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Integration of Prediction Scores From Various
Automated Essay Scoring Models Using Item
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Abstract—In automated essay scoring (AES), essays are auto-
matically graded without human raters. Many AES models based
on various manually designed features or various architectures
of deep neural networks (DNNs) have been proposed over the
past few decades. Each AES model has unique advantages and
characteristics. Therefore, rather than using a single-AES model,
appropriate integration of predictions from various AES models
is expected to achieve higher scoring accuracy. In this article, we
propose a method that uses item response theory to integrate pre-
diction scores from various AES models while taking into account
differences in the characteristics of scoring behavior among models.
It is found that the proposed method achieves higher accuracy than
that of individual AES models and conventional score-integration
methods. Furthermore, the proposed method facilitates interpret-
ing each AES model’s scoring characteristics and score-integration
mechanism.

Index Terms—Automated essay scoring (AES), deep neural
networks (DNNs), item response theory (IRT), rater effects.

I. INTRODUCTION

E SSAY-WRITING tests have been used in various as-
sessment situations to measure examinees’ practical and

higher-order abilities, including logical thinking, critical rea-
soning, and creative thinking [1], [2], [3], [4], [5]. Essay-writing
tests require grading by human raters for essays that are written
by examinees concerning a given topic. However, essay grad-
ing is an expensive and time-consuming task, especially for
large-scale tests [5], [6]. To resolve this problem, various studies
have examined automated essay scoring (AES), in which natural
language processing (NLP) and machine learning are used to
grade essays automatically as an alternative to human grading.
AES is also important in the context of teaching writing in an ed-
ucational setting. To efficiently cultivate students’ writing skills,
immediate and accurate feedback on their writing is required [7],
[8]. Particularly, the accuracy of the feedback is critical because
erroneous feedback might lead to misconceptions and biases in
students’ knowledge and understanding [7]. Furthermore, many
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formative feedback systems and analytical scoring systems for
students’ writing, which are tools for supporting writing educa-
tion, are strongly related to AES technologies (e.g., [8], [9], [10],
[11], [12]). These facts indicate that realizing accurate AES is
crucial for both teaching and assessing writing in an educational
setting.

Two approaches are generally used in most AES models:
1) feature engineering; and 2) automatic feature extraction [5],
[6], [13]. The feature-engineering approach uses manually de-
signed features, such as the essay length and the number of
spelling errors, and predicts essay scores based on a regression
or classification model with such feature values as input. A
representative model is e-rater [14], [15], which was developed
and used by the Educational Testing Service (ETS) organization.
Many other models with various textual features have also been
proposed in the past few decades (e.g., [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26]).

Feature-engineering approach models are advantageous in
terms of interpretability and explainability, but they generally
require careful feature design and selection to achieve high
accuracy. The automatic feature extraction approach has become
popular to eliminate the need for feature engineering.

Recent automatic feature extraction approach models gen-
erally use deep neural networks (DNNs). An early DNN-AES
model was proposed in 2016 by Taghipour and Ng [27]. Their
model consisted of a convolutional neural network (CNN) and a
recurrent neural network (RNN). Based on this model, various
extension models intended to capture more complex textual
features have been proposed [28], [29], [30], [31], [32], [33],
[34], [35]. For example, some extension models are designed to
explicitly capture textual coherence, which is an important factor
in essay quality [31], [32], [33], [34], [35]. Furthermore, there
are other DNN-AES models based on transformer networks [36]
instead of CNNs and RNNs. Such models [37], [38], [39], [40],
[41], [42], [43], [44] generally use pretrained transformer-based
language models, including Bidirectional Encoder Representa-
tions from Transformers (BERT) [45].

These DNN-AES models predict a score from the sequence
of words in the essay, meaning that no manually designed fea-
tures are required. However, some recent studies have proposed
hybrid models that incorporate manually designed features into
DNN-AES models [10], [25], [42], [44], [46] and have reported
that such a hybrid approach is effective for improving scoring
accuracy.
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Such conventional AES models have different characteris-
tics of scoring behavior because each model employs different
features or different DNN architectures. Therefore, rather than
using a single-AES model, integrating predictions from various
AES models appropriately is expected to achieve higher scoring
accuracy. A simple score-integration strategy is to calculate the
average scores or majority vote scores. However, such simple
methods might be inaccurate because they ignore differences in
characteristics of scoring behavior among AES models. Another
score-integration strategy is stacking, a popular ensemble learn-
ing approach [47]. A stacking-based AES can be designed as a
supervised regression model, such as linear regression, support
vector regression (SVR), and regression tree, which receives
multiple AES scores as input and outputs integrated scores.
However, the stacking method using such popular regression
models has the following drawbacks.

1) Those regression models are necessarily not efficient in
modeling the scoring behaviors of human raters and AES
models because they are not specialized in the essay
scoring domain. The inefficient modeling may prevent
maximizing the scoring accuracy.

2) Those models do not provide a clear meaning for their
parameters, making it difficult to analyze the scoring
behaviors of human raters and AES models in detail. The
lack of this interpretability hinders our understanding of
the score-integration mechanism and the characteristics of
individual AES models.

To resolve these problems, this article proposes a method to
integrate scores from various AES models using item response
theory (IRT) models incorporating raters’ characteristic param-
eters [48], [49], [50], [51], [52], [53], [54], [55], [56], [57].
Those IRT models have long been studied in the educational
measurement field to realize accurate scoring while taking into
account differences in rater characteristics, such as severity and
consistency. Those models have been applied to various per-
formance assessments, including essay writing tests, and have
demonstrated their effectiveness in realizing accurate scoring
and detailed analysis of rater characteristics [56], [57], [58],
[59], [60]. This study applies such IRT models by regarding
AES models as human raters to obtain integrated essay scores.
Our experiments using an AES benchmark dataset demonstrate
the effectiveness of the proposed method.

Note that another AES method that uses IRT incorporating
rater parameters was recently proposed [61], [62]. However,
the objective of that study was to obtain accurate gold-standard
scores for essays, which are then used for AES model training.
Gold-standard scores for training data are generally created
by sharing the essay grading task among many human raters,
although scores from some raters may be inaccurate and unreli-
able [63], [64], [65], [66]. Thus, that study proposed the use of
IRT to remove the effects of such unreliable raters from training
data, indicating that the objectives and method are completely
different from those in our study.

It should also be noted that, although this study focuses on
AES, the proposed method can also be used for automated short-
answer grading (ASAG) and other text-scoring tasks, for which
many models with different characteristics have been developed.
For example, there are many ASAG models [67], [68]; some are

similar to AES models, but others are different. Representative
models similar to AES models include c-rater [69], which is a
representative feature-engineering approach model, and CNN-
RNN-based and BERT-based DNN models [70], [71], [72], [73].
Major differences between AES and ASAG models are 1) the
importance of coherence is often emphasized in AES but not
necessarily in ASAG and 2) reference answers are often used for
ASAG [74], [75], [76] but not for AES. Although some similar
models and task-dependent models exist for different scoring
tasks, as explained above, the proposed method is applicable to
those tasks for which many different scoring models exist.

