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Abstract

This study proposes and evaluates a new Bayesian network
classifier (BNC) having an I-map structure with the fewest
class variable parameters among all structures for which the
class variable has no parent. Moreover, a new learning al-
gorithm to learn our proposed model is presented. The pro-
posed method is guaranteed to obtain the true classification
probability asymptotically. Moreover, the method has lower
computational costs than those of exact learning BNC using
marginal likelihood. Comparison experiments have demon-
strated the superior performance of the proposed method.

Introduction
Classifiers are divided roughly into deep learning ap-
proaches and probabilistic approaches. The former can learn
huge variables and can provide more accurate classification
than the latter does. However, the decisions made by the
deep learning classifier is unexplainable because mathemat-
ical properties of the deep learning are unclear and because
the decisions of deep learning classifiers are deterministic.
By contrast, the latter can estimate a probability distribu-
tion of the class variable. In particular, probabilistic graphi-
cal models have the explainable, “white-box” characteristic.

A popular probabilistic classifier is the naive Bayes clas-
sifier, in which the feature variables are conditionally inde-
pendent given a class variable (Minsky 1961). Initially, be-
cause actual datasets were generated from more complex
systems, naive Bayes was not expected to provide highly
accurate classification. Therefore, the general Bayesian net-
work (GBN) with learning by marginal likelihood (ML) as
a generative model has been expected to outperform naive
Bayes because GBN is more expressive than naive Bayes.
However, Friedman, Geiger, and Goldszmidt (1997) demon-
strated that naive Bayes sometimes outperforms the GBN
using a greedy search to find the smallest minimum de-
scription length (MDL) score, which had been originally in-
tended to approximate ML. They explained the inferior per-
formance of the MDL by decomposing it into a log likeli-
hood (LL) term that reflects the model fitting to training data,
and a penalty term that reflects the model complexity. More-
over, they decomposed the LL term into a conditional log
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likelihood (CLL) of the class variable given the feature vari-
ables, which is related directly to the classification, and into
a joint LL of the feature variables, which is not related di-
rectly to the classification. Furthermore, they proposed con-
ditional MDL (CMDL), a modified MDL replacing the LL
with the CLL.

Consequently, they claimed that the Bayesian network
(BN) minimizing CMDL, as a discriminative model, shows
better accuracy than that maximizing ML. Unfortunately,
CLL has no closed-form equation for estimating the opti-
mal parameters. This finding implies that optimizing CLL
requires a gradient descent algorithm (e.g., extended logistic
regression algorithm (Greiner and Zhou 2002)). Neverthe-
less, the optimization algorithm involves the reiteration of
each structure candidate, which greatly increases the com-
putational costs.

To resolve this difficulty, Friedman, Geiger, and Gold-
szmidt (1997) proposed an augmented naive Bayes classifier
(ANB) in which the class variable links directly to all fea-
ture variables. Links among feature variables are allowed.
Actually, ANB ensures that all feature variables can con-
tribute to classification. Later, restricted ANBs of various
types were proposed, such as tree-augmented naive Bayes
(TAN) (Friedman, Geiger, and Goldszmidt 1997) and forest-
augmented naive Bayes (FAN) (Lucas 2004).

Maximization of CLL entails heavy computation. There-
fore, various approximation methods have been proposed
to maximize it. Carvalho, Adão, and Mateus (2013) pro-
posed approximate CLL (aCLL), which is decomposable
and which is computationally efficient. Moreover, Grossman
and Domingos (2004) proposed a learning structure method
using a greedy hill-climbing algorithm (Heckerman, Geiger,
and Chickering 1995) to maximize CLL. Furthermore, Mi-
haljević, Bielza, and Larrañaga (2018) proposed a method
to reduce the space for the greedy search of BN Classifiers
(BNCs) with the CLL score. These reports described that the
BNC maximizing the approximated CLL performed better
than that maximizing the approximated ML.

Nevertheless, they did not explain why CLL outper-
formed ML. For large datasets, because ML has an asymp-
totic consistency, the classification accuracies presented by
maximizing ML are expected to be comparable to those pre-
sented by maximizing CLL. Differences between the perfor-
mances of the two scores in these studies might depend on



their respective learning algorithms: they were approximate
learning algorithms, not exact ones. Recent studies have ex-
plored efficient algorithms for the exact learning of GBN to
maximize ML (Koivisto and Sood 2004; Singth and Moore
2005; Silander and Myllymäki 2006; De Campos and Ji
2011; Malone et al. 2011; Yuan and Malone 2013; Cussens
2012; Barlett and Cussens 2013; Suzuki 2017).

Sugahara, Uto, and Ueno (2018) compared the classifica-
tion performances of BNC with exact learning using ML as
a generative model and those with approximate learning us-
ing CLL as a discriminative model. Results show that maxi-
mizing ML leads to better classification accuracy than maxi-
mizing CLL provides for large datasets. However, the results
also indicate that classification accuracies obtained by ex-
act learning BNC using ML are much worse than those ob-
tained using other methods when the sample is small and the
class variable has numerous parents in the exactly learned
networks. When a class variable has numerous parents, esti-
mation of the conditional probability parameters of the class
variable becomes unstable because the parent configurations
become numerous and because the sample for learning the
parameters becomes sparse.

To resolve this difficulty, Sugahara, Uto, and Ueno (2018)
proposed an exact learning ANB, which maximizes ML and
which ensures that the class variable has no parents. In ear-
lier studies, the ANB constraint was used to learn the BNC
as a discriminative model. In contrast, they use the ANB
constraint to learn the BNC as a generative model. Their
method asymptotically learns the optimal ANB, which is
an independence map (I-map) of the true probability dis-
tribution with the fewest parameters among all possible
ANB structures. Moreover, Sugahara, Uto, and Ueno (2018)
proved that exactly learned ANB is asymptotically classifi-
cation equivalent to the true structure. The ANB guarantees
asymptotic estimation of the identical posterior of the class
variable to that of the true structure. However, the ANB max-
imizing ML has the following three shortcomings. (1) ANB
might include irrelevant feature variables with the class vari-
able. These variables are known to often lower classification
accuracy because they only introduce noise in the classifi-
cation. (2) ANB maximizing ML guarantees an asymptotic
classification equivalence to the true structure when the true
structure does not follow ANB. (3) ANB structure maximiz-
ing ML is not guaranteed to converge an I-map minimizing
the number of parameters for estimating the probabilities of
the class variable but to that minimizing the number of all
the parameters.

