1≤λ′≤t′
q�
t kλ′√
Dk

∀t′ ≤ t. (13)

In fact, d(t, λ) adjusts the distance between consecutive time
indices according to how the past input is related to the current
input [5].

In addition, they pointed out that the earlier KT methods
assumed that items with the same skills were equivalent. To
resolve the difficulty, AKT employs both items and skill inputs.
Results show that, among the earlier KT methods, AKT provides
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Fig. 2. Network architecture of Deep-IRT with independent student and item
networks. The yellow components are associated with the student network. The
green components are associated with the item network. In addition, the right
side of the figure presents the memory updating component. The designations
⊗ and ⊕, respectively, represent elementwise multiplication and addition.

the best performance for predicting the students’ responses.
Nevertheless, the interpretability of its parameters remains in-
adequate because it cannot express a student’s ability transition
for each skill.

III. DEEP-IRT WITH INDEPENDENT STUDENT AND ITEM

NETWORKS

The ability parameter of the Deep-IRT [3] depends on each
item because it implicitly assumes that items with the same skills
are equivalent. That assumption does not hold when the item
difficulties for the same skills differ greatly. Therefore, when
the items for the same skills are not equivalent, it is difficult to
interpret a student’s ability estimate.

To resolve the difficulty, this study proposes a novel Deep-IRT
method comprising two independent neural networks: 1) the
student network and 2) the item deep network [23], as presented
in Fig. 2. The student network employs memory network ar-
chitecture, such as DKVMN to ascertain changes in student
ability comprehensively. The item network includes inputs of
two kinds: 1) the item attempted by a student and 2) the necessary
skills to solve the item. Using the outputs of both networks,
the probability of a student answering an item correctly can be
calculated.

The proposed method can estimate student parameters and
item parameters independently such that the prediction accuracy
does not decline because the two independent networks are de-
signed to be more redundant than they are with earlier methods,
based on state-of-the-art reports [20], [21], [22]. The proposed
method predictsPjt, the probability of a correct answer assigned
to the item j at time t, using the item difficulties and the student
abilities [23], as shown hereinafter.

A. Item Network

In the item network, two difficulty parameters of item j are es-
timated: 1) the item characteristic difficulty parameter βj

item and
2) the skill difficulty βj

skill [23]. The item characteristic difficulty

parameter represents the unique difficulties of the item, except
the required skill difficulty. The proposed method expresses item
difficulty as the sum of the two difficulty parameters of βj

item

and βj
skill.

In the proposed method, to express the jth item, an input of the
item network is an embedding vector qj ∈ Rdk of item j. The
item characteristic difficulty parameter of item j is calculated
using a feed-forward neural network as

βj
1 = tanh

(
W (β1)qj + τ (β1)

)
(14)

βj
k′ = tanh

(
W (βk′ )βj

k′−1 + τ (βk′ )
)

(15)

βj
item = W (βitem)βj

k + τ (βitem). (16)

In this report, we represent {k ∈ N|2 ≤ k′ ≤ k} as numerous
hidden layers decided depending on the prediction accuracy
of actual data. The last layer βj

item represents the jth item
characteristic difficulty parameter.

Similarly, to compute the difficulty of skills, the proposed
method uses the input of necessary skills sj ∈ Rdk . The em-
bedding vector sj is calculated from the skill tag of item j

γj
1 = tanh

(
W (γ1)sj + τ (γ1)

)
(17)

γj
k′ = tanh

(
W (γk′ )γj

k′−1 + τ (γk′ )
)

(18)

βj
skill = W (βskill)γj

k + τ (βskill) (19)

where {k ∈ N|2 ≤ k′ ≤ k}. The last layer βj
skill denotes the

difficulty parameter of the required skills to solve the jth item.

B. Student Network

In the student network, the proposed method calculates θ(t,j)
1

based on the latent variable Mv
t expressing a student’s latent

knowledge state at time t [23], as

θ
(t,j)
1 =

N∑
l=1

wjl (M
v
tl)

� (20)

where Mv
tl represents an lth row vector and where wjl is the

attention weight of underlying skill l. wjl is estimated similarly
to DKVMN in (4). Next, an interpretable student’s ability vector
θ(t,j) can be estimated as presented in the following:

θ
(t,j)
k′ = tanh

(
W (θk′ )θ

(t,j)
k′−1 + τ (θk′ )

)
(21)

θ(t,j) =

N∑
l=1

wjlθ
(t,j)
k′l (22)

where {k ∈ N|2 ≤ k′ ≤ k} and θ
(t,j)
k = {θ(t,j)k1 , θ

(t,j)
k2 , . . . ,

θ
(t,j)
kN }. Also, θ

(t,j)
k′ ∈ Rdv and θ

(t,j)
k ∈ RN . One important

difference between the proposed method and the earlier Deep-
IRT [3] is that the proposed method does not calculate θ

(t,j)
k

using features of items, such as (6) and (8). Therefore, the ability
parameter θ(t,j) is independent of the difficulty parameters of the
respective items. In addition, the value of θ(t,j)

k represents the
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abilities of the latent skills. In other words, θ(t,j)
k can be inferred

as a measurement model, such as multidimensional IRT [34].