II. RESEARCH CHALLENGES

This study provides a theoretical contribution beyond the
simple engineering application of the improved essay scoring
system. The purpose of this study is to clarify the effectiveness
of IRT models with rater characteristic parameters in order to
integrate predictions from various AES models. To this end, we
present the following two research challenges.

1) The proposed IRT-based score-integration method can
integrate scores from various AES models while consid-
ering the characteristics of their scoring behavior, which
are parameterized appropriately based on extensive re-
search in the educational measurement domain. Owing
to the sophisticated modeling of scoring behavior, the
proposed method is expected to provide higher scoring
accuracy compared with individual AES models and other
score-integration methods, including the general stacking
method. Accordingly, our first research challenge is to
examine how effectively the proposed method improves
scoring accuracy.

2) IRT models provide explicit meaning for the model pa-
rameters, helping us to understand the score-integration
mechanism and the characteristics of individual AES mod-
els. Thus, our second research challenge is to show how
to analyze the score integration mechanism and the char-
acteristics of AES models based on the proposed method.

Although IRT models that incorporate rater-characteristic
parameters have been widely used in various educational assess-
ment studies (e.g., [49], [50], [51], [52], [53], [54], [55], [56],
[57]), no previous study has used such IRT models to integrate
predictions from various AES models. Therefore, it remains
unclear how those IRT models might be applied to realize AES
integration and how the method would be beneficial. The fact
that our study answers these questions confirms its theoretical
contribution.

III. AES MODELS

This section presents a brief review of conventional AES
models based on the feature-engineering and automatic feature
extraction approaches.

A. Feature-Engineering Approach

In the feature-engineering approach, models predict essay
scores based on textual features, which human experts must
design manually. Typical features are essay length and number of
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grammatical and spelling errors. In this approach, such textual
features are first calculated from a target essay text; then, the
feature vector is input into a regression or classification model,
and a score is output.

A representative model is e-rater [14], which was developed
by ETS and has been used in the Test of English as a Foreign Lan-
guage and the Graduate Record Examination. E-rater v.2 [15]
uses 12 features and predicts essay scores based on a linear
regression model with empirically determined weight parame-
ters. The Enhanced AI Scoring Engine (EASE) [16]1 is another
model that has recently come into widespread use and achieved
high performance in the Automated Student Assessment Prize
(ASAP) competition on Kaggle.2 EASE uses several types of
features, including length-based features, part-of-speech-based
features, prompt-relevant features, and bag-of-words-based fea-
tures. There are many other models that incorporate various
types of features, such as word topicality [17], bag-of-super-
word embedding [18], argument features (e.g., number of claims
and number of supporting relations) created by argument-mining
techniques [19], a sentence semantic similarity defined using a
graph-based text analysis method [20], and semantic features
that are specific to the Chinese language [21].

Feature-engineering approach models are generally based
on linear regression [14], [16], SVR [16], XGBoost [25], and
DNNs [26] and require their training using a training dataset,
although e-rater v.2 uses empirically determined weights for the
regression model.

B. Automatic Feature Extraction Approach

As explained in Section I, recent automatic feature extraction
approach models generally use DNNs. Many DNN-AES models
have recently been proposed (e.g., [27], [28], [29], [30], [31],
[32], [33], [34], [35], [37], [38], [39], [40], [41], [42], [43], [44]).

One of the most popular DNN-AES models is the CNN-RNN-
based model [27]. This model calculates a score for a targeted
essay, which is defined as a sequence of words, through five
DNN layers, namely, the lookup table layer, the convolution
layer, the recurrent layer, the pooling layer, and the linear layer
with sigmoid activation. See Appendix A for details on the whole
architecture. There are many variants of this model, such as those
employing different pooling methods in the pooling layer [28],
[30], those using a different word embedding in the lookup table
layer [28], and those consisting of a word-level CNN and a
sentence-level CNN [29].

One limitation of the CNN-RNN-based models is that they
cannot directly consider textual coherence, which represents the
semantic connection and consistency of the whole text. Coher-
ence is an important factor for determining the quality of essays.
Thus, some DNN-AES models with a function to capture textual
coherence explicitly have been proposed [31], [32], [33], [34],
[35], [44]. A representative model is the SkipFlow model [32],
an extension of the CNN-RNN-based model that incorporates a
neural tensor layer, which explicitly captures textual coherence.
See Appendix B for details on the SkipFlow model. Another

1[Online]. Available: https://github.com/edx/ease
2[Online]. Available: https://www.kaggle.com/c/asap-aes

model tries to capture the coherence based on the continuity in
the semantics between the adjacent two sentences [33].

While the above-introduced models used CNNs and RNNs,
some recent models have used attention-based DNN architec-
tures [37], [38], [39], [40], [41], [42]. A popular attention-based
DNN is a transformer network [36] that consists of stacked
self-attention and fully connected layers. Transformer networks
are known to capture long-distance dependence between words
in a text with more accuracy than that of RNNs and CNNs.

Transformer-based DNN-AES models typically use pre-
trained models. A representative pretrained model is BERT [45],
which was released by the Google AI Language team. BERT
is pretrained on massive amounts of unlabeled text data for
two tasks, called masked language modeling and next-sentence
prediction. BERT can be used for various NLP tasks, including
AES, by applying a fine-tuning (model retraining) based on a
task-specific supervised dataset. See Appendix C for details on
the BERT-based AES. The BERT-based AES also has various
extensions, such as those incorporating architectures to capture
the textual coherence [43], [44], those extended toward multitask
learning [39], [77], and those using the DistilBERT [78], a
variant of BERT [79].

C. Hybrid Approach

The feature-engineering and DNN-based automatic feature
extraction approaches can be viewed as complementary rather
than competing [6] because they have different advantages and
drawbacks. Thus, some hybrid models that integrate the two
approaches have recently been proposed [10], [25], [42], [44],
[46].

Hybrid models are generally formulated as DNN-AES mod-
els incorporating manually designed features. Specifically, they
concatenate a feature vector to either a predicted score of a
DNN-AES model or a hidden vector obtained from an inter-
mediate layer of a model. Then, the concatenated vector is
mapped to a score value through a regression layer, such as
a linear layer with sigmoid activation. The DNN-AES models
used in the hybrid models include variants of the CNN-RNN-
based model [10], [25] and the BERT-based model [42]. As
an example, Appendix C introduces details on the BERT-based
hybrid AES model.

