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Abstract—Knowledge tracing (KT), the task of tracking the
knowledge state of a student over time, has been assessed
actively by artificial intelligence researchers. Recent reports
have described that Deep-IRT, which combines Item Response
Theory (IRT) with a deep learning method, provides superior
performance. It can express the abilities of each student and the
difficulty of each item such as IRT. Nevertheless, its interpretabil-
ity is inadequate compared to that of IRT because the ability
parameter depends on each item. Deep-IRT implicitly assumes
that items with the same skills are equivalent, which does not hold
when item difficulties for the same skills differ greatly. For identi-
cal skills, items that are not equivalent hinder the interpretation
of a student’s ability estimate. To overcome those difficulties,
this study proposes a novel Deep-IRT that models a student
response to an item using two independent networks: a student
network and an item network. The proposed Deep-IRT method
learns student parameters and item parameters independently to
avoid impairing the predictive accuracy. Moreover, we propose a
novel hypernetwork architecture for the proposed Deep-IRT to
balance both the current and the past data in the latent variable
storing a student’s knowledge states. Results of experiments with
six benchmark datasets demonstrate that the proposed method
improves the prediction accuracy by about 2.0%, on average. In
addition, experiments for the simulation dataset demonstrated
that the proposed method provides a stronger correlation with
true parameters than the earlier Deep-IRT method does at the
p < 0.5 significance level.

Index Terms—Knowledge Tracing, Item Response Theory
(IRT), Deep Learning, Neural Network, Hypernetwork

I. INTRODUCTION

IMPORTANT tasks for adaptive learning are intended for
accurate prediction of a student’s performance and for

capturing the student’s ability change based on the student’s
prior learning history data. In the field of artificial intelligence,
Knowledge Tracing (KT) has been researched actively to
predict a student’s performance (correct or incorrect responses
to an unknown item) and to discover concepts that the student
has not mastered by tracing a student’s evolving knowledge
state [1], [2], [3], [4], [5]. These tasks are important to help
students to learn effectively by presenting optimal problems
and a teacher’s support.

Recently, various KT methods have been developed using
major approaches: probabilistic approaches, deep-learning-
based approaches, and attention-mechanism-based approaches.
Bayesian Knowledge Tracing (BKT) is a well known prob-
abilistic approach that employs a Hidden Markov Model to
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trace a student’s evolving knowledge state [1]. BKT estimates
whether the student has mastered the skill or not according to
the student’s past response data. It then predicts the student’s
responses to unknown items. Researchers have proposed sev-
eral BKT variants to improve interpretability [6], [7], [8], [9].
The BKT models predict a student’s knowledge state using
only simple discrete values. Therefore, they are inflexible with
the student knowledge state changes. Moreover, they assume a
single dimension of the ability. They are unable to capture the
multi-dimensional ability sufficiently or predict performance
precisely. Recently, Item Response Theory (IRT) has been used
for KT to predict a student’s correct answer probability to an
unknown item [10], [11], [12]. In fact, IRT has been used in the
field of test theory, where it has high parameter interpretability
by virtue of its capability of estimating the student’s latent
ability parameter and item characteristic parameters. Several
studies have extended standard IRT models to ascertain student
ability changes for learning processes with the Hidden Markov
process [13], [14], [11], [12], [15]. These are regarded as
generalized models of BKT and IRT because they estimate
the ability as a continuous hidden variable following a Hid-
den Markov process. Actually, a learning task is associated
with multiple skills. Students must master the knowledge
of multiple skills to solve a task. However, BKT and IRT
have a restriction: they express only uni-dimensional ability.
Therefore, BKT and IRT are unable to capture the multi-
dimensional ability sufficiently. They are unable to predict the
performance precisely.

To overcome this shortcoming, Piech et al. [2] developed
Deep Knowledge Tracing (DKT) as the first method among
deep-learning-based approaches. DKT employs Long short-
term memory (LSTM) to relax the restrictions of skill sepa-
ration and binary state assumptions [16]. That earlier report
describes that DKT can predict a student’s performance more
precisely than probabilistic models such as BKT can. However,
the hidden states include a summary of the past sequence
of learning history data in LSTM. Therefore, DKT does not
explicitly treat the student’s ability of each skill.

To improve DKT performance, Dynamic Key-Value Mem-
ory Network (DKVMN) was developed to exploit the rela-
tion between underlying skills and to trace the respective
knowledge states [4]. By employing a Memory-Augmented
Neural Network, DKVMN can estimate the relations between
underlying skills and items addressed by students. In addition,
DKVMN has a memory updating component to allow forget-
ting and updating of the latent variable memory, which stores
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the students’ knowledge states during the learning process
[4]. Furthermore, Deep-IRT has been proposed to improve the
explanatory capabilities of the parameters [3]. Deep-IRT can
estimate a student’s ability and an item’s difficulty, just as
standard IRT models can by combining DKVMN with an IRT
module. However, it has remained insufficient to improve in-
terpretability because the student’s ability of DeepIRT depends
on each item characteristic. Although DeepIRT implicitly
functions on the assumption that items with the same skills
are equivalent, that assumption does not hold true when the
item difficulties for the same skills differ greatly. Items of the
same skill that are not equivalent interfere with interpretation
of the student’s ability estimates.

The self-attentive knowledge tracing (SAKT) method is
the first method to employ an attention mechanism, the
Transformer method, for KT [18], [19]. To predict student
performance, SAKT identifies the relation between skills and
an item addressed by a student from past learning data. Most
recently, attentive knowledge tracing (AKT) was developed to
improve SAKT performance [5]. To incorporate a forgetting
function of past data, AKT employs attention mechanisms.
It optimizes parameters to weight past learning data needed
to predict student performance. Additionally, Gosh et al. [5]
pointed out the error of the assumption in earlier KT methods
that items with identical skills are equivalent. To overcome
that shortcoming, they employed both items and skills as
inputs. In fact, AKT provides state-of-the-art performance
for student response prediction. However, the interpretability
of the parameters remains inadequate because AKT cannot
express a student’s ability transition for each skill.

The most challenging aspect of knowledge tracing is to
estimate the interpretable student’s ability without decreasing
predictive accuracy. This study specifically addresses this point
of difficulty. Recent studies of deep learning have clarified that
parameter redundancy in training data reduces generalization
error, contrary to Occam’s razor [20], [21], [22]. Based on
those reports, this study proposes a novel Deep-IRT that has
two independent redundant networks: a student network and an
item network [23]. The proposed method learns the student’s
ability parameters and the item’s characteristic parameters
independently. This method provides the high interpretable
ability parameters to a greater extent than the earlier Deep-IRT
does. In addition, a student network employs memory network
architecture to reflect dynamic changes of student abilities as
DKVMN does. The memory updating component in DKVMN
is more effective than the forgetting function of AKT because
it updates the current latent variable, which stores the students’
skills and abilities using only the immediately preceding
values.

However, room for improvement remains in the prediction
accuracy of the proposed Deep-IRT. In fact, the forgetting
parameters which control the degree of forgetting the past
latent variable are optimized from only the current input data:
The student’s latest response to an item. It might degrade
the prediction accuracy of the Deep-IRT because the latent
variable only insufficiently reflects the past data. As a result, it
might interrupt the accurate estimation of the ability transition
in a long learning process. It should use not only the current

input data but also past latent variables to optimize the
forgetting parameters. A simple solution to this problem is
to add new weight parameters that balance the current input
data and past latent variables at each time. However, this
solution increases the number of weight parameters dynam-
ically when the learning process progresses. It often yields
too many weight parameters to support a successful estimate.
To resolve that difficulty, we combine a novel hypernetwork
with the proposed method because it optimizes the degree
of forgetting of the past latent variables and thereby avoids
greatly increasing the number of parameters.

Recent studies in the field of Natural Language Processing
(NLP) have proposed several hypernetworks to optimize the
latent variables and the weights of the hidden layers for LSTM
[24], [25]. Some hypernetworks scale the latent variables and
columns of all weight matrices expressing a context-dependent
transition [24], [26]. No report of the relevant literature has
described a study of the use of hypernetworks for KT methods.
Using the proposed method, the proposed hypernetwork bal-
ances both current input data and past latent variables that store
a student’s knowledge state in the learning process. Before the
model updates the latent variable, it optimizes not only the
weights of the forgetting parameters but also the past latent
variables in the hypernetwork.