C. Prediction of Student Response to an Item

The proposed method predicts a student’s response probabil-
ity to an item using the difference between a student’s ability
θ(t,j) to solve item j at time t and the sum of two difficulty
parameters βj

item and βj
skill [23]

Pjt = σ
(
3.0 ∗ θ(t,j) − (βj

item + βj
skill)

)
. (23)

After the procedure, the latent value memory Mv
t is updated

using the embedding vector of (sj , ujt) = sj + ujt ∗ S denoted
as vt ∈ Rdv such as DKVMN [4]. Actually, ujt is the student’s
response to item j at time t: ujt is 1 when the student answers
the item correctly; it is 0 otherwise

et = σ(W evt + τ e) (24)

at = tanh(W avt + τ a) (25)

M̃
v

t+1,l = Mv
t,l ⊗ (1− wjlet)

� (26)

Mv
t+1,l = M̃

v

t+1,l + wjla
�
t . (27)

Therein, W e ∈ Rdv×dv ,W a ∈ Rdv×dv are weight matrices
and τ e ∈ Rdv , τ e ∈ Rdv are bias vectors. l is the underlying
skill and {l ∈ N|1 ≤ l ≤ N}. ⊗ represents the elementwise
product. In (24) and (26), et controls how much the value
memory forgets (remembers) the past ability. In addition, at

in (25) and (27) controls how strongly current performance is
reflected. It is noteworthy that et and at, which control the
degree of forgetting the past latent value memory Mv

t , are
optimized solely from the student’s latest response to an item
ujt.

In general, deep-learning-based methods learn their param-
eters using the back-propagation algorithm by minimizing a
loss function. The loss function of the proposed method em-
ploys cross-entropy, which reflects classification errors. Then,
the cross-entropy of the predicted responses Pjt and the true
responses ujt is calculated as

�(ujt, Pjt) = −
∑
t

(ujt logPjt + (1− ujt) log(1− Pjt)) .

(28)
All parameters are learned simultaneously using a well-known
optimization algorithm: adaptive moment estimation [35].

IV. DEEP-IRT WITH HYPERNETWORK

The preceding section described the proposed Deep-IRT
method with independent student and item networks [23]. How-
ever, room for improvement of the prediction accuracy remains
because the parameters that control the degree of forgetting
the past latent value memory Mv

t are optimized using only
the student’s latest response to an item. It might degrade the
prediction accuracy of the Deep-IRT because the latent value
memory insufficiently reflects past data. As a result, it might
prevent difficulty in accurate estimation of the ability transition

in a long learning process. It should use not only the current input
data but also past data to optimize the forgetting parameters.

One simple solution is to add new weight parameters that
balance current input data vt and past latent values Mv

t at each
time. However, the number of weight parameters increases dy-
namically when the learning process progresses. It often yields
too many weight parameters for successful estimation.

Recent reports of studies conducted in the field of NLP
have proposed extension components to LSTM [16] in the
form of mutual gating of the current input data and earlier
hidden variables [24]. These extension components are called
hypernetworks. In standard LSTM [16], the hidden variables
change with time, but the weights used to update them are fixed
values that are not optimized for each time point. To resolve this
difficulty, various hypernetworks have been proposed to support
the main recurrent neural network by optimizing the nonshared
weights for each time point in the hidden layers [24], [26],
[36], [37], [38], [39], [40]. Their results demonstrate that LSTM
with a hypernetwork works better than the standard LSTM [16].
Furthermore, Melis et al. [26] earlier proposed the “Mogrifier
component,” which is a kind of hypernetwork for LSTM in the
field of NLP. Mogrifier scales the hidden variables using not
only the current inputs but also the output of the hidden variable
at the earlier time point. They reported that LSTM with the
Mogrifier component outperforms other methods for long input
data lengths.

Inspired by the results obtained from those studies, we incor-
porate a novel hypernetwork into the memory updating compo-
nent (in Fig. 2), which updates the latent variableMv

t expressing
a student’s knowledge state, to avoid greatly increasing the
number of parameters. Although Tsutsumi et al. [27] proposed
a hypernetwork for KT, that report presented no details but just
its conceptual idea. This article proposes a novel hypernetwork
architecture to optimize the balance between the latest input data
and the past latent variables. No report of the relevant literature
has described a study of the use of the hypernetworks for KT
methods.