Other hybrid models [44], [46] consist of two types of DNNs.
One processes word sequences in the same way as the con-
ventional DNN-AES model, and the other processes manually
designed features.

IV. ITEM RESPONSE THEORY

The conventional AES models discussed above have different
scoring behaviors because they employ different features or
different DNN architectures. The purpose of this study was
to integrate prediction scores from various AES models using
IRT while considering differences in the characteristics of their
scoring behaviors.

IRT [80] is a test theory based on mathematical models.
IRT uses probabilistic models, called IRT models, to estimate
examinees’ abilities from testing data, which generally consist

https://github.com/edx/ease
https://www.kaggle.com/c/asap-aes
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of binary or polytomous scores that the examinees received on
test items. IRT offers the following benefits.

1) Examinee ability can be estimated in the context of test
item characteristics, including item difficulty and discrim-
ination.

2) Abilities of examinees who take different tests can be
estimated on the same scale.

3) Missing data can be applied easily.
Traditional IRT models are applicable to data consisting

of scores that examinees receive on test items. Examples in-
clude the Rasch model, the two-parameter logistic model, the
graded response model [81], and the generalized partial credit
model [82]. However, this study applied IRT to other data con-
sisting of scores for each examinee’s essay provided by multiple
raters, including human raters and AES models. IRT models
incorporating rater characteristic parameters can be applied to
such data [49], [50], [51], [52], [53], [54], [55], [56], [57].

The most popular model is the many-facet Rasch model
(MFRM) [51]. The MFRM, however, relies on some strong
assumptions that do not hold in practice. Various extensions
of the models have been proposed to relax these assumptions,
including hierarchical rater models [52], [53], rater bundle mod-
els [54], and trifactor models [55]. The present study employs
one of the latest extension models, which is called generalized
MFRM (GMFRM) [57].

A. Generalized Many-Facet Rasch Model

In the GMFRM, the probability that rater r assigns score k to
the essay of examinee j for test item i (which means an essay
task or a prompt) is defined as

Pijrk =
exp

∑k
m=1 [Dαiαr(θj − βi − βr − drm)]∑K

l=1 exp
∑l

m=1 [Dαiαr(θj − βi − βr − drm)]
(1)

where θj represents the latent ability of examinee j, αi and
βi represent the respective discrimination power and difficulty
of item i, αr and βr represent the respective consistency and
severity of rater r, drm represents the severity of rater r
against rating category m, and K indicates the number of
categories. D = 1.7 is the scaling constant used to minimize
the difference between the normal and logistic distribution
functions. Here,

∑I
i=1 logαi = 0,

∑I
i=1 βi = 0, dr1 = 0, and∑K

k=2 drk = 0 are given for model identification.
Note that this study applies the GMFRM to each item inde-

pendently by removing the item parameters for the following
two reasons.

1) To appropriately estimate the item parameters based on the
original GMFRM while ensuring parameter linking, we
require a scored essay dataset in which some examinees
answered all the items [83], [84]. However, almost none of
the existing datasets that are used for AES studies include
such examinees. Therefore, it would be very difficult to
estimate the item parameter appropriately based on the
existing AES datasets.

2) Our objective is to estimate the integrated essay scores by
using the GMFRM while considering the scoring behavior
of each individual AES model, which is represented by

TABLE I
PARAMETERS FOR FOUR RATERS WITH DIFFERENT CHARACTERISTICS

the rater parameters in the model. Thus, the main interest
in our use of IRT is the rater parameters, not the item
parameters.

Although the item parameters are typically a major interest
when using IRT, omitting them in this study is reasonable and
does not impair the main feature of the IRT models that incor-
porate rater parameters, for the above reasons. When the item
parameters are omitted, the GMFRM equation can be rewritten
as follows:

Pjrk =
exp

∑k
m=1 [Dαr(θj − βr − drm)]∑K

l=1 exp
∑l

m=1 [Dαr (θj − βr − drm)]
. (2)

In this form of GMFRM, θj represents not only the ability
of examinee j, but also a latent score of the examinee’s essay
estimated from multiple raters’ scores, because there is only a
single essay for each examinee.

B. Interpretation of Rater Parameters in GMFRM

The GMFRM can consider the following three common rater
characteristics [63], [85], [86], [87], [88], [89].

1) Consistency: The degree to which a rater assigns similar
ratings to essays of similar quality.

2) Severity: The tendency of a rater to give consistently lower
ratings is justified by the quality of the essays.

3) Range restriction: The tendency to overuse a few rating
categories.

To show how these characteristics are represented, Fig. 1
shows item response curves (IRCs) of the GMFRM, which are
drawn by plotting the probability Pjrk in (2), for four raters for
the parameters presented in Table I. In the figure, the horizontal
axis shows the latent score θj and the vertical axis shows the
probability Pjrk. These IRCs show that essays with higher θj
tend to obtain higher scores.

In the GMFRM, rater consistency is represented by αr, with
lower values indicating smaller differences in response probabil-
ities between rating categories. This can be confirmed in Fig. 1,
which compares raters 1 and 2, who have different consistency
levels. This figure suggests that scores given by a rater with a
lower consistency parameter will be unreliable because the rater
tends to assign different ratings to essays with similar qualities.

Rater severity is represented by βr. The IRC shifts to the right
as this parameter value increases, indicating that raters with high
βr values have a tendency to consistently assign low scores. In
Fig. 1, the IRC for rater 3 with a high βr value shifts to the right
overall.

The GMFRM represents the range restriction characteristic
as drm. The closer dr(m+1) and drm become, the lower the
overall probability of responding with category m. Conversely,
the higher the differencedr(m+1) − drm becomes, the higher the
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Fig. 1. IRCs of four raters for the parameters presented in Table I.

response probability for categorym. In Fig. 1, rater 4 has smaller
dr3 − dr2 and dr5 − dr4 values and relatively larger dr4 − dr3
and dr6 − dr5 values. Thus, in the IRC, response probabilities
for categories 2 and 4 decrease, whereas those for categories
3 and 5 increase, representing a range restriction characteristic
with overuse of categories 3 and 5 while avoiding categories 2
and 4.

The GMFRM can estimate latent scores θj while taking into
account differences in these characteristics among raters while
earlier popular IRT models with rater parameters, including
MFRM, cannot consider all the above rater characteristics si-
multaneously. Thus, this model can realize an accurate score
estimation compared with the other IRT models when raters with
various characteristics exist [57], [58]. This is why we chose the
GMFRM.

V. PROPOSED METHOD

This study proposes a method to integrate scores from various
AES models using the GMFRM. Specifically, the proposed
method applies the GMFRM by regarding AES models as human
raters. The proposed method consists of three steps, namely, AES
model training, IRT parameter estimation, and integrated score
prediction. The detailed procedure for integrating these steps is
as follows.