This study proposes a learning I-map BNC with the
fewest class variable parameters among all the structures in
which the class variable has no parents (we designate them
as NPCDAGs (no parent class DAGs)). The proposed learn-
ing BNC has the following four benefits. (1) The proposed
learning BNC asymptotically does not include irrelevant
feature variables for the class variable because NPCDAGs
do not force the addition of edges between the class vari-
able and feature variables. (2) The proposed learning BNC
achieves an asymptotic classification equivalence to the true
structure, even when the true structure does not follow ANB.
(3) The proposed learning BNC asymptotically produces an

I-map NPCDAG with the lowest number of class variable
parameters (NCP). (4) The proposed learning BNC yields
an explainable graphical structure of the feature variables to
predict the class variable.

To learn the proposed BNC, we prove that maximizing the
ML asymptotically produces an I-map BNC with the low-
est NCP only when given a variable order. Based on this
theorem, we formulate learning of the proposed BNC as a
shortest-path-finding problem for an order graph of BNs.
Popular methods to solve shortest path finding problems are
breadth-first search and depth-first search. Their computa-
tional time increases exponentially as the number of vari-
ables increases. We can decrease their computational costs
using branch and bound method. However, the traditional
heuristic functions used for cutting-edge branch and bound
method can not apply our method to learn the proposed
BNC.

We prove that the NCP of a naive Bayes classifier is the
lower bound NCP of our model. As an algorithm for learn-
ing our model, we propose a depth-first branch and bound
algorithm using the NCP of a naive Bayes classifier as a
heuristic function. The proposed algorithm provides shorter
runtime than that provided by the traditional learning BNC
algorithm. Moreover, the proposed algorithm can be stopped
at any time. We can obtain the current best solution. Com-
parison experiments have demonstrated the superior perfor-
mance of the proposed method.

Background
Bayesian networks
A BN is a graphical model that represents conditional in-
dependence among random variables as a directed acyclic
graph (DAG). The BN decomposes the joint probability dis-
tribution exactly into a product of the conditional probability
for each variable.

Letting V = {X0, X1, · · · , Xn} be a set of discrete vari-
ables, where Xi, (i = 0, · · · , n) can take values in the set of
states {1, · · · , ri}, then we write Xi = k when Xi takes the
state k. According to the BN structure G, the joint probabil-
ity distribution is represented as P (X0, X1, · · · , Xn | G) =∏n
i=0 P (Xi | PaGXi

, G), where PaGXi
is the parent variable

set of Xi in G. When structure G might be readily apparent
from the context, we use Pai to denote the parents.

Letting σ be a variable order in V, e.g. σ =
(X4, X1, X2, X3), the BN structure G is said to be consis-
tent with order σ when all parents of the variable precede the
variable in the order.

Let θijk be a conditional probability parameter of Xi = k
when the j-th instance of the parents of Xi is observed (we
can say Pai = j). Then we define Θij =

⋃ri
k=1{θijk}, Θi =⋃qi

j=1{Θij}, and Θ =
⋃n
i=0 Θi, where qi =

∏
v:Xv∈Pai

rv .
A BN is defined using a pair B = (G,Θ).

The BN structure G represents conditional independence
assertions in the probability distribution by d-separation.
First, we must define collider to define the d-separation. Let-
ting path denote a sequence of adjacent variables, then the
collider is defined as



Definition 1 Assuming a structure G = (V,E), a variable
Z ∈ V on a path ρ is a collider if and only if there exist two
distinct incoming edges into Z from non-adjacent variables.

The d-separation is defined as presented below.

Definition 2 Assuming a structureG = (V,E),X,Y ∈ V,
and U ⊆ V \ {X,Y }, the two variables X and Y are d-
separated, given U in G, if and only if every path ρ between
X and Y satisfies either of the following two conditions: (1)
U includes a non-collider on ρ. (2) There is a collider Z on
ρ; U does not include Z and its descendants. We denote the
d-separation between X and Y given U in the structure G
as DsepG(X,Y | U).

I(X,Y | U) denote that X and Y are conditionally inde-
pendent given U in the true joint probability distribution P ∗.
A BN structure G is an independence map (I-map) if all the
d-separations in G entail conditional independence (CI) in
P ∗.

Definition 3 Assuming the true joint probability distribu-
tion P ∗ of the random variables in a set V and a structure
G = (V,E), thenG is an I-map if the following proposition
holds: ∀X,Y ∈ V,∀U ⊆ V \ {X,Y }, (DsepG(X,Y |
U)⇒ I(X,Y | U)).

We introduce the following notation, which is nec-
essary for our discussion of learning BNs. Let D =
{x1, · · · ,xd, · · · ,xN} be a complete dataset consisting of
N i.i.d. instances, where each instance xd is a data vec-
tor (xd0, x

d
1, · · · , xdn). The likelihood of BN B = (G,Θ),

given D, is P (D | B) =
∏n
i=0

∏qi
j=1

∏ri
k=1 θ

Nijk

ijk . The
maximum likelihood estimators of θijk are given as θ̂ijk =
Nijk/Nij . In that equation, Nijk represents the number of
samples of Xi = k when Pai = j, Nij =

∑ri
k=1Nijk.

The most popular parameter estimator of BNs is the ex-
pected a posteriori (EAP), which is the expectation of θijk
with respect to the posterior of Θij assuming the Dirichlet
prior of Θij . The EAP estimator is represented as θ̂ijk =
(N ′ijk + Nijk)/(N ′ij + Nij), where N ′ijk denotes the hy-
perparameters of the Dirichlet prior distributions. In ad-
dition, (N ′ijk is a pseudo-sample corresponding to Nijk),
with N ′ij =

∑ri
k=1N

′
ijk. The BN structure G must be es-

timated from the observed datasets because it is generally
unknown. We maximize the score with an asymptotic con-
sistency which guarantees estimation of an I-map with the
fewest parameters. The ML score has an asymptotic consis-
tency (Chickering 2002).

When we assume the Dirichlet prior for Θij , ML is rep-
resented as P (D | G) =

∏n
i=0

∏qi
j=1 Γ(N ′ij)/Γ(N ′ij +

Nij)
∏ri
k=1 Γ(N ′ijk + Nijk)/Γ(N ′ijk). When N ′ijk =

N ′/(riqi), this score is called the Bayesian Dirichlet equiv-
alent uniform (BDeu) (1995), where N ′ is the equivalent
sample size (ESS) determined by users. This paper employs
BDeu as the most popular marginal likelihood score.