Fig. 3 presents the proposed hypernetwork architecture and
the memory updating component of the proposed method. The
hypernetwork optimizes the degree of forgetting of past data
in the proposed Deep-IRT and improves prediction accuracy
with parameter interpretability. Specifically, before the method
updates the latent variable Mv

t+1, the proposed hypernetwork
balances both the current input data vt and the latent variable
Mv

t using the past latent variables {Mv
t ,M

v
t−1, . . . ,M

v
t−λ} at

time t− λ to t. Here, λ represents the degree of the past latent
variables to be accessed. For the proposed method, we optimize
λ for each learning dataset.

A. Hypernetwork

In the memory updating components of DKVMN and Deep-
IRT [3], [4], the forgetting parameters are optimized only from
current input data. Therefore, their value memoryMv

t might not
adequately forget past data. Therefore, to optimize the forgetting
parameters et, and at at time t, the proposed hypernetwork
balances the current input data and the past latent value memory
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Fig. 3. Memory updating component of the proposed Deep-IRT with hypernetwork. The proposed hypernetwork is located at the beginning of the memory
updating component. It estimates the optimal forgetting parameters by balancing both the current input data and the past latent variable before the model updates
the latent variable.

to store sufficient information of the learning history data before
calculating the latent variables Mv

t+1.
The proposed hypernetwork structure is located at the begin-

ning of the memory updating component (see Fig. 3). The inputs
of the hypernetwork are the embedding vector vt ∈ Rdv and the
past value memory M̃

v

t . The embedding vector vt is calculated
from the current input data (sj , ujt) when a student responds to
item j. In addition, M̃

v

t is calculated as

M̃
v

t =

{
Mv

t (λ = 0)

σ(W [Mv
t ,M

v
t−1, . . . ,M

v
t−λ] + τ ) (otherwise).

(29)
Therein, W is the weight vector and τ is the bias parameter
vector. Next, vt and M̃

v

t are optimized in the hypernetwork as

ṽr′
t = δ1 ∗ σ(W vM̃

vr′−1

t )� vr′−1
t (30)

M̃
vr′

t = δ2 ∗ σ(WM ṽr′
t )� M̃

vr′−1

t (31)

where δ1 ∈ R, δ2 ∈ R, r is a hyperparameter, and 1 ≤ r′ ≤ r. r
represents the number of rounds in the recurrent architecture. If

r′ = 1, then ṽ0
t = vt and M̃

v0

t = M̃
v

t . Because of the repeated
multiplications in (30) and (31), this hypernetwork balances
current data ṽt and past value memory M̃

v

t . For the proposed
methods, we optimize the number of rounds r for each learning
dataset. Details are presented in the experiment section.

B. Memory Updating Component

Next, we estimate the forgetting parameters et and at using
the optimized ṽr and M̃

vr

t . These forgetting parameters et
and at are important to update the latest value memory Mv

t+1

optimally. The earlier memory updating component of DKVMN
and Deep-IRT calculates the forgetting parameters from vt

solely based on current input information in (24) and (25). By
contrast, we calculate them using the optimized current input
data ṽr

t and the past latent value M̃
vr

t . Furthermore, the unique
feature of the proposed method is a new layer zt, which helps to

optimize at. The memory updating component is located next
to the hypernetwork on the upper right of Fig. 3. The forgetting
parameters et and at are calculated as

e
(l)
t = σ(W e1ṽr

t +W e2M̃
vr

t,l + τ e) (32)

z
(l)
t = σ(W z1ṽr

t +W z2M̃
vr

t,l + τ z) (33)

a
(l)
t = tanh(W a1z

(l)
t +W a2M̃

vr

t,l + τ a). (34)

Therein, W (·) is the weight vector; τ (·) is a bias vector. Then,
the proposed method updates the latent value Mv

t+1,l as shown
in the following:

Mv
t+1,l = M̃

vr

t,l ⊗ (1− wjle
(l)
t )� + wjla

(l)�
t . (35)

By optimizing ṽt and M̃
v

t in the hypernetwork, the param-
eters et and at are also estimated as optimizing the degree
of forgetting of past data and as reflecting the current input
data. Furthermore, the proposed method can capture the student
knowledge state changes accurately because the latent knowl-
edge state Mv

t has sufficient information related to the past
learning history data.