1) AES model training: First, we train multiple AES mod-
els individually using training data consisting of essays
with gold-standard human scores. This is the same as the
procedure required to train any conventional AES model.

2) IRT parameter estimation: This step estimates the char-
acteristic parameters of the AES models based on the
GMFRM. The parameter estimation is conducted using
another dataset consisting of essays with gold-standard
human scores, such as development data. The detailed pro-
cedure for this is as follows: a) Generate prediction scores
for essays in the data using each trained AES model. b)
Estimate the GMFRM parameters using those AES scores
and the gold-standard human scores. Fig. 2 illustrates the
outline of this procedure. Through this procedure, we can
obtain the GMFRM parameters for the AES models and
the human rater who created gold-standard scores. This
study uses a Bayesian estimation based on a Markov-chain

Fig. 2. Outline of IRT parameter estimation in the proposed method. Note
that Xr,j represents the score for the essay of the jth examinee provided by the
rth AES model or human (where r = 0 represents the human rater and r ≥ 1
corresponds to AES models).

Monte Carlo (MCMC) algorithm for the IRT parameter
estimation, as we detail in Section VI-B.

3) Integrated score prediction: Using the trained AES models
and their GMFRM parameters, this step predicts inte-
grated scores for new essays. The outline of this procedure
is illustrated in Fig. 3. As shown in the figure, we first
generate prediction scores for the essays from the trained
AES models individually. Then, the predicted scores are
used to estimate the latent score θj for each essay based on
the GMFRM. In this estimation, characteristic parameters
of the AES models are given. Finally, the estimated latent
scores θj are projected to an original rating scale on human
rater criteria. Specifically, letting r = 0be the human rater,
the rescaled score yj , which corresponds to the expected
value of the human rater’s score, is calculated as follows:

yj =
K∑

k=1

k · Pj0k. (3)
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Fig. 3. Outline of integrated score prediction in the proposed method.

Note that Pj0k is calculable based on (2) given the esti-
mated latent scores θj and the human rater’s parameters
calibrated in the IRT parameter estimation step. This score
rescaling is required for the following two reasons.
a) The latent scores θj are estimated on the logit scale

[-∞, ∞], which differs from the original categorical
score ranges.

b) The main goal of AES is to predict scores on the rating
scale of the gold-standard human rater.

Algorithm 1 shows the detailed process of the proposed
method. Here, we assume that training data and development
data, which are composed of essays and gold-standard human
scores, are available in the training phase. Furthermore, we
assume the execution of AES for essays within test data. In
Algorithm 1, Etrain, Edev, and Etest represent essays in the
training data, development data, and test data, respectively. Fur-
thermore, X train and Xdev represent the gold-standard human
scores in training data and development data, respectively, and
R indicates the number of candidate AES models. The process
in each function is as follows.

1) TrainAES(r,Etrain,X train,Edev,Xdev) trains the rth
AES model using training data (Etrain, X train) and returns
trained model Mr. Some models may use development
data (Edev, Xdev) for early stopping or hyperparameter
tuning in the training phase.

2) PredAES(Mr,E) predicts scores for given essays E
using trained model Mr and returns the prediction scores
Xr.

3) EstIrtParam(X) runs the GMFRM parameter estima-
tion using given score data X and returns estimated rater
parameters ξ, consisting of αr, βr, and drm for each AES
model and human rater.

4) EstIrtScore(j, ξ,X) computes the latent score θj from
data X based on the GMFRM with the rater parameter
estimates ξ.

In Algorithm 1, line 2 corresponds to the AES model train-
ing procedure explained above. Lines 3 and 5 correspond to

Algorithm 1: Algorithm of the Proposed Method.

Require: Etrain,Edev,Etest,X train,Xdev

1: for r ← 1 to R do
2: Mr ← TrainAES(r,Etrain,X train,Edev,Xdev)
3: Xdev

r ← PredAES(Mr,E
dev)

4: end for
5: ξ ← EstIrtParam({Xdev,Xdev

1 , . . . ,Xdev
R })

6: for r ← 1 to R do
7: X test

r ← PredAES(Mr,E
test)

8: end for
9: for j ← 1 to |Etest| do

10: θj ← EstIrtScore(j, ξ, {X test
1 , . . . ,X test

R })
11: yj ← (3) given θj and human rater parameters in ξ.
12: end for

the above-explained IRT parameter estimation procedure. Also,
line 6 and subsequent lines correspond to the integrated score
prediction procedure.

Through the above procedures, the proposed method can
output scores that integrate prediction scores from multiple AES
models while considering the characteristics of their scoring
behavior, and the output scores are projected onto the rating
scale of the human rater.

Note that we can design a similar method based on factor anal-
ysis (FA) because FA and IRT are closely related [90], [91]. For
example, some IRT models are known to be equivalent to some
confirmatory categorical FA models with one factor [90]. Major
differences between them are the purpose and domain [91]. The
primary purposes of the IRT, which specializes in the educational
and psychometric measurement domain, are scoring and test
analysis, whereas the primary purpose of the FA, which is used
in various contexts, is to investigate the construction of latent
factors behind observed multivariate data. We used the IRT
because its purpose and domain fit our study well, making the
interpretation of the model parameters easy and natural.

Principal component analysis (PCA), which intends to es-
timate a latent factor behind observed data, would also be
regarded as a similar approach to the IRT and FA. However,
PCA cannot realize the score integration that we realized in the
proposed method. Here, suppose we construct a PCA model
using a dataset consisting of scores from multiple AES models
and the gold-standard human rater, as in the IRT parameter
estimation step. In that case, the constructed PCA model cannot
calculate integrated scores for new essays because we have no
gold-standard human scores for such essays. Furthermore, when
we construct a PCA model using only scores from multiple AES
models, the scale of the model scores might not be consistent
with the rating scale of the gold-standard human rater. Thus,
we removed the PCA from the candidate pool for the proposed
method.

VI. EXPERIMENTS

In this section, we present evaluation results for the effective-
ness of the proposed method based on experiments with actual
data.
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TABLE II
STATISTICS OF THE ASAP DATASET

A. Dataset

Our experiments used the ASAP dataset, which has been
published for Kaggle competitions. This dataset, which has
commonly been used in various AES studies as benchmark data,
consists of essays for eight prompts, written by students from
grades 7 to 10. Each essay has one gold-standard score from a
human rater. Scores are provided based on ordered categories
with different value ranges. Each prompt corresponds to one of
the three essay types: 1) argumentative; 2) source-dependent;
and 3) narrative [92]. The argumentative type asks students to
discuss and justify their opinion on a specific topic, whereas the
source-dependent type asks students to respond to a question
about a given text. The narrative type asks students to narrate a
story about a specific topic. See Table II for detailed statistics
and types for each prompt.