We conducted experiments to compare the proposed
method’s performance and those of earlier KT methods. Sur-
prisingly, the results demonstrate that the proposed method
improves the prediction accuracy and the interpretability of
earlier KT methods, although the parameters of the proposed
method are far more numerous than those used for earlier
methods.

This study is an extension of our work reported in earlier
papers accepted at the International Conference on Educational
Data Mining (EDM) in 2021 and 2022 [23], [27]. The main
differences between this paper and the earlier papers are the
following. Tsutsumi et al. [23] did not propose a new deep-
learning technology but combined only existing technologies.
Although Tsutsumi et al. [27] proposed a hypernetwork for
KT, they described no related details: only the conceptual
idea of incorporating a hypernetwork into Deep-IRT [23].
Furthermore, Tsutsumi et al. [23], [27] improved the parameter
interpretability. However, their prediction accuracies did not
outperform AKT, which provided the best prediction per-
formance among the earlier methods. In contrast, this study
proposes a novel hypernetwork architecture to optimize the
balance between the latest input data and the past latent
variables. The proposed method provides the highest pre-
diction accuracy and outperforms AKT with high parameter
interpretability to a considerable degree.

The main contributions of the work described in this article
are presented below.

1) The proposed method can estimate student and item
parameters with high interpretability as in IRT by two
independent redundant networks. The proposed method
provides higher parameter interpretability than other KT
methods.

2) The proposed method with hypernetwork improves the
prediction accuracy of earlier KT methods. Especially,
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it functions more effectively for long learning processes
because hypernetworks reflect past learning data.

This paper is organized as follows. In Section II, we review
item response theory and deep learning methods for KT. In
Section III, we describe the proposed method to improve
parameter interpretability. In Section IV, we describe the
proposed method with a hypernetwork to improve the predic-
tion accuracy. Section V shows experiments using benchmark
datasets to compare the performances of the proposed methods
against existing methods. Section VI explains experiments that
were performed to evaluate the interpretability of the ability
parameters of the proposed method. Finally, we conclude the
presentation of our method in Section VII. Our code is also
available on GitHub1.

II. RELATED WORK

A. Item response theory

Many item response theory (IRT) models exist [10], [28],
[29]. This subsection briefly introduces the two-parameter
logistic model (2PLM): an extremely popular IRT model. For
2PLM, uij represents the response of student i to item j
(1..., J) as

uij =

{
1 (student i answers correctly to item j),

0 (otherwise).

In 2PLM, the probability of a correct answer given to item j
by student i with ability parameter θi ∈ (−∞,∞) is assumed
as

Pj(θi) = P (uij = 1 | θi)

=
1

1 + exp(−1.7aj(θi − bj))
, (1)

where aj ∈ (0,∞) represents the j-th item’s discrimination
parameter expressing the discriminatory power for student’s
abilities, and bj ∈ (−∞,∞) is the j-th item’s difficulty
parameter representing the degree of difficulty.

Actually, IRT models are known to have high interpretabil-
ity. However, in standard IRT models, the ability is assumed
to be constant throughout the learning process. Therefore,
a student’s ability changes are not reflected in the models.
Recently, several studies have extended standard IRT models
to capture student’s ability changes for the learning processes
with the Hidden Markov process[13], [14], [11], [30], [31],
[32], [12]. These are regarded as generalized models of BKT
and IRT because they estimate the ability as a continuous
hidden variable following a Hidden Markov process.

For example, Temporal IRT (TIRT) is a Hidden Markov IRT
with a parameter to forget past response data [12]. In TIRT, the
probability of a correct answer assigned to item j by student
i at time t with ability parameter θit is assumed as

Pij(xij = 1 | θit) =
1

1 + exp (−ã∆t
(θit − bj))

, (2)

ã∆t
=

aj√
1 + ϵa2j∆t

, (3)

1https://github.com/UEC-Ueno-lab/Deep-IRT with Hypernetwork.git

where ∆t = t − j and ã∆t
∈ (0,∞) is the discrimination

parameter at time t. In addition, bj ∈ (−∞,∞) is the j-th
item’s difficulty parameter representing the degree of difficulty.
Furthermore, θit ∈ (−∞,∞) represents the student i ability
at time t. The prior of θit is a normal distribution described
as θi0 ∼ N (0, 1) θit ∼ N (θit−1, ϵ). Moreover, ϵ is a
variance of θit and a forgetting parameter (tuning parameter),
which determines the forgetting degree of the past data. The
smoothness of a student’s ability transition can be controlled
by ϵ. Therefore, as ϵ increases, the fluctuation range of the
true ability increases at each time point.

However, these IRT models incorporate the assumption of a
single dimension of the ability. In other words, they completely
consider independent multiple skills. Apparently, these are
unable to accommodate items that require different skills.

B. Deep knowledge tracing
Deep knowledge tracing (DKT) [2] was proposed as the first

deep-learning-based method. It exploits recurrent neural net-
works and long short-term memory (LSTM) [16] to simulate
transitions of ability. It can capture complex multidimensional
features of both items and students and can relax the limi-
tations of traditional methods such as independence between
skills. An earlier study demonstrated that DKT outperformed
BKT in terms of predictive accuracy [2]. However, DKT
summarizes a student’s ability of all skills in one hidden
state, which makes it difficult to trace the degree to which
a student has mastered a certain skill and which makes it
difficult to pinpoint concepts with which a student is proficient
or unfamiliar.

C. Dynamic key-value memory network
To improve the DKT interpretability, researchers have un-

dertaken great efforts to propose novel methods for use with
KT [17]. Specifically, a dynamic key-value memory network
(DKVMN) exploits a memory-augmented neural network
along with attention mechanisms to trace student abilities in
different dimensions [4]. Fig. 1 presents a simple illustration.

The salient feature of DKVMN is that it assumes N under-
lying skills and relations among the input (skills). Underlying
skills are stored in key memory Mk ∈ RN×dk . Value memory
Mv

t ∈ RN×dv holds abilities of underlying skills at time
t. Here, dk and dv are tuning parameters. To express the
skill of j-th item, the input of DKVMN is an embedding
vector sj ∈ Rdk of skill tag of item j. DKVMN predicts
the performance of item j at time t as explained below.

First, DKVMN calculates the attention, which indicates how
strongly an item j is related to each skill as

wjl = Softmax
(
Mk

l sj
)
, (4)

where Mk
l represents a l th row vector, and wjl signifies the

degree of strength of the relation between the latent skill l
and the skill of item j addressed by a student at time t. Next,
student vector θ

(t)
1 is calculated using the weighted sum of

value memory.

θ
(t)
1 =

N∑
l=1

wjl (M
v
tl)

⊤
, (5)

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2023.3346671

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 4

DKVMN Deep-IRT

𝑀!"#
$

𝑀!
$

𝑀!%#
$

𝜽!
(#) 𝜽%

(#) 𝜃&
(#,()

𝝎#
	

𝒒(	 𝜷!
(()

𝑀	
'

𝑝(#	

𝑝(#	

𝛽%
(()

Fig. 1. Network architecture of Deep-IRT with DKVMN. The underside of the
structure describes DKVMN. The whole structure describes Deep-IRT. The
blue components represent the process of getting the attention weight. The
yellow components are associated with the student network and the process
of updating the value memory. The green components are associated with the
item network. The designation ⊖ represents subtraction.

where Mv
tl represents a l th row vector. Finally, it concatenates

θ
(t)
1 with sj and predicts a correct probability Pjt for an item

j as

θ
(t)
2 = tanh

(
W (θ2)

[
θ
(t)
1 , sj

]
+ τ (θ2)

)
, (6)

Pjt = σ
(
W (Pjt)θ

(t)
2 + τ (Pjt)

)
, (7)

where [·] denotes a concatenation of vectors, and σ(·) repre-
sents the sigmoid function. In this report, we express W (·)

as the weight matrix and weight vector, and τ (·) as the bias
vector and scalar. Reportedly, DKVMN has the capability of
predicting performance accurately. However, unfortunately, it
lacks interpretability of the parameters.