V. PREDICTIVE ACCURACY

A. Datasets

We conduct experiments to compare the performances of the
proposed Deep-IRT in Section III (designated as “Proposed-DI”)
and the proposed Deep-IRT with a hypernetwork in Section IV
(designated as “Proposed-HN”) against existing solutions.
This section presents a comparison of the prediction accura-
cies for student performance of the proposed methods with
those of earlier methods (DKVMN [4], Yeung’s Deep-IRT [3]
(designated as “Yeung-DI”), AKT [5]) using six benchmark
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TABLE I
SUMMARY OF BENCHMARK DATASETS

datasets as ASSISTments2009,2 ASSISTments2015,3 ASSIST-
ments2017,4 Statics2011,5 Junyi,6 and Eedi.7 The ASSIST-
ments datasets collected from online tutoring systems have been
used as the standard benchmark for KT methods. The Stat-
ics2011 dataset was collected from college-level engineering
courses on statics. The Junyi dataset was collected by Junyi
Academy, a Chinese e-learning website [41]. We use only the
students’ exercise records in the math curriculum. In addition,
we select items that the students attempted for the first time
without hints. We also changed the question types into unique
skill number tags. The Eedi dataset includes data from the school
years of 2018–2020, with student responses to mathematics
questions from Eedi, a leading educational platform by which
millions of students interact daily around the globe [42]. For
Eedi, each item has a list of hierarchical knowledge components.
We convert these lists into unique skill number tags.

ASSISTments2009, ASSISTments2017, and Eedi have item
and skill tags, although most methods explained in the relevant
literature adopt only the skill tag as an input. However, methods
with skill inputs rely on the assumption that items with the same
skill are equivalent [5]. That assumption does not hold when an
item’s difficulties in the same skill differ greatly. Therefore, as
inputs to AKT and the proposed method, we employ not only
skills but also items [5], [23], [27]. Also, for ASSISTments2015,
Statics2011, and Junyi with only skill tags, we employ the skill
as input data. Table I presents the number of students (No. stu-
dents), the number of skills (No. skills), the number of items (No.
items), the rate of correct responses (Rate correct), and the aver-
age length of the items that students addressed (Learning length).

B. Hyperparameter Selection and Evaluation in Deep-IRT

We used standard fivefold cross-validation to evaluate the
respective prediction accuracies of the methods. According to
Ghosh et al. [5], for each fold, 20% learners are used as the test
set, 20% are used as the validation set, and 60% are used as the
training set.

For all methods, we chose batch sizes from {32, 64, 128, 256}
and the hidden layer sizes and memory dimensions of
{10, 20, 50, 100, 200} using cross-validation according to the

2[Online]. Available: https://sites.google.com/site/assistmentsdata/home/
assistment-2009-2010-data

3[Online]. Available: https://sites.google.com/site/assistmentsdata/home/
2015-assistments-skill-builder-data

4[Online]. Available: https://sites.google.com/view/assistmentsdatamining
5[Online]. Available: https://pslcdatashop.web.cmu.edu/DatasetInfo?

datasetId=507
6[Online]. Available: http://www.junyiacademy.org/
7[Online]. Available: https://eedi.com/projects/neurips-education-challenge

Fig. 4. AUC and the number of layers for ASSISTments2009. The vertical
axis shows AUC on the left side. The horizontal axis shows the number of layers.

earlier studies [3], [4]. Then, we employed Adam optimization
with a learning rate of 0.003, as done for the earlier studies [3],
[4].

In addition, for the earlier methods, we used the hyperparam-
eters reported from the earlier studies [3], [4], [5]. Additionally,
we set 200 items as the upper limit of the input length according
to the earlier studies [3], [4], [5]. When the input length of items
is greater than 200, we use the first 200 response data for all
methods.

To ascertain the number of layers k for the proposed method,
we conducted some experiments to gain experience using AS-
SISTments2009 while changing the layer number. The results
are presented in Fig. 4. As the figure shows, the AUC score
reaches its highest value when k = 2 and k = 4. Based on this
finding, we employ k = 2 for the following experiments because
the computation time of the proposal increases exponentially as
the number of layers increases.

If the predicted correct answer probability for the next item
is 0.5 or more, then the student’s response to the next item
is predicted as correct. Otherwise, the student’s response is
predicted as incorrect. For this study, we leverage three metrics
for prediction accuracy: 1) accuracy (Acc) score, 2) AUC score,
and 3) loss score [43], [44]. The first, Acc, represents the
concordance rate between the student predictive responses and
the actual responses. The second, AUC, provides a robust metric
for binary prediction evaluation. When an AUC score is 0.5, the
prediction performance is equal to that of random guessing. Loss
represents the cross-entropy in (28).

We used a Tesla T4 GPU to train all methods.

C. Hyperparameter Selection in Hypernetwork

1) Optimal Tuning Parameter δ1 and δ2 Estimation: For our
experiments, we optimize δ1 and δ2 to adjust the hypernetwork

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
https://sites.google.com/view/assistmentsdatamining
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
http://www.junyiacademy.org/
https://eedi.com/projects/neurips-education-challenge
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TABLE II
PREDICTION ACCURACIES AND HYPERPARAMETERS r

for each dataset. To choose optimal parameters δ1 and δ2,
we conducted some experiments using all training datasets by
changing δ1 and δ2, respectively. The optimal tuning parameters
{δ1, δ2} are estimated as {1.5, 1.5} for ASSISTments2009,
ASSISTments2015 and ASSISTments2017, {1.0, 1.7} for Stat-
ics2011, and {1.0, 1.0} for Junyi and Eedi. Based on this result,
we employ these tuning parameters for the following experi-
ments.