The AES models are generally trained and evaluated for each
prompt individually in many AES studies, so our experiments
also follow this procedure.

B. Setup

Using the ASAP dataset, we evaluated scoring accuracy in
each prompt based on fivefold cross-validation. In each partition,
60% of the data were used as the training data, 20% as the
development data, and 20% as the test data. As the evaluation
metric, we used the quadratic-weighted Kappa (QWK), which
is a metric showing agreement between predicted scores and
ground truth. The QWK is the common evaluation metric in the
ASAP competition.

Our experiments used the following six AES models.
1) EASE (SVR), EASE (BLRR): As a recently introduced

popular feature-engineering approach model, we used the
EASE model described in Section III-A. EASE typically
uses Bayesian linear ridge regression (BLRR) and SVR as
the regression models. We thus examined both variants of
EASE. We implemented the models using scikit-learn [93]
following the method in [16].

2) XGBoost: As another feature-engineering approach
model, we used an XGBoost model with the manually
designed features proposed in [25]. A unique character-
istic of this model is the use of parse-tree-based features,
which are not used in EASE. We used CoreNLP [94] to
generate parse trees and implemented the XGBoost model
following the method in [95].

3) RNN: As the most traditional DNN-based automatic fea-
ture extraction approach model, we used the CNN-RNN-
based model detailed in Appendix A. Note that we omitted
the optional convolution layer in our implementation. We
implemented this model using PyTorch.3

4) SkipFlow: We also used the SkipFlow model detailed in
Appendix B as another DNN-AES model with different
characteristics. This is the most popular model incorporat-
ing a function that directly captures textual coherence, as
explained in Section III-B. We used PyTorch to implement
this model.

5) Hybrid–BERT: We used the fine-tuned BERT model in-
corporating manually designed features [42], detailed in
Appendix C, as a hybrid model. We used the uncased
pretrained BERT-base model and PyTorch for implemen-
tation.

We tokenized the essays using the NLTK tokenizer.4 Other
details, including hyperparameter settings, were the same as
those used in the original studies.

We compared the proposed method with three common score-
integration methods.

1) MEAN: Arithmetic averaging of multiple AES scores.
2) VOTING: Hard voting for multiple AES scores.
3) STACKING: We examined four stacking models using

a linear regression model, a Ridge regression model, an
SVR, and a boosting model. We designed these mod-
els to receive multiple AES scores as input and pre-
dict a gold-standard human score. We used the scikit-
learn library to implement these models. We trained
these models using the development data in the same
way as in the IRT parameter estimation of the proposed
method.

Note that these three integration methods encompass most of
the popular ensemble methods that integrate outputs from mul-
tiple models. This can be confirmed by the fact that conventional
ensemble methods are commonly categorized as weighting-
based methods or meta-learning methods, where the most pop-
ular weighting-based methods are majority voting and output
averaging and the most popular meta-learning method is stack-
ing [47].

We also examined some variants of the proposed method by
changing the employed IRT models. As explained in Section
IV-B, the GMFRM can represent the three common rater char-
acteristics, namely, consistency, severity, and range restriction.
Some GMFRM variants in which some rater parameters are
restricted can be regarded as models equivalent to some earlier
IRT models with rater parameters, including MFRM. For this
reason, we examined some restricted versions of the GMFRM,
including MFRM, as detailed as follows.

1) Consistency-fixed GMFRM: A GMFRM in which αr is
restricted to 1 for all raters r ∈ R, meaning all raters share
the same consistency level. This model is equivalent to the
variant of MFRM shown in [48] and [86].

3[Online]. Available: https://pytorch.org/
4[Online]. Available: http://www.nltk.org/

https://pytorch.org/
http://www.nltk.org/
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TABLE III
QWK FOR EACH PROMPT

2) Severity-fixed GMFRM: A GMFRM in which βr is re-
stricted to 0 for all raters r ∈ R, meaning all raters share
the same severity level.

3) Threshold-fixed GMFRM: A GMFRM in which drm is
changed to dm for all raters r ∈ R, meaning no difference
in range restriction characteristics exists among raters.

4) MFRM: The most popular IRT model that incorporates
rater parameters. MFRM is equivalent to a GMFRM in
which αr is restricted to 1 and drm is changed to dm for
all raters.

Although the severity-fixed GMFRM and the threshold-fixed
GMFRM have no corresponding earlier IRT models, we exam-
ined them to investigate the effects of each rater parameter.

To estimate IRT parameters in the EstIrtParam() function
shown in Algorithm 1, we applied an expected a posteriori
(EAP) estimation, a type of Bayesian estimation that is known to
provide accurate estimations for complex IRT models [56], [96],
using an MCMC algorithm. As the MCMC algorithm, we used
the No-U-Turn sampler [97] based on the Hamiltonian Monte
Carlo approach [98]. The estimation program was implemented
in RStan [99], [100]. Following the original GMFRM paper [57],
we calculated the EAP estimates using parameter samples ob-
tained from 2000 to 4000 periods within three independent
MCMC chains. Furthermore, the prior distributions were also
the same as those used in [57], namely

θj , logαr, βr, drm ∼ N(0.0, 1.0) (4)

where N(μ, σ) indicates the normal distribution with mean μ
and standard deviation σ. In the EstIrtScore() function of
Algorithm 1, we calculated the IRT scores through an EAP
estimation using the Hermite–Gauss quadrature [101], which
has been widely used in various IRT studies. Specifically, given
rater parameter estimates, the score estimates are calculable as

∑H
h=1 θ

′
hL(Xj , θ

′
h)g(θ

′
h)∑H

h=1 L(Xj , θ′h)g(θ
′
h)

(5)

where θ′h is the hth integral point and H is the number of such
points. We created the integration points by setting H = 40

and dividing the value range [−4, 4] with an equal interval.
In addition, L(Xj , θ

′
h) is the likelihood conditional on θ′h for

Xj , which consists of observed scores for the jth essay. g(θ′h)
indicates the prior probability for θ′h. We assumed the standard
normal distribution as the prior distribution.

We used a Tesla V100-SXM2 GPU to train DNN-AES mod-
els, whereas we used an Intel Xeon 2.00 GHz CPU for training
other AES models and score-integration methods, including the
proposed method.

C. Results

Table III presents the experimental results, with bold text indi-
cating maximum QWK values and underlined text representing
the second-highest values for each prompt. In the table, the Avg.
column shows the average QWK value for each method, and
the p-value column shows the results of the one-tailed paired
t-test between the proposed method using GMFRM and the other
respective method.