D. Deep-IRT

To improve the DKVMN interpretability, Deep-IRT is
implemented by combining DKVMN with an IRT module
[3]. Deep-IRT exploits both the strong prediction ability of
DKVMN and the interpretable parameters of IRT. Fig. 1
presents a simple illustration.

Deep-IRT adds a hidden layer to DKVMN to gain appli-
cable ability and item difficulty. Specifically, when a student
attempts item j at time t, an ability θ

(t,j)
3 and item difficulty

βj are calculated as described below.

θ
(t,j)
3 = tanh

(
W (θ3)θ

(t)
2 + τ (θ3)

)
, (8)

βj = tanh
(
W (β)sj + τ (β)

)
, (9)

The prediction is based on the difference between θ
(t,j)
3 and

βj such as IRT.

Pjt = σ
(
3.0 ∗ θ(t,j)3 − βj

)
. (10)

Here, ability θ
(t)
2 is calculated using sj in equation (6),

which depends on the item to solve because it implicitly
assumes that items with the same skills are equivalent. In other
words, the ability estimate for the same student and time might
differ if the student attempts a different item. An important

difficulty is that a student’s ability, which depends on each
item, hinders the interpretability of the parameters.

E. Attentive knowledge tracing

Gosh et al. [5] proposed attentive knowledge tracing (AKT),
which combines the attention-based model with the Rasch
model, which is also known as the 1PLM IRT model [33].
It is noteworthy that AKT incorporates a forgetting function
for past data into attention-based neural networks. Attention
weights in AKT express the relation between a student’s latest
data and past data, decaying exponentially during the learning
process. Specifically, AKT calculates the attention weight α
as

αt,λ =
exp (ft,λ)∑
λ′ exp (ft,λ)

, (11)

(ft,λ) =
exp (−ηd(t, λ)) · q⊤

t kλ√
Dk

, (12)

where η > 0 is a decay rate parameter and d(t, λ) is a temporal
distance measure between time steps t and λ. In addition,
qt ∈ RDk denotes the query corresponding to items to which
the student responds at time 1 to t, kλ ∈ RDk denotes the
key for the item at time step λ and Dk denotes dimensions
of the key matrix [5]. The attention weight α decays as the
distance between the current input time and the past input
time increases. Furthermore, d(t, λ) with λ ≤ t is obtained as
explained below.

d(t, λ) = |t− λ|
t∑

t′=λ+1

q⊤
t kt′√
Dk∑

1≤λ′≤t′
q⊤
t kλ′√
Dk

, ∀t′ ≤ t. (13)

In fact, d(t, λ) adjusts the distance between consecutive time
indices according to how the past input is related to the current
input [5].

Additionally, they pointed out that the earlier KT methods
assumed that items with the same skills are equivalent. To
resolve the difficulty, AKT employs both items and skill
inputs. Results show that, among the earlier KT methods, AKT
provides the best performance for predicting the students’
responses. Nevertheless, the interpretability of its parameters
remains inadequate because it cannot express a student’s
ability transition for each skill.

III. DEEP-IRT WITH INDEPENDENT STUDENT AND ITEM
NETWORKS

The ability parameter of the Deep-IRT [3] depends on each
item because it implicitly assumes that items with the same
skills are equivalent. That assumption does not hold when the
item difficulties for the same skills differ greatly. Therefore,
when the items for the same skills are not equivalent, it is
difficult to interpret a student’s ability estimate.

To resolve the difficulty, this study proposes a novel Deep-
IRT method comprising two independent neural networks: the
student network and the item deep network [23], as presented
in Fig. 2. The student network employs memory network
architecture such as DKVMN to ascertain changes in student
ability comprehensively. The item network includes inputs of
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Fig. 2. Network architecture of Deep-IRT with independent student and item
networks. The yellow components are associated with the student network.
The green components are associated with the item network. In addition,
the right side of figure presents the memory updating component. The
designations ⊗ and ⊕ respectively represent element-wise multiplication and
addition.

two kinds: the item attempted by a student and the necessary
skills to solve the item. Using outputs of both networks, the
probability of a student answering an item correctly can be
calculated.

The proposed method can estimate student parameters and
item parameters independently such that the prediction accu-
racy does not decline because the two independent networks
are designed to be more redundant than they are with earlier
methods, based on state-of-the-art reports [20], [21], [22]. The
proposed method predicts Pjt, the probability of a correct
answer assigned to the item j at time t, using the item
difficulties and the student abilities [23], as shown hereinafter.

A. Item network

In the item network, two difficulty parameters of item j are
estimated: the item characteristic difficulty parameter βj

item

and the skill difficulty βj
skill [23]. The item characteristic

difficulty parameter represents the unique difficulties of the
item, excepting the required skill difficulty. The proposed
method expresses item difficulty as the sum of the two
difficulty parameters of βj

item and βj
skill.

In the proposed method, to express the j-th item, an input
of the item network is an embedding vector qj ∈ Rdk of
item j. The item characteristic difficulty parameter of item j
is calculated using a feed forward neural network as

βj
1 = tanh

(
W (β1)qj + τ (β1)

)
, (14)

βj
k′ = tanh

(
W (βk′ )βj

k′−1 + τ (βk′ )
)
, (15)

βj
item = W (βitem)βj

k + τ (βitem). (16)

In this report, we represent {k ∈ N|2 ≤ k′ ≤ k} as numerous
hidden layers decided depending on the prediction accuracy
of actual data. The last layer βj

item represents the j-th item
characteristic difficulty parameter.

Similarly, to compute the difficulty of skills, the proposed
method uses the input of necessary skills sj ∈ Rdk . The

embedding vector sj is calculated from the skill tag of item
j.

γj
1 = tanh

(
W (γ1)sj + τ (γ1)

)
, (17)

γj
k′ = tanh

(
W (γk′ )γj

k′−1 + τ (γk′ )
)
, (18)

βj
skill = W (βskill)γj

k + τ (βskill), (19)

where {k ∈ N|2 ≤ k′ ≤ k}. The last layer βj
skill denotes

the difficulty parameter of the required skills to solve the j-th
item.

B. Student network
In the student network, the proposed method calculates

θ
(t,j)
1 based on the latent variable Mv

t expressing a student’s
latent knowledge state at time t [23], as

θ
(t,j)
1 =

N∑
l=1

wjl (M
v
tl)

⊤
, (20)

where Mv
tl represents a l th row vector and where wjl is the

attention weight of underlying skill l. wjl is estimated similarly
to DKVMN in equation (4). Next, an interpretable student’s
ability vector θ(t,j) can be estimated as presented below.

θ
(t,j)
k′ = tanh

(
W (θk′ )θ

(t,j)
k′−1 + τ (θk′ )

)
, (21)

θ(t,j) =

N∑
l=1

wjlθ
(t,j)
k′l , (22)

where {k ∈ N|2 ≤ k′ ≤ k} and θ
(t,j)
k =

{θ(t,j)k1 , θ
(t,j)
k2 , · · · , θ(t,j)kN }. Also, θ(t,j)

k′ ∈ Rdv and θ
(t,j)
k ∈ RN .

One important difference between the proposed method and
the earlier Deep-IRT [3] is that the proposed method does not
calculate θ

(t,j)
k using features of items such as equations (6)

and (8). Therefore, the ability parameter θ(t,j) is independent
of the difficulty parameters of the respective items. In addition,
the value of θ(t,j)

k represents the abilities of the latent skills. In
other words, θ(t,j)

k can be inferred as a measurement model,
such as multidimensional IRT [34].

C. Prediction of student response to an item
The proposed method predicts a student’s response probabil-

ity to an item using the difference between a student’s ability
θ(t,j) to solve item j at time t and the sum of two difficulty
parameters βj

item and βj
skill [23].