2) Optimal Number of Rounds r Estimation: To ascertain the
number of rounds r in the hypernetwork, we conducted some
experiments to gain experience using the training datasets by
changing the value of r. The results are presented in Table II. As
the table shows, the number of rounds r is estimated as r = 2
for Statics2011, ASSISTments2017 with skill inputs, Junyi, and
Eedi, as r = 3 for ASSISTments2009 and ASSISTments2015
with skill inputs and as r = 6 for ASSISTments2009 and AS-
SISTments2017 with item and skill inputs.

We find the number of rounds r using the grid search method.
The proposed method estimates the number of each round r by
incrementing the value from the initial value r = 2 to maximize
the prediction accuracy.

3) Optimal Degree of Past Latent Variables to be Assessed:
The input of the hypernetwork M̃

v

t is calculated from the past
latent variables {Mv

t ,M
v
t−1, . . . ,M

v
t−λ} at times t− λ to t.

We optimize λ by changing the value of λ ∈ {0, 1, 2, . . . , t}
using the optimal δ1, δ2, and r for each learning dataset. Re-
sults show that the optimal λ can be estimated as λ = 1 for
ASSISTments2009 and Junyi with skill inputs, and as ASSIST-
ments2009 and ASSISTments2017 with item and skill inputs.
When using the other datasets, optimal λ is estimated as λ = 0.

D. Results

1) Skill Inputs: The respective values of Acc, AUC, and Loss
for all benchmark datasets with only skill inputs are presented
in Table III. In addition, this report describes the standard
deviations across five test folds. Proposed-DI and Proposed-HN,
respectively, represent variants of the proposed method with and
without the hypernetwork.

Results show that the averages of AUC, Acc, and Loss ob-
tained using Proposed-DI are better than those using Yeung-DI,
which is the earlier Deep-IRT method, although the proposed
method separates student and item networks. This result implies
that redundant deep student and item networks function effec-
tively for performance prediction. These results are explainable
from reports of state-of-the-art methods [20], [21], [22].

Also, Proposed-HN, which optimizes the forgetting parame-
ters in the hypernetwork, provides the best average scores for
all metrics. Proposed-HN improves the prediction accuracy of
Proposed-DI. In fact, Proposed-HN outperforms AKT, which
was reported as having the highest accuracies among earlier
methods. For each dataset, results indicate that Proposed-HN
provides the best AUC scores for ASSISTments2009, ASSIST-
ments2017, Statics2011, and Junyi. Especially, for ASSIST-
ments2017 with long learning lengths, the performance of the
Proposed-HN markedly outperforms that of AKT. By contrast,
Proposed-HN tends to have lower prediction accuracies for
ASSISTments2015 with a shorter learning length than AKT
has. Results suggest that the proposed hypernetwork functions
effectively, especially for datasets with long learning lengths.

To investigate the reason for that phenomenon, we analyze
the forgetting parameters et and at in the memory updating
component of the proposed method. As described earlier, et
influences the degree to which the value memory forgets the
past ability. In addition,at controls how much the value memory
reflects the current input data. We calculate the l2-norm of the
forgetting parameters et and at, respectively, for the earlier
memory updating component (of Proposed-DI) and the new
memory updating component with hypernetwork (of Proposed-
HN) using the ASSISTments2017 dataset. Table IV presents the
averages of the l2-norms of et and at at time t ∈ {1, 2, . . . , T}.
Table IV shows that Proposed-DI has the larger l2-norm value of
et than at. The earlier memory updating component drastically
forgets the student’s past ability information and reflects the cur-
rent input data when the latent variable memory is updated. The
reason is that the forgetting parameters et and at are calculated
using only the current input data. Therefore, their latent value
memory Mv

t might not store the student’s past ability informa-
tion. By contrast, Proposed-HN has a larger l2-norm value of at

than et. In the memory updating component of Proposed-HN,
at and et are calculated using both the current input data vt

and the past latent value memory Mv
t . Furthermore, these vt

and Mv
t are optimized in the hypernetwork to balance both

the current input data and the student’s past ability information.
The results obtained for the other datasets are almost identical to
those obtained for ASSISTments2017, although they are omit-
ted to avoid redundant descriptions. Therefore, results suggest
that the Proposed-HN works more effectively for long learning
processes because hypernetworks facilitate the reflection of past
data.