Bayesian network classifiers
A BNC can be interpreted as a BN for which X0 is the class
variable and for which X1, · · · , Xn are feature variables.

Given an instance x = (x1, · · · , xn) for feature variables
X1, . . . , Xn, the BNC B predicts the class variable by max-
imizing the following posterior probability of the class vari-
able X0.

P (X0 = c | x1, · · · , xn, B) (1)

=

∏q0
j=1

∏r0
k=1

(
θ0jk

)10jk ∏
i:X0∈Pai

∏qi
j=1

∏ri
k=1

(
θijk

)1ijk∑r0
c′=1

∏q0
j=1

∏r0
k=1

(
θ0jk

)10jk ∏
i:X0∈Pai

∏qi
j=1

∏ri
k=1

(
θijk

)1ijk ,
In those equations, 1ijk = 1 if Xi = k and Pai = j in the

case of x, and 1ijk = 0 otherwise. From Equation (1), we
can infer class c given only the values of the parents of X0,
the children of X0, and the parents of the children of X0,
which comprise the Markov blanket of X0.

Sugahara, Uto, and Ueno (2018) proved that, under the
following Assumptions 1 and 2, the ANB guarantees asymp-
totic estimation of the true probability of the class variable
as described below.
Definition 4 (Acid, De Campos, and Castellano 2005)
Letting G be a set of all the BN structures and letting D be
any finite dataset, then ∀G1, G2 ∈ G, we say thatG1 andG2

are classification-equivalent if P (X0 | x, G1, D) = P (X0 |
x, G2, D) for any feature variable’s value x.

Assumption 1 A true structure G∗ = (V,E∗) with the
following property exists: ∀X,Y ∈ V,∀U ⊆ V \
{X,Y }, (DsepG∗(X,Y | U)⇔ I(X,Y | U)).

Assumption 2 For ∀X ∈ V,X andX0 are adjacent toG∗.

Theorem 1 (Sugahara, Uto, and Ueno 2018)
Under Assumptions 1 and 2, for a sufficiently large sam-
ple size, the exact learning ANB using BDeu achieves the
classification-equivalent structure to G∗.

Learning BNCs with the Minimum Number of
Class Variable Parameters

From Theorem 1, the ANB maximizing BDeu achieves the
true posterior of the class variable asymptotically. From
Equation (1), the posterior of the class variable depends
only on a set of parameters Θ0 and

⋃
i:X0∈Pai

Θi, which
we call designate as class variable parameters. Letting G be
a structure, then the NCP in G is defined as NCP (G) =∑n
i=0NCPi(Pai). Therein, NCPi(Pai) = (ri − 1)qi if

i = 0 ∨X0 ∈ Pai, and NCPi(Pai) = 0 otherwise. How-
ever, maximizing BDeu entails no guarantee of minimizing
the NCP.

This study proposes a new learning BNC method that
guarantees asymptotic estimation of an I-map with the low-
est NCP. Our search space is a set of structures in which
the class variable has no parents, which we designate as
NPCDAGs. The following benefits are gained by introduc-
ing the limited search space. First, this space is guaranteed
to cover all possible posteriors of the class variable (Mihal-
jević, Bielza, and Larrañaga 2018). Second, learning BNCs
to have no parents of the class variable is expected to pro-
vide more accurate classification than learning GBNs does.
The reasons are the following. The prior of the class vari-
able of GBN dominates the posterior when the parents be-
come numerous. This dominance hinders the posterior from



fully reflecting the likelihood given the obtained data. In ad-
dition, the prior determined solely by the limited number of
parent variables often leads to extremely unstable results. In
contrast, the proposed method teaches the posterior to re-
flect the likelihood of all class variable parameters. This re-
flected likelihood enhances the process to make the most of
all related variable data to learn the posterior. In addition, the
proposed method employs a marginal probability estimate of
the class variable, which is stably obtained, as a prior.

We derive the following theorem to present the advantage
of the proposed learning BNC.
Theorem 2 Under Assumption 1, I-maps NPCDAG with the
lowest NCP asymptotically converge to classification equiv-
alent structures to G∗.

Supplementary materials include a proof of Theorem 2.
This theorem states that our proposed BNC has the same
classification performance, asymptotically, as that of the
true model. ANB maximizing BDeu does not guarantee an
asymptotic classification equivalence to the true structure
when the true structure does not follow ANB. As inferred
from Theorem 2, the proposed learning BNC achieves an
asymptotic classification equivalence to the true structure
even when the true structure does not follow ANB.

However, the traditional algorithms maximizing BDeu do
not guarantee that one can obtain an I-map with the lowest
NCP. To introduce the proposed method, the following the-
orem is proved.
Theorem 3 When the sample is sufficiently large, the high-
est BDeu scoring structure consistent with an order σ is an
I-map with the lowest NCP among all structures consistent
with σ.

Supplementary materials provide a proof of Theorem 3. Ac-
cording to Theorem 3, the set consisting of the BDeu-largest
structure for each variable order includes the NCP-smallest
structure. This fact suggests the following algorithm. (1) For
all the variable orders, obtain the highest BDeu structures
(Each structure maximizes BDeu given each variable order).
(2) Obtain a structure minimizing NCP among the structures
obtained in (1).

Before presenting details of the procedure necessary for
our method, we introduce the following notation. First, we
let PreσX denote a set of preceding variables to X in a vari-
able order σ, and let G∗σ denote the highest BDeu scor-
ing structure consistent with σ. Additionally, we define
the best parents of Xi in a candidate set U as the par-
ent set which maximizes the local score in U: g∗i (U) =
arg max
W⊆U

Scorei(W). Moreover, we describe a structure G

as a vector G = (Pa0,Pa1, · · · ,Pan) of parent sets: Pai
is the subset of V from which there are edges to Xi. We let
σ0(U) denote a set of variable orders for U in which the first
element is X0. Also, we let G∗(U) denote a structure which
minimizes NCP among all structures composed of U, con-
sistent with orders in σ0(U). When a variable has no child
in a structure, it is a sink in the structure. We use X∗s (U) to
denote a sink in G∗(U).

Learning the proposed BNC is the shortest path to finding
a problem for NPC reverse order graph (NROG), which is

Figure 1: NPC reverse or-
der graph (NROG) of four
variables.