According to Table III, the average QWK values of the
individual AES models are around 0.7 in almost all models.
Recent AES studies that used the ASAP dataset have generally
reported average QWK values ranging from 0.7 to 0.8 [102],
which are almost consistent with our results. Note that QWK
values reported in different studies are not necessarily directly
comparable, even when the same model and the same dataset
are used, because they might employ different hyperparameter
settings and methods for splitting data during cross-validation.

Comparison of the proposed method using GMFRM with
the individual AES models shows that the proposed method is
superior in all cases except for only one case (Hybrid–BERT in
prompt 3) and shows a significantly higher average accuracy. The
other score-integration methods also outperform the individual
AES models in many cases, suggesting that the integration of
prediction scores from various AES models is effective.

Furthermore, compared with the conventional score-
integration methods, the proposed method with GMFRM shows
higher accuracy in almost all the cases and its average accuracy
is significantly higher. This result indicates the effectiveness of
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TABLE IV
WAIC VALUES FOR THE GMFRM AND COMPARATIVE MODELS

TABLE V
RATER PARAMETER ESTIMATES FOR PROMPT 1

the GMFRM-based score integration considering differences in
characteristics of scoring behavior among the respective AES
models. This result also suggests that the proposed method
is expected to be effective with various datasets because the
proposed method is superior in many prompts with different
characteristics.

Among the proposed methods using different IRT models, the
GMFRM provided the highest average accuracy at a significance
level of 0.05. Thus, it would be reasonable to use the GMFRM
in general. This result also suggests that all the rater parameters
in the GMFRM are effective in improving the accuracy. To
further examine the effectiveness of the GMFRM, we conducted
a model comparison experiment using an information criterion.
As the information criterion, we used the widely applicable in-
formation criterion (WAIC) [103], which is suitable for Bayesian
estimation using MCMC. The WAIC was calculated for each
cross-validation set, and these values were averaged for each
prompt. Table IV shows the results. We highlighted the minimum
scores in the table as bold text because the model minimizing the
WAIC is regarded as the optimal model. According to the results,
the GMFRM shows the best performance in all cases. The
results suggest that the three rater characteristics (i.e., severity,
consistency, and range restriction) vary among the AES models
and the human rater, and thus the GMFRM is suitable compared
to the other simpler models.

D. Analyzing the Characteristics of Scoring Behavior

Besides the improvement in scoring accuracy, a unique feature
of the proposed method is its high interpretability, as explained in
Section I. This section provides an interpretation of the scoring
characteristics of each AES model based on the rater parameter
values obtained from the GMFRM. As an example, Table V
shows the rater parameter estimates of the AES models and the
human rater for prompt 1. Note that, here, we estimated the
GMFRM parameter using predicted scores of the AES models
and the gold-standard human scores for all the essays for prompt
1. The AES prediction scores for all the essays can be obtained
from the fivefold cross-validation explained in the previous
section. Furthermore, based on the parameter values in Table V,

we illustrate the IRCs for the AES models and the human rater
in Figs. 4 and 5, respectively. In the figures, the horizontal axis
shows the latent score θj , and the vertical axis shows the response
probability for each category.

According to the table and figures, we can interpret the
following characteristics.

1) EASE (SVR) has an extremely low severity, reflecting
the strong tendency to output the highest score (k = 12)
overall.

2) RNN and XGBoost show relatively low probabilities for
categories 3, 4, and 5, suggesting the existence of a
range restriction that avoids these categories. Moreover,
XGBoost has another range restriction tendency to prefer
category 8 slightly.

3) EASE (BLRR), SkipFlow, and Hybrid–BERT have rela-
tively high consistency. Furthermore, in the IRCs for these
models, the curves for some categories [i.e., k = 3 and
4 in EASE (BLRR) and k = 3 in SkipFlow and Hybrid–
BERT] are not displayed because these probabilities are
extremely low, meaning that they have an extremely strong
range restriction.

4) The human rater tended to prefer categories 6, 8, and
10, and rarely used categories 3, 4, and 5, indicating the
existence of a strong range restriction. As explained ear-
lier, XGBoost shows a relatively similar range restriction,
indicating that XGBoost imitates the human rater most
precisely in prompt 1.

5) Another interesting observation is that the AES models
show higher consistency than the human rater overall. One
motivation of AES research is to realize consistent scoring,
and this result demonstrates that AES can achieve it.

This analysis shows that the AES models have different
scoring characteristics, indicating that the integration of multiple
AES models considering such characteristic differences is effec-
tive. Furthermore, the above discussion shows that the human
rater who created the gold-standard scores used different scoring
criteria compared with the AES models. This result indicates that
the projection of the GMFRM-based latent scores θj into the
human rater’s rating scale is important to achieve high scoring
accuracy.
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Fig. 4. IRCs of the AES models for prompt 1. Note that, in the EASE (BLRR), SkipFlow, and Hybrid–BERT models, the curves for some categories [k = 3 and
4 in EASE (BLRR), and k = 3 in SkipFlow and Hybrid-BERT] are not displayed because they have extremely small probabilities.

Fig. 5. IRC of the human rater for prompt 1.

E. Relation Between Predicted Scores of Individual AES
Models and Integrated Scores of Proposed Method

To further examine the characteristics of individual AES mod-
els, this section describes the relations between the prediction
scores of individual models and the integrated scores of the

proposed method. Fig. 6 illustrates the relations in prompt 1.
In each figure, the horizontal axis indicates the integrated scores
of the proposed method using the GMFRM, and the vertical axis
indicates the predicted scores of each AES model. The size of
each bubble represents the appearance frequency of each data
point, where a larger bubble represents a higher frequency.

According to Fig. 6, EASE (SVR) shows an extremely dif-
ferent tendency compared with the other models. Specifically,
EASE (SVR) tends to overuse the high scores because it is
extremely lenient, as described in the previous section. Also,
EASE (SVR) cannot distinguish essays with medium or above
qualities due to its extreme leniency. Thus, within the middle or
above score range, its prediction scores substantially differ from
the integrated scores.

EASE (BLRR), SkipFlow, and Hybrid–BERT tend to avoid
several low-score categories, such as 2, 3, and 4, which is
consistent with the fact that their IRCs represent extremely low
probabilities for some of these categories, as explained above.
The figures for these models also show that the proposed method
can predict scores that some models do not produce at all.

XGBoost, which has characteristics most similar to those of a
human rater, predicts scores that agree well with the integrated
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Fig. 6. Relation between predicted scores of individual AES and integrated scores of the proposed method in Prompt 1.

scores overall. The RNN also shows a relatively high agreement
with the integrated scores. However, within the middle score
range, that is, 7–9, the RNN shows a slightly larger disagreement
with the integrated scores than XGBoost does. The reason is that
XGBoost captured the tendency that the human rater prefers
category 8, as explained in the previous section, whereas the
RNN could not do that properly.