Findings indicate that AKT provides the best performance
for ASSISTments2015. However, the AKT performance results
are worse than those of Proposed-HN for ASSISTments2017.
Fig. 5 shows the average of attention weights of all students for
the 200 items in ASSISTments2017. The vertical axis shows
the average of attention weights. The horizontal axis shows the
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TABLE III
PREDICTION ACCURACIES OF STUDENT PERFORMANCE WITH SKILL INPUTS

TABLE IV
FORGETTING PARAMETERS’ NORM AVERAGES

Fig. 5. Average of attention weights in AKT for ASSISTments2017.

number of items the student addressed. Fig. 5 shows that the
attention weight α decays as the distance between the current
input time and the past input time increases. It is noteworthy
that the attention weight α converges to a certain nonzero value.
This finding implies that AKT does not completely forget even
past data obtained at an extremely long time prior. Consequently,
AKT might inadequately forget the past response data from long
learning processes. However, Ghosh et al. [5] reported that AKT
is more effective for large datasets. Therefore, AKT provides the
best performance for AUC of Eedi, which has an extremely large
number of students. The performance results obtained using
DKVMN are almost identical to those obtained using Yeng-DI
because they have similar network structures.

2) Item and Skill Inputs: Furthermore, we compared the
performances of the proposed methods with those of AKT for
ASSISTments2009, ASSISTments2017, and Eedi with item and

TABLE V
PREDICTION ACCURACIES OF STUDENT PERFORMANCE WITH ITEM AND SKILL

INPUTS

skill inputs according to the work in [5]. The respective values of
Acc, AUC, and Loss are presented in Table V. Results indicate
that the Proposed-HN provides the best performance for all
metrics: averages of AUC, Acc, and Loss. For each dataset, the
Proposed-HN provides the best scores for ASSISTments2009
and for ASSISTments2017. As described earlier, the Proposed-
HN greatly outperforms AKT for ASSISTments2017 with a long
learning length because the proposed hypernetwork functions
effectively. However, for Eedi, AKT provides the best scores for
all the metrics. In fact, AKT with item and skill inputs provides
higher performance than those achieved using only skill inputs,
as shown in [5]. In contrast, the proposed methods with item
and skill inputs do not necessarily outperform those with only
skill inputs. The reason might be that input item information
cannot be used effectively because the latent value memory Mv

t

is optimized using only input skills in the memory updating com-
ponent. In addition, for Eedi, because of the increased number
of parameters, it might not completely tune the hyperparameters
in the hypernetwork.

Moreover, we experimented with TIRT [11], [12]. It is a
hidden Markov IRT with a parameter to forget past response
data, as described earlier in Section II-A. IRT-based methods
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TABLE VI
NUMBERS OF TRAINABLE PARAMETERS AND COMPUTATIONAL TIMES FOR MODEL TRAINING

rely on an assumption of local independence among the student
item responses. They should not be applied to learning processes
that allow a student to respond to the same item repeatedly.
Therefore, we employ not skills but items as inputs using
ASSISTments2009 and ASSISTments2017. In addition, we de-
compose these datasets into their respective skill groups and esti-
mate the parameters from skill data independently because TIRT
assumes a single-dimension skill of the ability. In other words,
TIRT predicts performance using only an ability corresponding
to one skill for an item. To estimate the student ability and item
parameters of TIRT, we use the expected a posterior estimators
using the Markov chain Monte Carlo method [45]. The results
indicate that AUC is 80.38, Acc is 76.39, and Loss is 0.49 for
ASSISTments2009. For ASSISTments2017, results show that
AUC is 75.52, Acc is 84.71, and Loss is 0.46. Surprisingly, TIRT
outperforms AKT with skill input for ASSISTments2017. That
finding suggests that TIRT might estimate the student ability
transition accurately. For the Eedi dataset, TIRT cannot complete
the calculations within 24 h because of its data size.

E. Computational Costs

This section presents an investigation of the computational
costs associated with each method. Concretely, we calculated
the number of trainable parameters and training time for each
method. We measured the training time for each partition in five-
fold cross-validation. Table VI shows the number of trainable pa-
rameters and the average training times. According to Table VI,
AKT has the largest number of parameters. It requires the longest
computation training time. Proposed-DI and Proposed-HN can
be trained more quickly than AKT can. Although Proposed-HN
has more parameters than Proposed-DI does, the training times
are comparable. In addition, DKVMN and Yeung-DI, which
have relatively small numbers of parameters, were trained more
quickly than the proposed methods and AKT. The computational
times of DKVMN are almost identical to those of Yeung-DI
because they have similar network structures.