Figure 2: Running ex-
ample of the depth-first
branch and bound algo-
rithm.

a directed graph consisting of nodes corresponding to ele-
ments of 2V \ 2V\{X0}. For a variable Xi ∈ V and a vari-
able set U ⊆ V, NROG has an edge from U to U \ {Xi}.
An example of NROG for V = {X0, X1, X2, X3} is pre-
sented in Figure 1. An edge from U to U \ {Xi} represents
that a sink in G∗(U) is Xi and that the parents of Xi are
g∗i (U \ {Xi}). Moreover, the edge from U to U \ {Xi}
has a cost NCPi(g∗i (U \ {Xi})). Each path from V to X0

in NROG corresponds to each variable order in σ0(V). For
σ0 ∈ σ0(V), one can obtain G∗σ0

(V) by following the path
corresponding to σ0. The cost c(p) of path p corresponding
σ0 is defined as

c(p) =

n∑
i=1

NCPi(g
∗
i (Preσ0

Xi
)) + r0 − 1 = NCP (G∗σ0

(V)).

By finding the shortest path p∗ in which c(p∗) ≤ c(p) for
any path p, one can obtain G∗(V).

Popular methods to solve the shortest path finding prob-
lems are breadth-first search and depth-first search. Their
computational times increase exponentially as the number
of variables increases. Their computational cost can be de-
creased using branch and bound method. For a variable set
U ⊆ V, we define g(U) as the cost of a path from V to
U, and define h(U) as the lower bound of the cost of the
path from U to {X0}. We use f(U) = g(U)+h(U) for the
cutting edges of NROG. When f(U) is higher than a cost
of the current best solution, we cut the node U because any
path which passes U is not the best path.

Figure 2 depicts an example of depth-first search using
branch and bound method for V = {X0, X1, X2, X3}.
After expanding {X0, X1, X2, X3} and searching
{X0, X1, X2}, we expand {X0, X1, X2} and search
{X0, X1}. Then we expand {X0, X1} and search {X0}.
The resulting structure is an I-map with the lowest NCP
among all structures, consistent with the variable order
(X0, X1, X2, X3). The current best solution is updated to
the NCP of this structure. Next, we expand {X0, X2} if
f({X0, X2}) is lower than the current best solution, or cut
{X0, X2} otherwise. Then, we expand {X0, X1, X3} if
f({X0, X1, X3}) is lower than the current best solution, or
otherwise cut {X0, X1, X3}, and so on.

However, traditional heuristic functions used as h(U) are
not applicable for our method to learn the proposed BNC.
We prove the following theorem and propose a new heuristic
function for our learning algorithm.



Theorem 4 For any variable set V, let G∗(V) be an I-
map with the lowest NCP, and let GNB(V) be the naive
Bayes classifiers consisting of a set of feature variables Vc,
which are children of the class variable in G∗(V). Then,
NCP (GNB(Vc)) ≤ NCP (G∗(V)) holds.
Supplementary materials present a proof of Theorem 4. This
theorem states that one can predict the lower bound of NCP
of G∗(V) given Vc. We propose the heuristic function
h∗(U) =

∑
Xi∈(U∪Vc)

NCPi(X0). The proposed heuris-
tic function has consistency. A heuristic function with the
consistency guarantees that one can find the shortest path.
Definition 5 For any node U and R in which there is an
edge from U to R in an NROG, the heuristic function h(U)
has a consistency if and only if h(U) ≤ h(R) + c(U,R)
holds, and where c(U,R) is the cost of edge from U to R.

Theorem 5 h∗ has a consistency.

Supplementary materials include the proof of Theorem 5.
However, we do not obtain Vc before learning structures.

The proposed method predicts the Vc using feature selection
with Bayes factor. Sugahara, Uto, and Ueno (2018) proposed
a method for learning children of the class variable using
the Bayes factor. The Bayes factor is a ratio between BDeu
of independence model g1 and that of dependence model
g2, i.e., BF (X0, Xi) = BDeu(g1)/BDeu(g2). Sugahara,
Uto, and Ueno (2018) determines the independence between
X0 and Xi when the Bayes factor is lower than a threshold.
Bayes factor with BDeu guarantees prediction of the true
children of the class variable when the sample size is suffi-
ciently large. We employ the feature selection method pro-
posed by Sugahara, Uto, and Ueno (2018) to obtain Vc used
in the proposed heuristic function.

Additionally, it is notable that the structure learned us-
ing the proposed method differs from that learned by maxi-
mizing the marginal likelihood of GBN. Although learning
GBN provides a graphical structure to approximate the joint
probability distributions over all the variables, learning the
proposed BNC yields the CI relationship among the feature
variables to optimize the prediction of the class variable.

Experiments
This section describes experiments conducted to demon-
strate the benefits of the proposed method.

Benchmark datasets
First, we compare the classification accuracies of the follow-
ing ten methods using the benchmark datasets in Table 1.
(1) Naive Bayes (2) GBN-CMDL (Grossman and Domingos
2004): Greedy learning GBN method using the hill-climbing
search by minimizing CMDL while estimating parameters
by maximizing LL (3) BNC2P (Grossman and Domingos
2004): Greedy learning method with at most two parents per
variable using the hill-climbing search by maximizing CLL
while estimating parameters by maximizing LL (4) TAN-
aCLL (Carvalho, Adão, and Mateus 2013): Exact learn-
ing TAN method by maximizing aCLL (5) MC-DAGGES
(Mihaljević, Bielza, and Larrañaga 2018): Greedy learning
method in the space of the Markov equivalent classes of

MC-DAGs using the greedy equivalence search (Chicker-
ing 2002) by maximizing CLL while estimating parame-
ters by maximizing LL (6) GBN-BDeu: Exact learning GBN
method by maximizing BDeu (7) ANB-BDeu: Exact learning
ANB method by maximizing BDeu (8) fsANB-BDeu: Exact
learning ANB method by maximizing BDeu with feature
selection by Bayes factor (Sugahara, Uto, and Ueno 2018)
(9) Proposed(BFS): Learning the proposed BNC using the
breadth-first search to the shortest path finding problems
of NROG (10) Proposed(DFB&B): Learning the proposed
BNC using the proposed depth-first branch and bound algo-
rithm to the shortest path finding problems of NROG

We ascertain the ESS N ′ ∈ {1, 10, 100, 1, 000} of
BDeu scores in GBN-BDeu, ANB-BDeu, fsANB-BDeu, Pro-
posed(BFS), and Proposed(DFB&B) using ten-fold cross
validation to obtain the highest classification accuracy. The
proposed methods are implemented in C++. The source
code is available at http://www.ai.lab.uec.ac.jp/software/.
The other methods are implemented in Java. To ensure
double-blind review, the code will be made publicly avail-
able after the manuscript is reviewed and accepted for publi-
cation. As described throughout this paper, our experiments
are conducted on a computer with a 3.2 GHz 16-core pro-
cessor and 128 GB of memory. This experiment uses 24 real
datasets from the UCI repository (Lichman 2013). Continu-
ous variables are discretized using a standard discretization
algorithm proposed by (Fayyad and Irani 1993). In addition,
data with missing values are removed from the datasets. We
use EAP estimators with N ′ijk = 1/(riqi) as conditional
probability parameters of the respective classifiers (Ueno
2010, 2011).