Pjt = σ
(
3.0 ∗ θ(t,j) − (βj

item + βj
skill)

)
. (23)

After the procedure, the latent value memory Mv
t is updated

using the embedding vector of (sj , ujt) = sj+ujt∗S denoted
as vt ∈ Rdv such as DKVMN [4]. Actually, ujt is the student’s
response to item j at time t: ujt is 1 when the student answers
the item correctly; it is 0 otherwise.

et = σ(W evt + τ e), (24)
at = tanh(W avt + τ a), (25)

M̃v
t+1,l = Mv

t,l ⊗ (1− wjlet)
⊤, (26)

Mv
t+1,l = M̃v

t+1,l + wjla
⊤
t . (27)
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Fig. 3. Memory updating component of the proposed Deep-IRT with hypernetwork. The proposed hypernetwork is located at the beginning of the Memory
Updating Component. It estimates the optimal forgetting parameters by balancing both the current input data and the past latent variable before the model
updates the latent variable.

Therein, W e ∈ Rdv×dv ,W a ∈ Rdv×dv are weight matrices
and τ e ∈ Rdv , τ e ∈ Rdv are bias vectors. l is the underlying
skill and {l ∈ N|1 ≤ l ≤ N}. ⊗ represents the element-wise
product. In equations (24) and (26), et controls how much the
value memory forgets (remembers) the past ability. In addition,
at in equations (25) and (27) controls how strongly current
performance is reflected. It is noteworthy that et and at, which
control the degree of forgetting the past latent value memory
Mv

t , are optimized solely from the student’s latest response
to an item ujt.

In general, deep-learning-based methods learn their parame-
ters using the back-propagation algorithm by minimizing a loss
function. The loss function of the proposed method employs
cross-entropy, which reflects classification errors. Then the
cross-entropy of the predicted responses Pjt and the true
responses ujt is calculated as

ℓ(ujt, Pjt) = −
∑
t

(ujt logPjt + (1− ujt) log(1− Pjt)) .

(28)
All parameters are learned simultaneously using a well known
optimization algorithm: adaptive moment estimation [35].

IV. DEEP-IRT WITH HYPERNETWORK

The preceding section described the proposed Deep-IRT
method with independent student and item networks [23].
However, room for improvement of the prediction accuracy
remains because the parameters which control the degree of
forgetting the past latent value memory Mv

t are optimized
using only the student’s latest response to an item. It might
degrade the prediction accuracy of the Deep-IRT because the
latent value memory insufficiently reflects past data. As a
result, it might prevent difficulty for accurate estimation of
the ability transition in a long learning process. It should use
not only the current input data but also past data to optimize
the forgetting parameters. One simple solution is to add new
weight parameters that balance current input data vt and past
latent values Mv

t at each time. However, the number of weight
parameters increases dynamically when the learning process

progresses. It often yields too many weight parameters for
successful estimation.

Recent reports of studies conducted in the field of Natural
Language Processing (NLP) have proposed extension com-
ponents to LSTM [16] in the form of mutual gating of the
current input data and earlier hidden variables [24]. These
extension components are called hypernetworks. In standard
LSTM [16], the hidden variables change with time, but the
weights used to update them are fixed values that are not
optimized for each time point. To resolve this difficulty,
various hypernetworks have been proposed to support the main
recurrent neural network by optimizing the non-shared weights
for each time point in the hidden layers [24], [26], [36], [37],
[38], [39], [40]. Their results demonstrate that LSTM with
a hypernetwork works better than the standard LSTM [16].
Furthermore, Melis et al. [26] earlier proposed the ”Mogrifier
component,” which is a kind of hypernetwork for LSTM in
the field of NLP. Mogrifier scales the hidden variables using
not only the current inputs but also the output of the hidden
variable at the earlier time point. They reported that LSTM
with the Mogrifier component outperforms other methods for
long input data lengths.

Inspired by the results obtained from those studies, we
incorporate a novel hypernetwork into the memory updating
component (in Fig. 2), which updates the latent variable
Mv

t expressing a student’s knowledge state, to avoid greatly
increasing the number of parameters. Although Tsutsumi et al.
[27] proposed a hypernetwork for KT, that report presented no
details but just its conceptual idea. This study proposes a novel
hypernetwork architecture to optimize the balance between the
latest input data and the past latent variables. No report of
the relevant literature has described a study of the use of the
hypernetworks for KT methods.

Fig. 3 presents the proposed hypernetwork architecture and
the memory updating component of the proposed method. The
hypernetwork optimizes the degree of forgetting of past data
in the proposed Deep-IRT and improves prediction accuracy
with parameter interpretability. Specifically, before the method
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updates the latent variable Mv
t+1, the proposed hypernetwork

balances both the current input data vt and the latent variable
Mv

t using the past latent variables {Mv
t ,M

v
t−1, · · · ,Mv

t−λ}
at time t − λ to t. Here, λ represents the degree of the past
latent variables to be accessed. For the proposed method, we
optimize λ for each learning dataset.

A. Hypernetwork

In the memory updating components of DKVMN and Deep-
IRT [4], [3], the forgetting parameters are optimized only
from current input data. Therefore, their value memory Mv

t

might not adequately forget past data. Therefore, to optimize
the forgetting parameters et, and at at time t, the proposed
hypernetwork balances the current input data and the past
latent value memory to store sufficient information of the
learning history data before calculating the latent variables
Mv

t+1.
The proposed hypernetwork structure is located at the

beginning of the Memory Updating Component (Fig. 3). The
inputs of the hypernetwork are the embedding vector vt ∈ Rdv

and the past value memory M̃v
t . The embedding vector vt is

calculated from the current input data (sj , ujt) when a student
responds to item j. In addition, M̃v

t is calculated as

M̃v
t =

{
Mv

t (λ = 0),

σ(W [Mv
t ,M

v
t−1, · · · ,Mv

t−λ] + τ ) (otherwise).
(29)

Therein, W is the weight vector and τ is the bias parameter
vector. Next, vt and M̃v

t are optimized in the hypernetwork
as

ṽr′

t = δ1 ∗ σ(W vM̃vr′−1
t )⊙ vr′−1

t , (30)

M̃vr′

t = δ2 ∗ σ(WM ṽr′

t )⊙ M̃vr′−1
t , (31)

where δ1 ∈ R, δ2 ∈ R, r is a hyperparameter and 1 ≤ r′ ≤ r.
r represents the number of rounds in the recurrent architecture.
If r′ = 1, then ṽ0

t = vt and M̃v0
t = M̃v

t . Because of
the repeated multiplications in equations (30) and (31), this
hypernetwork balances current data ṽt and past value memory
M̃v

t . For the proposed methods, we optimize the number of
rounds r for each learning dataset. Details are presented in the
Experiment section.

B. Memory updating component

Next, we estimate the forgetting parameters et and at

using the optimized ṽr and M̃vr
t . These forgetting parameters

et and at are important to update the latest value memory
Mv

t+1 optimally. The earlier memory updating component of
DKVMN and Deep-IRT calculates the forgetting parameters
from vt solely based on current input information in equations
(24) and (25). By contrast, we calculate them using the
optimized current input data ṽr

t and the past latent value M̃vr
t .

Furthermore, the unique feature of the proposed method is
a new layer zt, which helps to optimize at. The memory
updating component is located next to the hypernetwork on

the upper right of Fig. 3. The forgetting parameters et and at

are calculated as

e
(l)
t = σ(W e1ṽr

t +W e2M̃vr
t,l + τ e), (32)

z
(l)
t = σ(W z1ṽr

t +W z2M̃vr
t,l + τ z), (33)

a
(l)
t = tanh(W a1z

(l)
t +W a2M̃vr

t,l + τ a). (34)

Therein, W (·) is the weight vector; τ (·) is a bias vector. Then,
the proposed method updates the latent value Mv

t+1,l as shown
below.

Mv
t+1,l = M̃vr

t,l ⊗ (1− wjle
(l)
t )⊤ + wjla

(l)⊤
t . (35)

By optimizing ṽt and M̃v
t in the hypernetwork, the pa-

rameters et and at are also estimated as optimizing the
degree of forgetting of past data and as reflecting the current
input data. Furthermore, the proposed method can capture the
student knowledge state changes accurately because the latent
knowledge state Mv

t has sufficient information related to the
past learning history data.