VI. PARAMETER INTERPRETABILITY

A. Estimation Accuracy of Ability Parameters

In the preceding section, we showed that the proposed method
has higher prediction accuracy than other methods. As described
in this section, to evaluate the interpretability of the ability
parameters of the proposed method, we use simulation data

to compare the parameter estimates with those of the earlier
Deep-IRT [3]. These datasets are generated from TIRT [11],
[12]. The prior of θit is a normal distribution described as
θi0 ∼ N (0, 1), θit ∼ N (θit−1, ε). Therein, ε represents the
variance of θit. It controls the smoothness of a student’s ability
transition. Therefore, as ε increases, the range of fluctuation of
the true ability increases at each time point. For this experiment,
the priors of the jth item parameters are log aj ∼ N (0, 1),
bj ∼ N (0, 1). Each dataset includes 2000 student responses to
{50, 100, 200, 300} items. Discrimination parameter a and the
item’s difficulty parameter b are estimated using 1800 students’
response data. Given the estimated a and b, we estimate the
students’ ability parameters using the remaining 200 students’
response data. In addition, for each dataset, we obtain results
while changing ε = {0.1, 0.3, 0.5, 1.0}.

We evaluate Pearson’s correlation coefficients, Spearman’s
rank correlation coefficients, and Kendall rank correlation co-
efficients between the true ability parameters of the true model
(TIRT) and the estimated ability parameters of the Deep-IRTs
(Yeung-DI, Proposed-DI, and Proposed-HN) [46], [47]. Spear-
man’s rank correlation is the nonparametric version of Pearson’s
correlation. The Kendall rank correlation coefficient is known
to provide robust estimates for aberrant values [48]. Generally,
the estimation accuracy of the ability parameters is evaluated
using the root-mean-square error (RMSE). However, a student’s
ability of TIRT does not assume a standard normal distribution
because the student ability distribution differs at each time. We
are unable to evaluate RMSE in this experiment because TIRT,
the earlier Deep-IRT method [3], and the proposed methods are
unable to not standardize their student abilities.

We calculate a correlation coefficient using student’s abilities
θt at time t ∈ {1, 2, . . . , T}, as estimated using TIRT and the
Deep-IRTs. Next, we average these correlation coefficients of all
students. Table VII presents the average correlation coefficients
of the methods for the respective conditions.

To confirm the significance of the differences between the pro-
posed methods from Yeung-DI, we applied the Tukey–Kramer
multiple comparison test [49]. The p-values are presented on the
right side of Table VII.

Results show that, for all conditions, Proposed-DI and
Proposed-HN provide a stronger correlation with the true abil-
ity parameters than Yeung-DI does. The results of Spear-
man’s rank correlation coefficients of the proposed method
are greater than those of Pearson’s correlation coefficients be-
cause the student’s ability distribution changes constantly over
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TABLE VII
CORRELATION COEFFICIENTS OF THE ESTIMATED ABILITIES

Fig. 6. Examples of student ability θ(t,j) and latent abilities θ(t,j)
1 , θ(t,j)

2 estimated in the input layer and the hidden layer of the student network at times t = 1
to t = 30.

time in TIRT. Especially, the results obtained for Kendall rank
correlation coefficients suggest that Proposed-DI and Proposed-
HN estimate the abilities robustly, even for aberrant values. The
results demonstrate that the two proposed independent networks
function effectively to provide appropriate interpretability of the
estimated parameters. Moreover, the students’ ability parame-
ters are estimated accurately with sufficient information from
past learning history data because the hypernetwork optimized
the forgetting parameters using both current input data and
past data. Furthermore, the proposed methods tend to produce
stronger correlations as the number of items increases. These
findings suggest that the proposed methods represent the true
student’s ability transition accurately in long learning processes.

B. Student Ability Transitions

This section shows student ability transitions using the pro-
posed method.

First, we visualized the student ability parameters for underly-
ing skills in the student network of Proposed-HN. Fig. 6 presents
an example of the student ability transition θ(t,j) and latent
abilitiesθ(t,j)

1 ,θ(t,j)
2 estimated, respectively, in the hidden layers

of the student network at time t = 1 to t = 30. The vertical axis

shows the time stamp at which the student addresses each item.
The horizontal axis shows the underlying skills. Fig. 6 depicts
that θ(t,j)

2 reflects the features of each underlying skill more

strongly than θ
(t,j)
1 as the hidden layers of the neural network

get deeper. This result suggests that the hidden layer is effective
for identifying the underlying skills and for accurately capturing
multidimensional ability.

Next, we evaluated the interpretability of the ability parame-
ters of the proposed method by visualizing the ability transition.

Visualizing the ability transition for each skill is helpful for
both students and teachers because it can reveal student strengths
and weaknesses and can improve the learning method to fill
in the learning gaps. Yeung [3] demonstrated a student ability
transition for each skill using Yeung-DI. However, their results
included some counterintuitive ability estimates. For example,
even when the student answered incorrectly, the corresponding
student ability estimate increased. Moreover, Yeung-DI cannot
identify a relation among multidimensional skills. In some cases,
a student’s ability for low-level skills decreases even when the
student responds correctly to items for high-level skills.