Table 1 presents the classification accuracies of the re-
spective classifiers. The datasets presented in Table 1 are
listed in ascending order of sample per pattern (SPP), which
is the sample size divided by the number of all possible pat-
terns of the variables’ values. Here, the classification accu-
racies represent the average percentage of correct classifica-
tions from ten-fold cross-validation. To confirm the signifi-
cant differences of Proposed(BFS) and Proposed(DFB&B)
from the other methods, we apply Hommel’s tests (Hom-
mel 1988), which are used as a standard in machine learn-
ing studies (Demšar 2006). The p-values are presented at
the bottom of Table 1. Table 2 presents the NCPs of struc-
tures learned using the respective methods. Table 3 presents
the average runtimes of the respective methods. Moreover,
“NTCE” in Table 3 presents the numbers of times Pro-
posed(DFB&B) cuts the edges of NROGs.

The results presented in Table 1 show that Proposed(BFS)
outperforms other methods at the p < 0.1 significance level,
except for fsANB-BDeu. Moreover, Proposed(DFB&B) out-
performs Naive Bayes, GBN-CMDL, MC-DAGGES, and
GBN-BDeu at the p < 0.1 significance level. For large
SPP such as datasets Nos. 20 and 24, the accuracies of
Naive Bayes, BNC2P, and TAN-aCLL tend to be worse
than those of Proposed(BFS) and Proposed(DFB&B) be-
cause of the upper bound of the maximum number of par-
ents. The small upper bound of the maximum number of
parents tends to engender a poor representational power
of the structure (Ling and Zhang 2003). For large SPPs



No. Dataset Variables
Sample

size SPP
Naive-
Bayes

GBN-
CMDL BNC2P

TAN-
aCLL

MC-DAG
GES

GBN-
BDeu

ANB-
BDeu

fsANB-
BDeu

Proposed
(BFS)

Proposed
(DFB&B)

1 Image Segmentation 19 2310 9.41 ×10−15 0.9286 0.7994 0.9481 0.9290 0.9286 0.9390 0.9468 0.9468 0.9550 0.9558
2 Pendigits 17 10992 1.13 ×10−13 0.8805 0.8194 0.9541 0.9630 0.8898 0.9641 0.9636 0.9636 0.9601 0.9609
3 Letter 17 20000 9.32 ×10−13 0.7384 0.4729 0.8444 0.8142 0.7810 0.8350 0.8454 0.8435 0.8608 0.8616
4 Lymphography 19 148 1.63 ×10−7 0.8446 0.7230 0.7973 0.8311 0.8176 0.7500 0.7770 0.7838 0.8041 0.7905
5 EEG 15 14980 2.17 ×10−7 0.6874 0.7592 0.7304 0.7197 0.7166 0.7308 0.7644 0.7644 0.7304 0.7285
6 Breast Cancer Wisconsin 10 683 3.42 ×10−7 0.9751 0.8843 0.9590 0.9488 0.9722 0.9751 0.9751 0.9751 0.9751 0.9751
7 Zoo 17 101 7.34 ×10−5 0.9406 0.7921 0.9406 0.9307 0.9406 0.9307 0.9505 0.9604 0.9505 0.9307
8 Hepatitis 20 80 7.63 ×10−5 0.8500 0.8000 0.8875 0.8750 0.8500 0.6125 0.5750 0.8375 0.7875 0.8000
9 Wine 14 178 1.19 ×10−4 0.9831 0.9494 0.9888 0.9775 0.9831 0.9775 0.9663 0.9663 0.9775 0.9775
10 Australian 15 690 2.23 ×10−4 0.8464 0.8261 0.8348 0.8522 0.8638 0.8507 0.8420 0.8478 0.8551 0.8507
11 Vehicle 19 846 8.07 ×10−4 0.4350 0.6123 0.5922 0.5816 0.5378 0.5768 0.6253 0.6135 0.6019 0.5827
12 Breast Cancer 10 277 8.33 ×10−4 0.7401 0.6173 0.6895 0.7184 0.6282 0.7184 0.7040 0.7473 0.7401 0.7401
13 Heart 14 270 1.22 ×10−3 0.8444 0.8333 0.7963 0.8407 0.8111 0.8074 0.8407 0.8370 0.8074 0.8074
14 HTRU2 9 17898 1.56 ×10−3 0.9689 0.9668 0.9796 0.9764 0.9759 0.9787 0.9779 0.9779 0.9783 0.9784
15 Congressional Voting Records 17 232 1.77 ×10−3 0.9095 0.9698 0.9741 0.9181 0.9052 0.9655 0.9483 0.9307 0.9655 0.9698
16 Solar Flare 11 1389 3.72 ×10−3 0.7811 0.8243 0.8186 0.8229 0.7927 0.8431 0.8229 0.8373 0.8431 0.8431
17 Glass 10 214 6.63 ×10−3 0.5561 0.5607 0.6028 0.6308 0.5467 0.5701 0.6449 0.5911 0.6262 0.6075
18 Contraceptive Method Choice 10 1473 2.66 ×10−2 0.4671 0.4542 0.4630 0.4705 0.4650 0.4542 0.4481 0.4610 0.4623 0.4467
19 Hayes–Roth 5 132 2.29 ×10−1 0.8182 0.6136 0.6515 0.6742 0.5909 0.6212 0.7879 0.7652 0.8333 0.8333
20 Balance Scale 5 625 3.33 ×10−1 0.9152 0.3333 0.8672 0.8656 0.7072 0.9152 0.9152 0.9152 0.9152 0.9152
21 Lenses 5 24 3.33 ×10−1 0.7500 0.8333 0.6667 0.7083 0.7500 0.8333 0.7500 0.8750 0.8750 0.8750
22 Iris 5 150 6.17 ×10−1 0.9400 0.9467 0.9200 0.9400 0.9267 0.9467 0.9400 0.9400 0.9467 0.9467
23 LED7 8 3200 2.50 ×100 0.7294 0.7372 0.7384 0.7350 0.7325 0.7294 0.7294 0.7294 0.7316 0.7325
24 Banknote authentication 5 1372 2.72 ×100 0.9249 0.9413 0.9388 0.9293 0.9388 0.9402 0.9410 0.9410 0.9410 0.9410