The above discussions demonstrate that the proposed method
calculated the integrated scores while considering characteris-
tics of scoring behavior in each AES model and their similarity
to that of the human rater.

F. Relation Between Proposed Method Effectiveness and AES
Characteristic Diversity

We can expect that the effectiveness of the proposed method
will increase when the characteristic difference among the
individual models becomes large. This section examines this
hypothesis.

For this analysis, we quantified the characteristic differences
among AES models using the mean absolute differences in IRCs,
which have been used for IRT equating [104]. The difference
metric for two AES models r and r′ is defined as follows:

δ(r, r′) =
∫ ∣∣∣∣∣

K∑
k=1

kPjrk(θ)−
K∑

k=1

kPjr′k(θ)

∣∣∣∣∣ dθ

≈ 1

H

H∑
h=1

∣∣∣∣∣
K∑

k=1

kPjrk(θ
′
h)−

K∑
k=1

kPjr′k(θ
′
h)

∣∣∣∣∣ (6)

where Pjrk(θ) indicates the GMFRM-based probability calcu-
lated in (2) given the ability value θ, {θ′h|h ∈ {1, . . . , H}} is a

collection of integration points, and H is the number of points.
We created the integration points by settingH = 40 and dividing
the value range [−4, 4] with an equal interval.

We calculated the distance metrics δ(r, r′) for all the pairs of
AES models and for all the pairs between the human rater and
the AES models. The results are shown in Table VI.

First, focusing on the results for prompt 1, we can confirm
that the metric between XGBoost and the human rater, which
have similar characteristics of IRCs as explained earlier, shows
a small value. Furthermore, the metric values between EASE
(SVR), which has an extremely different IRC, as shown in Fig. 4,
and the other models tend to be high. These results suggest
that this metric reflects the scoring characteristic differences
appropriately.

Next, focusing on the average row in Table VI, we can
confirm that average metric values are relatively large in prompts
7 and 8. Furthermore, according to Table III, the proposed
method using GMFRM shows large improvements in these two
prompts compared with conventional integration methods, such
as MEAN and VOTE. Here, Fig. 7 shows the relation between
the average δ(r, r′) values and the difference in the QWK values
between the proposed method and the MEAN method. In the
figure, the horizontal axis indicates the difference in the QWK
values between the proposed method using GMFRM and the
MEAN method, the vertical axis indicates the average values
of the IRC difference metric δ(r, r′), each plot indicates the
results for a prompt, and the dotted line indicates the regression
line. The figure shows a strong correlation. In particular, the
Pearson correlation coefficient was 0.856, and it was significant
(p < 0.01). A similar result was obtained between the proposed
method and the VOTE method. Specifically, the correlation
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TABLE VI
IRC DIFFERENCE METRIC VALUES AMONG AES MODELS AND THOSE AMONG THE HUMAN RATER AND AES MODELS

Fig. 7. Relation between characteristic diversity among AES models and the
proposed method effectiveness.

was 0.840, and it was also significant (p < 0.01). From these
results, we can conclude that the effectiveness of the proposed
method tends to increase with increasing differences between the
characteristics of the scoring behavior among the AES models.

G. Relation Between Proposed Method Effectiveness
and Prompt Characteristics

This section examines the relationship between the prompt
characteristics and the proposed method effectiveness to inves-
tigate what prompt-dependent factors affect the performance of
the proposed method. In this analysis, we regarded the difference
in the QWK values between the proposed method and the MEAN
method as the proposed method effectiveness, in the same way
as the analysis of Section VI-F.

Fig. 8 shows the relation between the proposed method effec-
tiveness and the prompt-dependent factors, namely, the average
essay length, the score ranges, and the essay types. In the figure,

the left panel shows the relation with the average essay length,
the center panel shows that with the score range, and the right
panel shows that with the essay type.

The figure shows that the effectiveness of the proposed
method tends to increase with increasing the essay length and
the score ranges. In addition, the effectiveness of the proposed
method is relatively high for the narrative-type prompts com-
pared to the other types. These results might indicate that
these prompt-dependent factors affect the performance of the
proposed method. However, it should be noted that, in the ASAP
dataset, the essays for the narrative-type prompts are longer and
have greater numbers of score categories than those for the other
prompts, which might emphasize the characteristics difference
among the individual models. As discussed in Section VI-F, the
characteristics difference among the individual models affects
the effectiveness of the proposed method, meaning that these
prompt-dependent factors might have no or small direct impact
on increasing the effectiveness of the proposed method. A further
analysis based on large-scale experiments with various datasets
is required to investigate the factors affecting the effectiveness
of the proposed method in more detail, and this task remains as
future work.

H. Computational Costs

This section investigates the computational cost for each
method. Specifically, we calculated the time for training each
AES model and the score-integration models. We calculated the
times for each partition in the fivefold cross-validation.

Table VII shows the average times. Here, the time for data
preprocessing and computing manually designed features was
excluded. According to Table VII, the feature-engineering ap-
proach models can be trained in less than 1 s, whereas DNN-AES
models take a few minutes even though they use a GPU. The
total time to complete the training of all individual AES models
is about 5 to 10 min.
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Fig. 8. Relation between prompt-dependent factors and the proposed method effectiveness.

TABLE VII
COMPUTATIONAL TIMES FOR MODEL TRAINING (SECONDS)

The conventional score-integration methods can also be
trained in less than 1 s. However, the proposed method requires
up to about 20 min, which is a relatively long time compared
with the others. The main reason is that we used the MCMC
for the IRT parameter estimation because it is expected to
provide high estimation accuracy. If the faster estimation is
required, other estimation algorithms are available, including
the marginal maximum likelihood estimation and the maximum
a posteriori estimation using the Newton–Raphson method and
EAP estimation with variational Bayesian methods. However,
the total training time for the proposed method, including the
time to train individual AES models, is about 30 min at most,
which will generally be acceptable in practical use.

We also computed the time for scoring a new essay using each
trained model. Consequently, the time to compute the score of
a single essay was less than 0.1 s in all models, which is also
sufficient for practical applications.

VII. CONCLUSION

In this study, we proposed a method that uses IRT to integrate
prediction scores from various AES models while taking into

account differences in scoring behavior characteristics. Specifi-
cally, we proposed the use of IRT incorporating rater characteris-
tic parameters by regarding AES models as raters. We performed
experiments with a benchmark dataset to demonstrate that the
proposed method with the latest IRT model, GMFRM, provided
significantly higher accuracy than individual AES models and
conventional integration methods. We also showed that the
scoring characteristics could be interpreted for each AES model
based on the IRT parameters and confirmed a large characteristic
variety among AES models and between a human rater and AES
models. Furthermore, we demonstrated that the effectiveness
of the proposed method tends to increase as this characteristic
variety increases.