V. PREDICTIVE ACCURACY

A. Datasets

We conduct experiments to compare the performances of the
proposed Deep-IRT in Section Ⅲ (designated as ”Proposed-
DI”) and the proposed Deep-IRT with a hypernetwork in
Section Ⅳ (designated as ”Proposed-HN”) against existing
solutions. This section presents a comparison of the pre-
diction accuracies for student performance of the proposed
methods with those of earlier methods (DKVMN [4], Ye-
ung’s Deep-IRT [3] (designated as ”Yeung-DI”), AKT [5])
using six benchmark datasets as ASSISTments20092, ASSIST-
ments20153, ASSISTments20174, Statics20115, Junyi6, Eedi7.
The ASSISTments datasets collected from online tutoring
systems have been used as the standard benchmark for KT
methods. The Statics2011 dataset was collected from college-
level engineering courses on statics. The Junyi dataset was
collected by Junyi Academy, a Chinese e-learning website
[41]. We use only the students’ exercise records in the math
curriculum. Additionally, we select items that the students
attempted for the first time without hints. We also changed
the question types into unique skill number tags. The Eedi
dataset includes data from the school years of 2018–2020,
with student responses to mathematics questions from Eedi,
a leading educational platform by which millions of students
interact daily around the globe [42]. For Eedi, each item has a
list of hierarchical knowledge components. We convert these
lists into unique skill number tags.

ASSISTments2009, ASSISTments2017, and Eedi have item
and skill tags, although most methods explained in the relevant
literature adopt only the skill tag as an input. However,

2https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-
data

3https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-
builder-data

4https://sites.google.com/view/assistmentsdatamining
5https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
6http://www.junyiacademy.org/
7https://eedi.com/projects/neurips-education-challenge
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TABLE I
SUMMARY OF BENCHMARK DATASETS

Dataset No. students No. skills No. Items Rate Correct Learning length
ASSISTments2009 4151 111 26684 63.6% 52.1
ASSISTments2015 19840 100 N/A 73.2% 34.2
ASSISTments2017 1709 102 3162 39.0% 551.0

Statics2011 333 1223 N/A 79.8% 180.9
Junyi 48925 705 N/A 82.78% 345
Eedi 80000 1200 27613 64.25% 177

methods with skill inputs rely on the assumption that items
with the same skill are equivalent [5]. That assumption does
not hold when an item’s difficulties in the same skill differ
greatly. Therefore, as inputs to AKT and the proposed method,
we employ not only skills but also items [5], [23], [27]. Also,
for ASSISTments2015, Statics2011, and Junyi with only skill
tags, we employ the skill as input data. Table I presents the
number of students (No. Students), the number of skills (No.
Skills), the number of items (No. Items), the rate of correct
responses (Rate Correct), and the average length of the items
which students addressed (Learning length).

B. Hyperparameter selection and evaluation in Deep-IRT

We used standard five-fold cross-validation to evaluate the
respective prediction accuracies of the methods. According
to Ghosh et al. [5], for each fold, 20% learners are used
as the test set, 20% are used as the validation set, and
60% are used as the training set. For all methods, we chose
batch sizes from {32, 64, 128, 256} and the hidden layer sizes
and memory dimensions of {10, 20, 50, 100, 200} using cross-
validation according to the earlier studies [3], [4]. Then we
employed Adam optimization with a learning rate of 0.003,
as done for the earlier studies [3], [4]. In addition, for the
earlier methods, we used the hyperparameters reported from
the earlier studies [3], [4], [5]. Additionally, we set 200 items
as the upper limit of the input length according to the earlier
studies [3], [4], [5]. When the input length of items is greater
than 200, we use the first 200 response data for all methods.

To ascertain the number of layers k for the proposed
method, we conducted some experiments to gain experience
using ASSISTments2009 while changing the layer number.
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Fig. 4. AUC and the number of layers for ASSISTments2009. The vertical
axis shows AUC on the left side. The horizontal axis shows the number of
layers.

TABLE II
PREDICTION ACCURACIES AND HYPERPARAMETERS r

Dataset Number of rounds r
2 3 4 5 6 7

Statics2011 82.25 82.24 82.20 82.20 82.16 82.11(skill)
ASSISTments2009 81.19 81.83 81.25 81.23 81.2 80.96(skill)
ASSISTments2015 72.91 72.95 72.90 72.89 72.81 72.73(skill)
ASSISTments2017 85.06 82.73 81.64 80.17 73.23 72.64(skill)

Junyi 79.00 78.74 78.71 78.67 78.62 78.65(skill)
Eedi 75.53 75.48 75.42 75.36 74.97 75.45(skill)

ASSISTments2009 81.30 81.14 81.38 81.49 82.55 81.20(item & skill)
ASSISTments2017 75.94 76.17 76.74 76.70 76.85 76.74(item & skill)

Eedi 79.27 79.10 79.05 79.05 78.92 79.00(item & skill)

The results are presented in Fig. 4. As the figure shows, the
AUC score reaches its highest value when k = 2 and k = 4.
Based on this finding, we employ k = 2 for the following
experiments because the computation time of the proposal
increases exponentially as the number of layers increases.

If the predicted correct answer probability for the next
item is 0.5 or more, then the student’s response to the next
item is predicted as correct. Otherwise, the student’s response
is predicted as incorrect. For this study, we leverage three
metrics for prediction accuracy: Accuracy (Acc) score, AUC
score, and Loss score [43], [44]. The first, Acc, represents
the concordance rate between the student predictive responses
and the actual responses. The second, AUC, provides a robust
metric for binary prediction evaluation. When an AUC score
is 0.5, the prediction performance is equal to that of random
guessing. Loss represents the cross-entropy in equation (28).
We used a Tesla T4 GPU to train all methods.

C. Hyperparameter selection in Hypernetwork

1) Optimal tuning parameter δ1 and δ2 estimation: For
our experiments, we optimize the δ1 and δ2 to adjust the
hypernetwork for each dataset. To choose optimal parameters
δ1 and δ2, we conducted some experiments using all training
datasets by changing δ1 and δ2, respectively. The optimal
tuning parameters {δ1, δ2} are estimated as {1.5, 1.5} for AS-
SISTments2009, ASSISTments2015 and ASSISTments2017,
{1.0, 1.7} for Statics2011, {1.0, 1.0} for Junyi and Eedi.
Based on this result, we employ these tuning parameters for
the following experiments.
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TABLE III
PREDICTION ACCURACIES OF STUDENT PERFORMANCE WITH SKILL INPUTS

Dataset metrics DKVMN Yeung-DI AKT Proposed-DI Proposed-HN
AUC 81.21 +/- 0.31 81.34 +/- 0.39 80.81 +/- 0.41 81.34 +/- 0.24 81.83 +/- 0.30

ASSISTments2009 Acc 75.11 +/- 0.66 76.55 +/- 0.45 76.57 +/- 0.55 76.91 +/- 0.24 76.80 +/- 0.49
Loss 0.47 +/- 0.05 0.48 +/- 0.10 0.49 +/- 0.08 0.47 +/- 0.10 0.46 +/- 0.11
AUC 72.61 +/- 0.16 72.53 +/- 0.23 72.97 +/- 0.12 72.34 +/- 0.13 72.95 +/- 0.14

ASSISTments2015 Acc 75.05 +/- 0.18 74.97 +/- 0.14 75.25 +/- 0.10 74.95 +/- 0.39 75.02 +/- 0.15
Loss 0.51 +/- 0.02 0.52 +/- 0.03 0.51 +/- 0.01 0.52 +/- 0.02 0.51 +/- 0.03
AUC 72.67+/- 0.37 72.08 +/- 0.32 73.25+/- 0.41 72.32+/- 0.69 85.06 +/- 1.17

ASSISTments2017 Acc 68.46 +/- 0.24 68.36 +/- 0.30 69.17+/- 0.70 68.07 +/- 0.54 79.11 +/- 1.06
Loss 0.58+/- 0.03 0.59 +/- 0.07 0.58+/- 0.09 0.60 +/- 0.08 0.48 +/- 0.24
AUC 81.20 +/- 0.42 81.38 +/- 0.42 82.15 +/- 0.35 81.45 +/- 0.45 82.25 +/- 0.55