average 0.8106 0.7529 0.8160 0.8189 0.7938 0.8111 0.8201 0.8354 0.8385 0.8354
p-value (Proposed(BFS) vs. the other methods) 0.0128 0.0024 0.0071 0.0466 0.0051 0.0012 0.0801 0.10 < - -

p-value (Proposed(DFB&B) vs. the other methods) 0.0847 0.0075 0.10 < 0.10 < 0.0278 0.0166 0.10 < 0.10 < - -

Table 1: Classification accuracies achieved using the respective methods.

No.
Naive-
Bayes

GBN-
CMDL BNC2P

TAN-
aCLL

MC-DAG
GES

GBN-
BDeu

ANB-
BDeu

fsANB-
BDeu

Proposed
(BFS)

Proposed
(DFB&B)

1 1091.0 34356.3 4374.7 2358.0 1091.0 2320.8 25640.8 25619.0 4323.6 5550.7
2 1499.0 68425.8 10467.613435.0 930231.0 15252.9 15986.0 15986.0 9175 9887
3 3665.0109779123.032919.621761.0 113400.6 19121.1 31235.4 30179.8 12354.2 12354.2
4 167.0 292.5 431.0 384.6 587.0 206510.5727675.8 147.4 104.2 145.8
5 137.0 656785.6 494.2 1060.6 34781.4 2834.0 7515.0 7515.0 1849.2 1849.4
6 163.0 1000.0 1126.9 1459.0 7469.2 153.1 163.0 163.0 161.2 161.2
7 146.0 70.4 126.6 295.8 146.0 415.7 1032.9 524.7 508 290
8 39.0 8.1 53.6 75.0 39.0 1977.3 6824.8 470.8 9.6 13.4
9 74.0 23.0 159.7 152.3 74.0 87.2 8183.6 8183.6 28.4 28.4

10 71.0 415.0 363.2 184.8 67.0 19.2 280.6 211.8 64 60
11 75.0 75.4 69.6 143.0 109.0 79.7 322.2 312.2 1377 1018.2
12 65.0 1122.0 352.9 144.8 14979.0 3.6 103.6 28.4 35.2 30.2
13 41.0 51.2 91.8 82.2 111.8 22.6 52.2 49.8 19.2 19.2
14 99.0 28672.0 221.3 645.0 3524.0 246.1 2119.0 2119.0 197.8 176.2
15 33.0 4.0 17.4 63.0 31.2 17.6 96.2 85.0 9.8 9
16 206.0 1381.4 624.6 839.6 8342.0 19.4 904.4 308.6 8 8
17 59.0 69.2 83.5 107.0 80.6 30.2 106.4 78.8 480.2 509.6
18 53.0 780.8 123.5 121.4 234.2 11.0 138.8 137.0 32.6 27.2
19 35.0 128.0 93.5 107.0 198.8 128.0 35.0 29.0 29 29
20 50.0 1250.0 179.2 194.0 458.0 48.4 50.0 50.0 50 50
21 17.0 8.3 26.7 29.3 17.0 8.2 17.3 8.3 8.3 8.3
22 26.0 12.6 55.6 62.0 102.8 18.0 36.8 36.8 18.8 18.8
23 79.0 124.0 136.5 139.0 119.0 78.1 79.0 79.0 94 98
24 29.0 126.0 101.9 71.0 355.0 247.6 315.4 315.4 15.4 15.4

average 330.0 4607262.7 2195.6 1829.8 46522.9 10402.1 34538.1 3859.9 1289.7 1348.2

Table 2: Number of class variable parameters (NCP) of the
learned structures obtained using the respective methods.

such as Nos. 3 and 6, GBN-CMDL and MC-DAGGES have
lower accuracy than Proposed(BFS) does because the exact
learning methods estimate the network structures more pre-
cisely than the greedy learning methods do. Proposed(BFS)
and Proposed(DFB&B) provide much higher accuracies
than GBN-BDeu and ANB-BDeu do for small SPP, such
as dataset No. 8. Table 2 shows that Proposed(BFS) and
Proposed(DFB&B) provide smaller NCPs than GBN-BDeu
and ANB-BDeu do in the dataset because Proposed(BFS)
and Proposed(DFB&B) directly minimizes NCP, but GBN-
BDeu and ANB-BDeu minimize the numbers of all parame-
ters. Consequently, Proposed(BFS) and Proposed(DFB&B)
can avoid overfitting to the datasets. That feature improves
the classification accuracies for small SPP. The classifica-
tion accuracies of Proposed(BFS) and Proposed(DFB&B)
are almost identical to those of GBN-BDeu, ANB-BDeu, and
fsANB-BDeu for large SPP. Especially, our findings indi-
cate that neither the difference between Proposed(BFS) and
ANB-BDeu nor the difference between Proposed(BFS) and
fsANB-BDeu is significant. The reason might be that datasets
in Table 1 satisfy Assumptions 1 and 2. As shown in the next
subsection, we demonstrate that the proposed method out-
performs GBN-BDeu, ANB-BDeu, and fsANB-BDeu when
Assumptions 1 and 2 are violated. The classification accu-
racies of Proposed(BFS) are approximately equal to those
of Proposed(DFB&B) for each dataset. However, Pro-
posed(BFS) provides higher average classification accuracy
than that of Proposed(DFB&B). Because Proposed(BFS)

Runtime NTCE

No.
Naive-
Bayes

GBN-
CMDL BNC2P

TAN-
aCLL

MC-DAG
GES

GBN-
BDeu

ANB-
BDeu

fsANB-
BDeu

Proposed
(BFS)

Proposed
(DFB&B)

Proposed
(DFB&B)