VIII. LIMITATIONS AND FUTURE WORK

We will evaluate the effectiveness of the proposed method
by adding more distinctive models because our method is ex-
pected to improve accuracy with the addition of various AES
models, as demonstrated in Section VI-E. Furthermore, although
this study employed multiple models with entirely different
architectures as base models, input manipulation, an ensemble
learning method in which multiple models are constructed using



996 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 16, NO. 6, DECEMBER 2023

different training subsets, as in AdaBoost and Bagging, may also
be suitable for preparing multiple different models. Examining
the proposed method using an input manipulation method is our
future work. Another extension of the proposed method based
on other meta-learning methods, such as mixture of experts, may
also be a possible future direction. We also need a further anal-
ysis based on large-scale experiments with various datasets to
elucidate the factors affecting the effectiveness of the proposed
method, as discussed in Section VI-G.

As shown in Section VI-F, the proposed method provides
information representing the characteristics of scoring behavior
for AES models. Such information would be helpful not only to
understand the scoring characteristics of each model but also to
consider an improvement or extension of each model. We thus
plan to examine how individual AES models can be improved
based on the information obtained from the proposed method.

Another future direction is to consider the use of the proposed
method for enhancing collaboration between AES models and
human raters because the use of AES to support human raters is
also a recent popular research topic [105], [106].

Moreover, in this study, we assumed that the gold-standard
scores in training data are given by a single human rater. These
scores, however, are often created by aggregating multiple scores
given by multiple human raters, as pointed out in some previous
studies [61], [63], [66]. The proposed method can be easily
applied to data in which each essay has multiple human rater
scores. In future studies, we plan to apply the proposed method
to such data and evaluate its effectiveness.

This study focused on a prompt-specific scoring task, the most
common AES task, in which an AES model is trained for a
prompt and the trained model is used to evaluate essays for
the same prompt. Another important AES task is a cross-prompt
scoring task, in which no or few training data for a target prompt
exist, but data for other prompts are available. Cross-prompt
scorings are often realized using domain adaptation or transfer
learning techniques, which are studied widely in AI and machine
learning domains. However, the number of papers dealing with
this task remains limited [13]. We will examine an extension of
the proposed method for such tasks in future work.

Another future direction relates to the use of the IRT. An
extension of the proposed method using cognitive diagnosis
models (CDMs), including DINA (deterministic inputs, noisy,
and gate) [107] and NeuralCD (neural cognitive diagnosis) [108]
models, might contribute to improving the interpretability of
the attributes (e.g., knowledge or skills) measured by the target
essay writing test. However, most CDMs cannot be directly
applied to our framework because they require a Q-matrix, which
defines the required attributes for each test item, and it is not
generally included in most existing datasets for AES. We would
like to investigate the possibility of integrating CDMs into our
framework in the future.

Furthermore, analyzing the differences in the item character-
istics between the essay writing test items and the other types
of items, such as multiple choice questions, is an important
issue in the field of educational measurement, although this is
outside the scope of this study. A fusion of IRT and AES, as in

Fig. 9. Architecture of CNN-RNN-based model.

the proposed method, might be helpful for realizing a detailed
analysis of this aspect, which is also a future work. In addition,
although this study focused on the AES context, applying the
proposed method to other text-scoring tasks, including ASAG,
is also future work.

APPENDIX

This appendix describes the detailed architectures of the
DNN-based automatic feature extraction approach models and
the hybrid model, which were used in our experiments.

A. CNN-RNN-Based Model

Fig. 9 shows the architecture of the CNN-RNN-based
model [27]. This model calculates a score for a targeted essay,
which is defined as a sequence of words {w1, . . . , wn} (where
wt is the tth word in the essay and n is the number of words),
through five DNN layers.

1) The first layer is the lookup table layer that transforms each
word into a D-dimensional word-embedding representa-
tion, in which words with similar meanings have similar
vector representations.

2) The second layer, the convolution layer, uses a CNN
to extract N-gram-level features from the sequence of
word-embedding vectors. In this layer, each word vector is
transformed into another vector representation that reflects
dependencies among N-adjacent words. This layer is often
omitted in some extension models.

3) The third layer, the recurrent layer, uses an RNN to trans-
form each output vector from the convolution layer into
another vector representation that reflects the context of
the essay. A long short-term memory network is generally
used as the RNN.

4) The fourth layer is a pooling layer that transforms the
output vector sequence of the recurrent layer into an
aggregated fixed-length hidden vector by averaging the
vector sequence.
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Fig. 10. Architecture of SkipFlow model (δ is a hyperparameter that controls
the relevance width).

5) The last layer, the linear layer with sigmoid activation,
projects the output vector of the pooling layer to a scalar
value by using a sigmoid function.

B. SkipFlow Model

The SkipFlow model [32] is a representative DNN-AES
model with a function that captures textual coherence directly,
as explained in Section III-B. The architecture of this model
is shown in Fig. 10. The SkipFlow model consists of almost
the same components as those used in the CNN-RNN-based
model. Specifically, the model uses the lookup table layer, the
recurrent layer, the pooling layer, and the linear layer with
sigmoid activation. The main difference is the incorporation
of the neural tensor layer. The neural tensor layer takes two
positional outputs of the recurrent layer that are collected from
different time steps and computes the similarity between each
pair of positional outputs. The similarity score is regarded as
a neural coherence feature between the two selected positions.
The list of the similarity scores is concatenated with the pooling
layer output, and the concatenated vector is used to predict an
essay score.

C. BERT-Based Hybrid AES Model

Fig. 11 shows the architecture of the BERT-based hybrid
AES model proposed in [42]. This model concatenates manually
designed essay-level features to the distributed essay represen-
tation, which is the input vector for the last linear layer in the
BERT-based AES model.

Note that, as explained in Section III-B, the BERT is a
transformer-based model pretrained on massive amounts of
unlabeled text data for two tasks, namely, masked language mod-
eling and next-sentence prediction. Masked language modeling
involves predicting the words that are masked out of the input
text, whereas the next-sequence prediction involves predicting
whether two given sentences are adjacent.

Fig. 11. Architecture of BERT-based hybrid model (F indicates a manually
designed feature vector).

AES using the pretrained BERT can be realized by the fol-
lowing procedure.

1) Add a special classification (CLS) token to the beginning
of each essay text.

2) Add a linear layer with sigmoid activation over the output
corresponding to this token because the BERT output for
this token is known to be a distributed representation for
specific input text.

3) Fine-tune this BERT-based AES model using a training
dataset that consists of essays and corresponding scores.

To implement the BERT-based hybrid AES model, manually
designed essay-level features are concatenated with the BERT
output for the CLS token in step 2 of the above procedure.
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