Fig. 7 depicts an example of student ability transitions of
each skill estimated using Yeung-DI and Proposed-HN for the
ASSISTments2009 according to earlier studies [3], [27]. The
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Fig. 7. Example of a student ability transition from the ASSISTments2009 dataset. The skill inputs are classified, respectively, as ordering factions (orange),
equation solving more than two steps (gray), equation solving two or fewer steps (green), finding percentages (yellow), and finding percentages (orange). The filled
and the hollow circles, respectively, represent correct and incorrect responses.

vertical axis shows the student’s ability value on the right side.
The horizontal axis shows the item number. The student response
is shown by filled circles “•” when the student answers the item
correctly; it is shown by hollow circles “◦” otherwise. In the first
30 attempts, the student attempted skills of “equation solving
more than two steps” (shown in gray), “equation solving two
or few steps” (shown in green), “ordering factions” (shown in
orange), and “finding percents” (shown in yellow).

For Yeung-DI, as described in earlier reports [3], some of
the ability changes might be inconsistent with response data.
For instance, the ability of skill “equation solving more than
two steps” (gray), which is a higher-level skill, decreases even
though the student responds correctly to items 11–17. In another
instance, the student responds correctly to items for high-level
skills even when a student’s ability for low-level skills “equation
solving two or few steps” (green) decreases. These unstable
behaviors of Yeung-DI might engender severe difficulties, which
will consequently confuse students and teachers, as a student
model.

In contrast, Fig. 7 shows that the Proposed-HN can provide
accurate estimates to reflect the student responses. Additionally,
it can estimate relations among the skills. Therefore, when a
student responds to an item, not only the corresponding skill
ability but also those for other skills change. Especially, because
the skills of “equation solving more than two steps” (gray) and
“equation solving two or few steps” (green) are similar, the
ability changes of each skill also indicate a strong correlation.
Consequently, the results demonstrate that the proposed method
improves the interpretability of Yeung-DI.

It is noteworthy that the student’s responses are not im-
mediately reflected in the estimated ability change when the
student provides a different response from the previous several
continuous same responses. For example, the ability for “finding
percents” (yellow) increases in items 18–19 despite incorrect
responses because the Proposed-HN estimates the student’s
ability with the past responses. Then, the estimated ability
values change slightly later when the student provides a different
response from the previous several continuous same responses.

VII. CONCLUSION

This study examined a proposed novel Deep-IRT that mod-
els a student’s response to an item by two independent
redundant networks: 1) a student network and 2) an item net-
work. Because of two independent redundant neural networks,
the parameters of the proposed method can be interpreted to
a considerable degree while maintaining high prediction ac-
curacy. Furthermore, we improved the prediction accuracy of
the proposed method by combining it with a novel hypernet-
work. In the earlier memory updating component, the forgetting
parameters, which control the degree of forgetting the past
latent value memory, are optimized only from the current in-
put data. That restriction might degrade the prediction accu-
racy of the Deep-IRT because the value memory only insuf-
ficiently reflects the past learning information. The proposed
hypernetwork can estimate the optimal forgetting parameters
by balancing both the current input data and the past latent
variables.

Experiments conducted with the benchmark datasets demon-
strated that the proposed method improves both the ability
parameter interpretability and the prediction accuracies of the
earlier KT methods. Especially, results showed that the proposed
method with the hypernetwork is effective for tasks with a long-
term learning process. Experiments for the simulation dataset
demonstrated that the proposed method provides stronger cor-
relations with true parameters of TIRT than the earlier Deep-IRT
method. Furthermore, the proposed method estimates the abili-
ties robustly, even with aberrant values.

This study employed slightly redundant deep networks com-
pared to earlier methods. In future work, we intend to use
the proposed method to investigate the performances of more-
redundant and deeper networks. In addition, we will try to
optimize a hypernetwork to maximize the prediction accuracy
for large datasets. Most recently, results of some studies have
shown that each item’s characteristics differ according to their
texts, although they require the same skill. To resolve this
difficulty, they proposed KT methods to estimate the relation
between the item’s text content and the student’s performance
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using the NLP technique or graph neural network [50], [51], [52],
[53], [54], [55], [56]. In future work, we expect to incorporate
the item’s text content into the proposed method to improve
the student performance prediction accuracy. Furthermore,
deep-learning approaches for KT have been used for comput-
erized adaptive testing (CAT) [57], [58]. The main purpose of
CAT is measurement of student ability in personalized tests for
online education. Therefore, we infer that the proposed method
might be effective for CAT because it can estimate student’s
capabilities correctly.
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