1 0.0 2573.8 78.1 540.9 5.9 860.5 434.1 2713.0 5411.7 296.7 149209.5
2 0.0 8351.6 496.7 852.0 197.9 1227.2 605.7 6461.7 700.2 147.4 37821.8
3 0.0 60640.0 2420.7 2238.4 511.2 2231.41107.2 3671.8 504.2 103.2 78524.0
4 0.0 78.1 3.6 33.9 0.5 67.4 34.1 62.7 555.7 97.3 189638.4
5 0.0 1604.4 84.4 18.1 33.1 37.7 20.5 295.1 25.7 12.0 13069.7
6 0.0 5.0 1.1 2.2 0.5 0.3 0.2 2.0 0.3 0.1 98.0
7 0.0 40.7 1.4 8.0 0.3 5.7 2.8 6.5 377.2 18.2 6915.0
8 0.0 32.4 1.5 30.6 0.2 65.7 33.0 290.0 10044.8 250.8 386621.3
9 0.0 11.0 1.4 3.1 0.3 0.9 0.5 4.2 14.8 5.6 5945.4

10 0.0 54.9 3.6 4.9 0.7 7.2 3.7 10.3 21.3 7.7 8652.0
11 0.0 351.2 12.0 37.9 5.1 102.3 55.3 177.2 6527.6 206.5 159026.0
12 0.0 2.5 0.5 2.2 0.2 0.2 0.1 0.2 0.3 0.2 176.1
13 0.0 12.3 1.3 2.6 0.4 1.2 0.7 4.5 10.9 4.5 5104.1
14 0.0 98.2 12.7 2.2 6.1 0.3 0.2 3.2 0.2 0.3 74.5
15 0.0 29.1 1.4 5.6 0.3 8.3 4.1 23.9 427.1 34.8 22001.9
16 0.0 534.1 6.5 6.8 1.6 0.3 0.2 0.4 0.9 0.5 326.2
17 0.0 3.8 0.7 4.7 0.2 0.1 0.0 0.4 0.5 0.3 178.9
18 0.0 15.9 2.2 2.8 0.8 0.2 0.1 0.9 0.4 0.2 134.1
19 0.0 0.1 0.1 2.8 0.0 0.0 0.0 0.0 0.0 0.0 3.3
20 0.0 0.3 0.2 2.8 0.1 0.0 0.0 0.1 0.0 0.0 4.0
21 0.0 0.1 0.1 2.7 0.0 0.0 0.0 0.1 0.0 0.0 3.9
22 0.0 0.1 0.1 2.7 0.0 0.0 0.0 0.1 0.0 0.0 3.4
23 0.0 40.7 8.6 7.3 1.1 0.1 0.0 1.0 0.1 0.1 27.6
24 0.0 0.4 0.3 2.1 0.1 0.0 0.0 0.1 0.0 0.0 1.9

average 0.0 3103.4 130.8 159.1 32.0 192.4 96.0 572.0 1026.0 49.4 44315.0

Table 3: Average runtimes (s) of the respective methods and
the numbers of times Proposed(DFB&B) cuts edges.
uses no branch and bound algorithm to cut edges of NROGs,
Proposed(BFS) estimates the proposed BNC structures more
precisely than Proposed(DFB&B) does. From Table 3, the
average runtime of the Proposed(DFB&B) is shorter than
those of the other methods, except for MCDAGGES. Es-
pecially, Proposed(DFB&B) provides much shorter run-
time than Proposed(BFS) does for large NTCE of Pro-
posed(DFB&B) such as datasets Nos. 1 and 8. The results
demonstrate the efficiency of the proposed branch and bound
algorithm of Proposed(DFB&B).

Finally, the classification accuracies of the ten methods
for eleven large datasets from the UCI repository are com-
pared. Table 4 presents the classification accuracies of the
respective classifiers for the large datasets. In Table 4, “time
over (TO)” signifies that learning was not completed within
a time limit of 6 hr and “out of memory (MO)” signifies
a failure to learn the structure because of memory insuf-
ficiency. The results presented in Table 4 show that Pro-
posed(DFB&B) outperforms the other methods at the p <
0.1 significance level. TAN-aCLL fails to learn structures
because of MO. Four exact learning methods (GBN-BDeu,
ANB-BDeu, fsANB-BDeu, and Proposed(BFS)) fail to learn
structures because of TO. The computational time and space
of these exact learning methods increase exponentially with
the number of variables. However, Proposed(DFB&B) can
be stopped at any time. The current best solution is obtain-
able because the depth-first search sequentially updates the
current best solution.



No. Dataset Variables
Sample

size
Naive-
Bayes

GBN-
CMDL BNC2P

TAN-
aCLL

MC-DAG
GES

GBN-
BDeu

ANB-
BDeu

fsANB-
BDeu

Proposed
(BFS)

Proposed
(DFB&B)

1 wdbc 31 569 0.9139 0.9209 0.9209 MO 0.9156 TO TO TO TO 0.9350
2 ionosphere 35 351 0.7550 0.8860 0.7493 MO 0.7493 TO TO TO TO 0.8832
3 kr-vs-kp 37 3196 0.6640 0.9252 0.8339 MO 0.7672 TO TO TO TO 0.9252
4 biodeg 42 1055 0.7877 0.8237 0.8284 MO 0.8066 TO TO TO TO 0.7877
5 Flowmeters D 44 180 0.8333 0.8000 0.8833 MO 0.8500 TO TO TO TO 0.8833
6 Parkinson 48 240 0.7625 0.5000 0.4750 MO 0.7708 TO TO TO TO 0.7708
7 PAMAP2 53 174915 0.6864 0.6306 0.6502 MO 0.7052 TO TO TO TO 0.8634
8 spam 58 4601 0.8794 0.9270 0.9168 MO 0.8813 TO TO TO TO 0.9331
9 molecular 61 3190 0.9433 0.9241 0.9364 MO 0.9266 TO TO TO TO 0.9464
10 Nuclear 75 1047 0.9303 1.0000 1.0000 MO 0.9370 TO TO TO TO 0.9914
11 MI 116 544 0.9154 0.9081 0.9136 MO 0.9154 TO TO TO TO 0.9375

average - - 0.8247 0.8405 0.8280 - 0.8387 - - - - 0.8961
p-value(Proposed(DFB&B) vs. the other methods) 0.0051 0.0930 0.0366 - 0.0069 - - - - -

Table 4: Classification accuracies of the respective methods used for large datasets.
ANB-BDeu GBN-BDeu fsANB-BDeu Proposed(BFS)