Statics2011 Acc 79.24 +/- 0.84 80.33 +/- 0.78 80.41 +/- 0.67 79.18 +/- 0.67 80.63 +/- 0.85
Loss 0.42 +/- 0.14 0.42 +/- 0.18 0.42 +/- 0.13 0.42 +/- 0.12 0.41 +/- 0.20
AUC 78.59 +/- 0.21 78.39 +/- 0.20 78.84 +/- 0.19 78.47 +/- 0.21 79.00 +/- 0.26

Junyi Acc 86.61 +/- 0.28 86.57 +/- 0.30 86.54 +/- 0.25 86.58 +/- 0.27 86.76 +/- 0.24
Loss 0.31 +/- 0.07 0.31 +/- 0.07 0.31 +/- 0.04 0.31 +/- 0.06 0.30+/- 0.05
AUC 75.11 +/- 0.16 75.63 +/- 0.17 75.81 +/- 0.15 75.76 +/- 0.17 75.53 +/- 0.15

Eedi Acc 71.23 +/- 0.24 71.34 +/- 0.29 71.38 +/- 0.20 71.41 +/- 0.25 71.30 +/- 0.24
Loss 0.59 +/- 0.06 0.56 +/- 0.07 0.56 +/- 0.03 0.56 +/- 0.06 0.57 +/- 0.06
AUC 76.89 76.83 77.30 76.91 79.35

Average Acc 74.46 75.05 76.55 76.18 78.27
Loss 0.48 0.48 0.48 0.48 0.46

2) Optimal number of rounds r estimation: To ascertain the
number of rounds r in the hypernetwork, we conducted some
experiments to gain experience using the training datasets
by changing the value of r. The results are presented in
Table II. As the table shows, the numbers of rounds r are
estimated as r = 2 for Statics2011, ASSISTments2017 with
skill inputs, Junyi, and Eedi, as r = 3 for ASSISTments2009
and ASSISTments2015 with skill inputs and as r = 6 for
ASSISTments2009 and ASSISTments2017 with item and skill
inputs.

We find the number of rounds r using the grid search
method. The proposed method estimates the number of each
round r by incrementing the value from the initial value r = 2
to maximize the prediction accuracy.

3) Optimal degree of past latent variables to be assessed:
The input of the hypernetwork M̃v

t is calculated from the past
latent variables {Mv

t ,M
v
t−1, · · · ,Mv

t−λ} at times t− λ to t.
We optimize λ by changing the value of λ ∈ {0, 1, 2, · · · , t}
using the optimal δ1, δ2, and r for each learning dataset.
Results show that the optimal λ can be estimated as λ = 1
for ASSISTments2009 and Junyi with skill inputs, and as
ASSISTments2009 and ASSISTments2017 with item and skill
inputs. When using the other datasets, optimal λ is estimated
as λ = 0.

D. Results

1) Skill inputs: The respective values of Acc, AUC, and
Loss for all benchmark datasets with only skill inputs are

TABLE IV
FORGETTING PARAMETERS’ NORM AVERAGES

norm average Proposed-DI Proposed-HN
|et| 5.12 1.99
|at| 3.17 2.58

presented in Table III. Additionally, this report describes the
standard deviations across five test folds. Proposed-DI and
Proposed-HN respectively represent variants of the proposed
method with and without the hypernetwork.

Results show that the averages of AUC, ACC, and Loss
obtained using Proposed-DI are better than those using Yeung-
DI, which is the earlier Deep-IRT method, although the
proposed method separates student and item networks. This
result implies that redundant deep student and item networks
function effectively for performance prediction. These results
are explainable from reports of state-of-the-art methods [20],
[21], [22].

Also, Proposed-HN, which optimizes the forgetting param-
eters in the hypernetwork, provides the best average scores for
all metrics. Proposed-HN improves the prediction accuracy of
Proposed-DI. In fact, Proposed-HN outperforms AKT, which
was reported as having the highest accuracies among earlier
methods. For each dataset, results indicate that Proposed-HN
provides the best AUC scores for ASSISTments2009, ASSIST-
ments2017, Statics2011, and Junyi. Especially for ASSIST-
ments2017 with long learning lengths, the performance of the
Proposed-HN markedly outperforms that of AKT. By contrast,
Proposed-HN tends to have lower prediction accuracies for
ASSISTments2015 with a shorter learning length than AKT
has. Results suggest that the proposed hypernetwork functions
effectively, especially for datasets with long learning lengths.

To investigate the reason for that phenomenon, we analyze
the forgetting parameters et and at in the memory updating
component of the proposed method. As described above, et
influences the degree to which the value memory forgets the
past ability. In addition, at controls how much the value
memory reflects the current input data. We calculate the l2-
norm of the forgetting parameters et and at respectively
for the earlier memory updating component (of Proposed-DI)
and the new memory updating component with hypernetwork
(of Proposed-HN) using the ASSISTments2017 dataset. Table
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TABLE V
PREDICTION ACCURACIES OF STUDENT PERFORMANCE WITH ITEM AND SKILL INPUTS

Dataset metrics AKT Proposed-DI Proposed-HN
AUC 82.20 +/- 0.25 80.70 +/- 0.56 82.55 +/- 0.32

ASSISTments2009 Acc 77.30 +/- 0.55 76.13 +/- 0.58 77.42 +/- 0.49
Loss 0.49 +/- 0.10 0.54 +/- 0.10 0.47 +/- 0.11
AUC 74.54+/- 0.21 74.15+/- 0.27 77.69 +/- 0.51

ASSISTments2017 Acc 69.83+/- 0.15 68.73+/- 0.11 72.16 +/- 0.55
Loss 0.58+/- 0.06 0.57+/- 0.06 0.54 +/- 0.13
AUC 79.42 +/- 0.11 79.11 +/- 0.14 79.27 +/- 0.15

Eedi Acc 73.59 +/- 0.16 73.42 +/- 0.24 73.49 +/- 0.27
Loss 0.52 +/- 0.02 0.53 +/- 0.00 0.53 +/- 0.00
AUC 78.72 78.00 79.83

Average Acc 73.57 72.76 74.36
Loss 0.53 0.55 0.51

Fig. 5. Average of attention weights in AKT for ASSISTments2017.

IV presents the averages of the l2-norms of et and at at
time t ∈ {1, 2, · · · , T}. Table IV shows that Proposed-DI
has the larger l2-norm value of et than at. The earlier
memory updating component drastically forgets the student’s
past ability information and reflects the current input data
when the latent variable memory is updated. The reason is that
the forgetting parameters et and at are calculated using only
the current input data. Therefore, their latent value memory
Mv

t might not store the student’s past ability information. By
contrast, Proposed-HN has a larger l2-norm value of at than
et. In the memory updating component of Proposed-HN, at

and et are calculated using both the current input data vt and
the past latent value memory Mv

t . Furthermore, these vt and
Mv

t are optimized in the hypernetwork to balance both the
current input data and the student’s past ability information.
The results obtained for the other datasets are almost identical
to those obtained for ASSISTments2017, although they are
omitted to avoid redundant descriptions. Therefore, results
suggest that the Proposed-HN works more effectively for
long learning processes because hypernetworks facilitate the
reflection of past data.

Findings indicate that AKT provides the best performance
for ASSISTments2015. However, the AKT performance re-
sults are worse than those of Proposed-HN for ASSIST-
ments2017. Fig. 5 shows the average of attention weights
of all students for the 200 items in ASSISTments2017. The
vertical axis shows the average of attention weights. The

horizontal axis shows the number of items the student ad-
dressed. Fig. 5 shows that the attention weight α decays as
the distance between the current input time and the past input
time increases. It is noteworthy that the attention weight α
converges to a certain non-zero value. This finding implies
that AKT does not completely forget even past data obtained
at an extremely long time prior. Consequently, AKT might
inadequately forget the past response data from long learning
processes. However, Gosh et al. [5] reported that AKT is more
effective for large datasets. Therefore, AKT provides the best
performance for AUC of Eedi, which has an extremely large
number of students. The performance results obtained using
DKVMN are almost identical to those obtained using Yeng-DI
because they have similar network structures.

2) Item and skill inputs: Furthermore, we compared the
performances of the proposed methods with those of AKT for
ASSISTments2009, ASSISTments2017, and Eedi with item
and skill inputs according to [5]. The respective values of Acc,
AUC, and Loss are presented in Table V. Results indicate that
the Proposed-HN provides the best performance for the all
metrics: averages of AUC, Acc, and Loss. For each dataset, the
Proposed-HN provides the best scores for ASSISTments2009
and for ASSISTments2017. As described above, the Proposed-
HN greatly outperforms AKT for ASSISTments2017 with
a long learning length because the proposed hypernetwork
functions effectively. However, for Eedi, AKT provides the
best scores for all the metrics. In fact, AKT with item and
skill inputs provides higher performance than those achieved
using only skill inputs, as shown in [5]. In contrast, the
proposed methods with item and skill inputs do not necessarily
outperform those with only skill inputs. The reason might be
that input item information cannot be used effectively because
the latent value memory Mv

t is optimized using only input
skills in the memory updating component. In addition, for
Eedi, because of the increased number of parameters, it might
not completely tune the hyperparameters in the hypernetwork.

Moreover, we experimented with Temporal IRT (TIRT)
[11], [12]. It is a Hidden Markov IRT with a parameter
to forget past response data, as described earlier in Section
Ⅱ-A. IRT-based methods rely on an assumption of local
independence among the student item responses. They should
not be applied to learning processes that allow a student to
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TABLE VI
NUMBERS OF TRAINABLE PARAMETERS AND COMPUTATIONAL TIMES FOR MODEL TRAINING. UNITS ARE SECONDS.

Dataset DKVMN Yeung-DI AKT Proposed-DI Proposed-HN
params times params times params times params times params times

ASSISTments2009 (skill) 124,951 1294 63,002 770 4,171,033 2935 1,573,102 1348 1,705,766 1433
ASSISTments2009 - - - - 4,272,917 2182 2,420,302 2132 2,563,066 2493
ASSISTments2015 65,051 3045 60,502 3499 4,168,473 4820 1,570,602 3436 1,683,166 3410

ASSISTments2017 (skill) 131,001 2500 61,002 5462 4,168,985 3386 1,571,102 1889 1,786,066 1867
ASSISTments2017 - - - - 4,250,996 3393 2,343,852 1515 2,486,616 1543

Statics2011 345,801 399 341,252 217 4,455,961 468 351,927 480 380,109 403
Junyi 439,951 8591 235,502 3707 4,347,673 5510 1,970,566 3258 2,020,666 3807

Eedi (skill) 619,951 7943 335,502 3353 4,450,073 8851 1,845,602 2510 5,132,758 3053
Eedi - - - - 5,399,869 8794 3,232,402 2571 6,519,558 2955

TABLE VII
CORRELATION COEFFICIENTS OF THE ESTIMATED ABILITIES

No. items 50 100 200 300 50 100 200 300 50 100 200 300

ϵ Method Pearson Spearman Kendall p-value
(vs. Yeung-DI)

Yeung-DI 0.626 0.667 0.740 0.738 0.626 0.660 0.750 0.745 0.441 0.473 0.550 0.549 -
0.1 Proposed-DI 0.885 0.907 0.924 0.916 0.892 0.915 0.940 0.938 0.710 0.746 0.785 0.782 0.00001

Proposed-HN 0.902 0.916 0.930 0.927 0.910 0.923 0.943 0.941 0.736 0.761 0.790 0.792 0.00001
Yeung-DI 0.730 0.799 0.808 0.823 0.751 0.831 0.862 0.873 0.551 0.628 0.659 0.670 -

0.3 Proposed-DI 0.827 0.891 0.883 0.890 0.863 0.926 0.941 0.945 0.671 0.755 0.778 0.785 0.0317
Proposed-HN 0.840 0.905 0.900 0.907 0.877 0.932 0.947 0.954 0.689 0.767 0.791 0.804 0.0133

Yeung-DI 0.773 0.800 0.807 0.814 0.812 0.861 0.877 0.890 0.605 0.654 0.676 0.692 -
0.5 Proposed-DI 0.855 0.870 0.860 0.849 0.893 0.928 0.929 0.930 0.705 0.755 0.758 0.761 0.1151

Proposed-HN 0.874 0.871 0.869 0.859 0.901 0.928 0.934 0.940 0.720 0.755 0.768 0.779 0.0676
Yeung-DI 0.788 0.809 0.824 0.813 0.834 0.884 0.891 0.888 0.626 0.684 0.695 0.692 -

1.0 Proposed-DI 0.843 0.830 0.844 0.834 0.886 0.911 0.919 0.918 0.696 0.728 0.740 0.740 0.497
Proposed-HN 0.854 0.840 0.854 0.836 0.894 0.920 0.930 0.919 0.708 0.744 0.762 0.743 0.340

respond to the same item repeatedly. Therefore, we employ not
skills but items as inputs using ASSISTments2009 and AS-
SISTments2017. Additionally, we decompose these datasets
into their respective skill groups and estimate the parameters
from skill data independently because TIRT assumes a single
dimension skill of the ability. In other words, TIRT predicts
performance using only an ability corresponding to one skill
for an item. To estimate the student ability and item parameters
of TIRT, we use the expected a posterior (EAP) estimators
using the Markov chain Monte Carlo (MCMC) method [45].
The results indicate that AUC is 80.38, Acc is 76.39, and
Loss is 0.49 for ASSISTments2009. For ASSISTments2017,
results show that AUC is 75.52, Acc is 84.71, and Loss is
0.46. Surprisingly, TIRT outperforms AKT with skill input
for ASSISTments2017. That finding suggests that TIRT might
estimate the student ability transition accurately. For the Eedi
dataset, TIRT can not complete the calculations within 24 hour
because of its data size.

E. Computational costs

This subsection presents an investigation of the compu-
tational costs associated with each method. Concretely, we
calculated the numbers of trainable parameters and training
time for each method. We measured the training time for
each partition in five-fold cross-validation. Table VI shows
the numbers of trainable parameters and the average training
times. According to Table VI, AKT has the largest number of
parameters. It requires the longest computation training time.
Proposed-DI and Proposed-HN can be trained more quickly
than AKT can. Although Proposed-HN has more parameters

than Proposed-DI does, the training times are comparable. In
addition, DKVMN and Yeung-DI, which have relatively small
numbers of parameters, were trained more quickly than the
proposed methods and AKT were. The computational times of
DKVMN are almost identical to those of Yeung-DI because
they have similar network structures.

VI. PARAMETER INTERPRETABILITY

A. Estimation accuracy of ability parameters

In the preceding section, we showed that the proposed
method has higher prediction accuracy than other methods
have. As described in this section, to evaluate the interpretabil-
ity of the ability parameters of the proposed method, we use
simulation data to compare the parameter estimates with those
of the earlier Deep-IRT [3]. These datasets are generated from
TIRT [11], [12]. The prior of θit is a normal distribution
described as θi0 ∼ N (0, 1), θit ∼ N (θit−1, ϵ). Therein,
ϵ represents the variance of θit. It controls the smoothness
of a student’s ability transition. Therefore, as ϵ increases,
the range of fluctuation of the true ability increases at each
time point. For this experiment, the priors of the j-th item
parameters are log aj ∼ N (0, 1), bj ∼ N (0, 1). Each dataset
includes 2000 student responses to {50, 100, 200, 300} items.
Discrimination parameter a and the item’s difficulty parameter
b are estimated using 1800 students’ response data. Given
the estimated a and b, we estimate the students’ ability
parameters using the remaining 200 students’ response data.
In addition, for each dataset, we obtain results while changing
ϵ = {0.1, 0.3, 0.5, 1.0}.
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Fig. 6. Examples of student ability θ(t,j) and latent abilities θ
(t,j)
1 , θ(t,j)

2 estimated in the input layer and the hidden layer of the student network at times
t = 1 to t = 30.