Network
Sample

size avgKLD NCP Imin(NP) MB avgKLD NCP Imin(GBN) MB avgKLD NCP Imin(NP) MB avgKLD NCP Imin(NP) MB
100 5.11× 10−2 9 × 4 2.70× 10−2 5 × 2 5.87× 10−2 7 × 3 2.70× 10−2 5 × 2

Cancer 1,000 4.11× 10−2 9 × 4 2.67× 10−2 5 × 2 3.97× 10−2 7 × 3 2.67× 10−2 5 × 2
(Structure (1)) 10,000 1.27× 10−3 11 © 4 1.27× 10−3 8 © 4 1.27× 10−3 11 © 4 1.27× 10−3 11 © 4

100,000 8.46× 10−5 11 © 4 8.46× 10−5 8 © 4 8.46× 10−5 11 © 4 8.46× 10−5 11 © 4
100 8.81× 10−2 21 × 7 5.21× 10−2 5 × 2 1.04× 10−1 13 × 5 4.40× 10−2 3 × 1

Asia 1,000 3.70× 10−2 21 × 7 3.40× 10−2 9 × 3 4.89× 10−2 7 × 3 6.38× 10−2 7 × 2
(Structure (2)) 10,000 2.58× 10−2 21 × 7 3.60× 10−3 10 × 5 2.88× 10−2 15 × 5 2.46× 10−2 11 × 4

100,000 1.94× 10−3 25 × 7 2.72× 10−4 10 © 5 1.32× 10−2 17 × 5 2.72× 10−4 13 © 5
100 2.20× 10−1 29 × 3 2.08× 10−1 3 × 1 2.20× 10−1 29 × 3 8.18× 10−2 5 × 1

Markov net 1,000 6.47× 10−2 29 × 3 1.38× 10−2 17 × 2 6.47× 10−2 29 × 3 6.63× 10−2 5 × 1
(Structure (3)) 10,000 2.96× 10−3 29 × 3 2.96× 10−3 27 × 3 2.96× 10−3 29 × 3 4.43× 10−4 17 © 2

100,000 1.20× 10−3 29 × 3 1.20× 10−3 29 × 3 1.20× 10−3 29 × 3 7.94× 10−5 17 © 2

Table 5: NCPs of structures learned by ANB-BDeu, GBN-BDeu, fsANB-BDeu, and Proposed(BFS), and the average KLDs
between the referenced (set true) posteriors of the class variable and those of the four methods.

Figure 3: Structures: (1) the Cancer network, (2) the Asia
network, and (3) a Markov network with a cycle.

Simulation datasets
To demonstrate the advantage of the proposed method com-
pared to GBN-BDeu, ANB-BDeu, and fsANB-BDeu, this
subsection presents additional experiments using simulation
data. The experiments compare NCPs of structures learned
using the four methods and compare the Kullback–Leibler
divergences (KLDs) between the referenced (set true) poste-
riors of the class variable and those using the four methods
from simulation datasets. This experiment uses the follow-
ing three networks: the Cancer network (Scutari 2010) in the
structure (1) of Figure 3, which satisfies Assumptions 1 and
2; the Asia network (Scutari 2010) in the structure (2) of
Figure 3, which satisfies Assumption 1 but which violates
Assumption 2; and the Markov network in the structure (3)
of Figure 3, which violates Assumptions 1 and 2.

From the three networks, we generate datasets randomly
with sizes N = 100, 1, 000, 10, 000, and 100, 000. Based on
the generated data, after learning BNC structures using the
four methods, we evaluate the KLDs and the NCPs. Table
5 presents the NCPs and the average KLD over all feature
variables’ values. “Imin(GBN)” and “Imin(NP)” in Table 5
respectively signify whether the learned structure is an I-
map with the lowest NCP in all GBN structures and in all
NPCDAGs. In Table 5, “MB” signifies the size of the class
variable’s Markov blanket.

Results demonstrate that, for the Cancer network, the av-
erage KLDs between the referenced (set true) posteriors of
the class variable and the ones learned by all four methods
are identical when N ≥ 10, 000 because the four methods
learn an I-map with the lowest NCP. Similarly, for the Asia
network, the average KLDs between the referenced (set true)
posteriors of the class variable and those learned by Pro-

posed(BFS) are identical to those by exact learning GBN-
BDeu when N ≥ 10, 000 because Proposed(BFS) and the
GBN-BDeu learn an I-map with the lowest NCP. However,
ANB-BDeu and fsANB-BDeu provide larger NCPs and larger
average KLD than GBN-BDeu and Proposed(BFS) do when
N ≥ 10, 000. The reason is that ANB-BDeu and fsANB-
BDeu do not guarantee an asymptotic classification equiva-
lence to the referenced (set true) model when Assumption 2
does not hold.

Moreover, in the Markov network presented in Figure 3,
the average KLDs between the referenced (set true) posteri-
ors of the class variable and those learned by Proposed(BFS)
are smaller than those learned by GBN-BDeu when N ≥
10, 000 because Proposed(BFS) learns I-maps with the low-
est NCP, but the GBN-BDeu does not. The reason is that
the GBN-BDeu does not asymptotically guarantee estima-
tion of an I-map minimizing NCP, although it guarantees
minimization of the number of all parameters. Furthermore,
GBN-BDeu has a larger size of the class variable Markov
blanket than Proposed(BFS) does when N ≥ 10, 000.

Conclusions
We proposed a new BNC having an I-map NPCDAG with
the lowest NCP. The proposed BNC asymptotically does not
include irrelevant feature variables for the class variable be-
cause NPCDAGs do not force the addition of edges between
the class variable and feature variables. The proposed learn-
ing BNC achieves asymptotic classification equivalence to
the true structure, even when the true structure does not fol-
low ANB. Moreover, the proposed BNC is guaranteed to
minimize the NCP irrespective of whether the true model
follows a BN, or not. This study proposed and evaluated
an algorithm to learn the proposed BNC using depth-first
branch and bound algorithm. Specifically, we (1) prove that
the NCP of Naive Bayes is lower bound NCP of the pro-
posed BNC and (2) propose a new heuristic function using
the lower bound. The experiment results demonstrated the
reflectivity of the proposed method. Although this paper did
not analyze the features of the explainable graphical struc-
ture of the proposed method, our future task is to clarify the
explainability of the proposed method as a graphical model.
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