We evaluate Pearson’s correlation coefficients, Spearman’s
rank correlation coefficients, and Kendall rank correlation co-
efficients between the true ability parameters of the true model
(TIRT) and the estimated ability parameters of the Deep-
IRTs (Yeung-DI, Proposed-DI and Proposed-HN) [46], [47].
Spearman’s rank correlation is the nonparametric version of
Pearson’s correlation. The Kendall rank correlation coefficient
is known to provide robust estimates for aberrant values [48].
Generally, the estimation accuracy of the ability parameters is
evaluated using root mean square error (RMSE). However, a
student’s ability of TIRT does not assume a standard normal
distribution because the student ability distribution differs at
each time. We are unable to evaluate RMSE in this experiment
because TIRT, the earlier Deep-IRT method [3], and the
proposed methods are unable to not standardize their student
abilities.

We calculate a correlation coefficient using a student’s
abilities θt at time t ∈ {1, 2, · · · , T}, as estimated using
TIRT and the Deep-IRTs. Next, we average these correlation
coefficients of all students. Table VII presents the average
correlation coefficients of the methods for the respective
conditions. To confirm the significance of differences of the
proposed methods from Yeung-DI, we applied the Tukey–
Kramer multiple comparison test [49]. The p values are
presented on the right side of Table VII. Results show that, for
all conditions, Proposed-DI and Proposed-HN provide stronger
correlation with the true ability parameters than Yeung-DI
does. The results of Spearman’s rank correlation coefficients of
the proposed method are greater than those of Pearson’s cor-
relation coefficients because the student’s ability distribution
changes constantly over time in TIRT. Especially, the results
obtained for Kendall rank correlation coefficients suggest that
Proposed-DI and Proposed-HN estimate the abilities robustly,
even for aberrant values. The results demonstrate that the two
proposed independent networks function effectively to provide
appropriate interpretability of the estimated parameters. More-
over, the students’ ability parameters are estimated accurately
with sufficient information from past learning history data
because the hypernetwork optimized the forgetting parameters
using both current input data and past data. Furthermore, the

proposed methods tend to produce stronger correlations as the
number of items increases. These findings suggest that the
proposed methods represent the true student’s ability transition
accurately in long learning processes.

B. Student ability transitions
This section shows student ability transitions using the

proposed method. First, we visualized the student ability
parameters for underlying skills in the student network of
Proposed-HN. Fig. 6 presents an example of the student ability
transition θ(t,j) and latent abilities θ

(t,j)
1 , θ

(t,j)
2 estimated

respectively in the hidden layers of the student network at
time t = 1 to t = 30. The vertical axis shows the time
stamp at which the student addresses each item. The horizontal
axis shows the underlying skills. Fig. 6 depicts that θ

(t,j)
2

reflects the features of each underlying skill more strongly than
θ
(t,j)
1 as the hidden layers of the neural network get deeper.

This result suggests that the hidden layer is effective for
identifying the underlying skills and for accurately capturing
multi-dimensional ability.

Next, we evaluated the interpretability of the ability param-
eters of the proposed method by visualizing the ability transi-
tion. Visualizing the ability transition for each skill is helpful
for both students and teachers because they can reveal student
strengths and weaknesses and can improve the learning method
to fill in the learning gaps. Yeung [3] demonstrated a student
ability transition for each skill using Yeung-DI. However, their
results included some counterintuitive ability estimates. For
example, even when the student answered incorrectly, the
corresponding student ability estimate increased. Moreover,
Yeung-DI cannot identify a relation among multidimensional
skills. In some cases, a student’s ability for low-level skills
decreases even when the student responds correctly to items
for high-level skills.

Fig. 7 depicts an example of student ability transitions of
each skill estimated using Yeung-DI and Proposed-HN for the
ASSISTments2009 according to earlier studies [3], [27]. The
vertical axis shows the student’s ability value on the right
side. The horizontal axis shows the item number. The student
response is shown by filled circles ”•” when the student
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Fig. 7. Example of a student ability transition from the ASSISTments2009 dataset. The skill inputs are classified respectively as ordering factions (orange),
equation solving more than two steps (grey), equation solving two or fewer steps (green), finding percentages (yellow), and finding percentages (orange). The
filled and the hollow circles respectively represent correct and incorrect responses.

answers the item correctly; it is shown by hollow circles
”◦” otherwise. In the first 30 attempts, the student attempted
skills of ”equation solving more than two steps” (shown in
grey), ”equation solving two or few steps” (shown in green),
”ordering factions” (shown in orange), and ”finding percents”
(shown in yellow).

For Yeung-DI, as described in earlier reports [3], some
of the ability changes might be inconsistent with response
data. For instance, the ability of skill ”equation solving more
than two steps” (grey), which is a higher-level skill, decreases
even though the student responds correctly to items 11–17. In
another instance, the student responds correctly to items for
high-level skills even when a student’s ability for low-level
skills ”equation solving two or few steps” (green) decreases.
These unstable behaviors of Yeung-DI might engender severe
difficulties, which will consequently confuse students and
teachers, as a student model.

In contrast, Fig. 7 shows that the Proposed-HN can provide
accurate estimates to reflect the student responses. Addition-
ally, it can estimate relations among the skills. Therefore, when
a student responds to an item, not only the corresponding
skill ability but those for other skills change. Especially,
because the skills of ”equation solving more than two steps”
(grey) and ”equation solving two or few steps” (green) are
similar, the ability changes of each skill also indicate a strong
correlation. Consequently, the results demonstrate that the
proposed method improves the interpretability of Yeung-DI.

It is noteworthy that the student’s responses are not im-
mediately reflected in the estimated ability change when
the student provides a different response from the previous
several continuous same responses. For example, the ability for
”finding percents” (yellow) increases in items 18–19 despite
incorrect responses because the Proposed-HN estimates the
student’s ability with the past responses. Then, the estimated
ability values change slightly later when the student provides a
different response from the previous several continuous same
responses.

VII. CONCLUSIONS

This study examined a proposed novel Deep-IRT that
models a student’s response to an item by two independent

redundant networks: a student network and an item network.
Because of two independent redundant neural networks, the
parameters of the proposed method can be interpreted to a
considerable degree while maintaining high prediction accu-
racy. Furthermore, we improved the prediction accuracy of the
proposed method by combining it with a novel hypernetwork.
In the earlier memory updating component, the forgetting
parameters, which control the degree of forgetting the past
latent value memory, are optimized only from the current input
data. That restriction might degrade the prediction accuracy
of the Deep-IRT because the value memory only insuffi-
ciently reflects the past learning information. The proposed
hypernetwork can estimate the optimal forgetting parameters
by balancing both the current input data and the past latent
variables.

Experiments conducted with the benchmark datasets
demonstrated that the proposed method improves both the
ability parameter interpretability and the prediction accuracies
of the earlier KT methods. Especially, results showed that
the proposed method with the hypernetwork is effective for
tasks with a long-term learning process. Experiments for the
simulation dataset demonstrated that the proposed method pro-
vides stronger correlations with true parameters of TIRT than
the earlier Deep-IRT method do. Furthermore, the proposed
method estimates the abilities robustly, even with aberrant
values.

This study employed slightly redundant deep networks
compared to earlier methods. In future work, we intend to use
the proposed method to investigate the performances of more-
redundant and deeper networks. Additionally, we will try to
optimize a hypernetwork to maximize the prediction accuracy
for large datasets. Most recently, results of some studies have
shown that each item’s characteristics differ according to
their texts, although they require the same skill. To resolve
this difficulty, they proposed KT methods to estimate the
relation between the item’s text content and the student’s
performance using the NLP technique or graph neural network
[50], [51], [52], [53], [54], [55], [56]. As future work, we
expect to incorporate the item’s text content into the proposed
method to improve the student performance prediction accu-
racy. Furthermore, deep-learning approaches for KT have been
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used for computerized adaptive testing (CAT) [57], [58]. The
main purpose of CAT is measurement of student ability in
personalized tests for online education. Therefore, we infer
that the proposed method might be effective for CAT because
it can estimate a student’s capabilities correctly.
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