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要 旨

近年，人工知能分野において，機械学習を用いてユーザのオンライン上での履歴から能力および

各スキルの習熟度を推定し，未知の反応予測を行うKnowledge Tracing(KT)が盛んに研究され

ている。特に，最新のKT手法として深層学習を基づいた様々な手法が提案されている。その中

で、深層学習手法と項目反応理論(Item Response Theory; IRT)を組み合わせるDeep-IRTは高

い反応予測精度とパラメータ解釈性を備えているため注目されている。しかし、既存のDeep-IRT

では能力値を推定する際に最新の履歴データのみを用いるため、過去のデータを予測精度に十

分に反映できていない可能性がある。本研究では、Deep-IRTに新たなハイパーネットワークを組

み合わせることで、ユーザの過去の履歴データの忘却を最適化しながら反応予測を行う。さらに、

パラメータ学習に敵対的学習を導入することで、過学習の問題を改善し反応予測精度をより向上

させる。評価実験では提案手法と既存手法の反応予測精度を比較することで、提案手法の有効

性を示した。さらに、IRTモデルを用いてシミュレーションデータを作成し、提案手法と既存手法に

よって推定された能力パラメータと真の能力パラメータの相関係数を比較することで解釈性も向

上させたことを示した。
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Abstract

Knowledge Tracing (KT), which can assess learners’ knowledge levels, has

traditionally been performed manually. With the advancements in artificial intelligence

(AI), deep learning approaches have gained extensive attention and demonstrated

superior performance. Furthermore, the latest Deep-IRT model has been reported to

achieve higher accuracy and provide a better interpretation of parameters than the

previous KT methods did. Nevertheless, there is still room for improvement in the

memorization process, especially for tasks involving longer sequences of learner

responses. In the field of natural language processing (NLP), the Mogrifier as a type of

the hypernetwork has shown great performance in optimizing the memorization process,

particularly for tasks with longer sequences. To address this issue, this paper proposes a

new memory updating component with a hypernetwork to optimize the balance between

the current input and the past data. Furthermore, the model suffers from over-fitting, we

introduce adversarial training (AT) for the proposed method. Experimental results

demonstrate that the proposed method improves the prediction accuracy and the

interpretability of the learners’ ability compared to existing KT methods.

Keywords: Knowledge Tracing, deep learning, long-term learning history,

hypernetwork
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Chapter 1: Introduction

Recently, with the development of online learning systems, Knowledge Tracing (KT)

has gained extensive attention for its feature to accurately estimate the degree of a

learner’s skills. By accurately assessing learners’ skills, educators can receive better

feedback and design personalized study plan for learners with varying knowledge levels

[1,2,3,4,5,6,7,8,9,10]. Learners can also benefit from the analyses to understand their

level of skills.

As a result, researchers in the field of Artificial Intelligence (AI) have proposed

various kind of Knowledge Tracing (KT) methods. The KT methods can be generally

divided into two categories: probabilistic approaches and deep-learning approaches.

Bayesian Knowledge Tracing (BKT) is a famous probabilistic model for KT [1]. It

employs a Hidden Markov Model (HMM) to track the process of a learner’s ability

change in the learning process [1]. BKT estimates whether a learner has mastered a skill

or not and expresses it in binary proficiency parameters. Based on the parameters, the

BKT predicts the learners’ answers to unknown items. Many researchers have proposed

additional BKT models to improve interpretability. However, the earlier BKT models

only address simple discrete values. As a result, BKT lacks the flexibility to capture

changes in ability and cannot analyze tasks with multiple skills. Recently, Item

Response Theory (IRT) has been used for KT [25]. IRT predicts the positive answer

probability based on the difficulty of items and the ability of learners. However,

traditional IRT models cannot track changes in learners’ abilities. To address the issue,

some researchers proposed novel IRTs combining with HMM [26]. But another

problem remains that probabilistic methods are unable to capture the correlations

between different skills and reflect them on the learners’ abilities.

To overcome the limitations, deep learning approaches were proposed. The powerful

feature extraction capability enables model to better capture the potential connections

between various skills. As a result, deep learning methods can achieve higher accuracy

in predicting learners’ responses.

Deep Knowledge Tracing (DKT) [6], as the first deep learning method in the field of

KT, employs a Long Short Term Memory (LSTM) [27] to track a learner’s study

process. DKT predicts the performance based on the study history and uses the hidden

state to memorize the learner’s learning history data. With the powerful feature
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extraction capability of deep learning, DKT addresses the issue of assuming random

sampling learners’ abilities for each skill, thus improved prediction accuracy compared

to probabilistic methods. However, the hidden states include a summary of the learning

history data in LSTM, but individual skills are not treated separately. As a result, DKT

does not explicitly account for the learner’s mastery in each skill.

Several studies have proposed various extensions to improve the accuracy of DKT

[28,29,30]. The Dynamic Key-Value Memory Network (DKVMN) [8] is well known as

one of the most representative extensions. DKVMN first introduces the key-value

structure to establish correlations between skills [8]. The key matrix, combined with an

attention mechanism, captures the correlations between skills. Then the skills will be

transformed into the latent Knowledge Components (KCs) which represent the

correlation relationships of skills. The value matrix stores learners’ knowledge statuses

to the KCs and is updated at each time point. Furthermore, DKVMN predicts the

learner’s performance based on the current item in addition to the learning history [8].

Although DKVMN brings higher prediction accuracy, it lacks the interpretable

parameters that probabilistic methods have. To address the limitation, Deep-IRT was

proposed by combining IRT and DKVMN [7]. Deep-IRT can estimate learners’ abilities

and items’ difficulties by information stored in the latent parameters. Deep-IRT

improves interpretability while maintaining the high prediction accuracy of DKVMN.

However, Deep-IRT assumes that items sharing the same skill are identical. This

approach might not be effective when items sharing the same skill exhibit significant

differences, thus preventing the model from accurately measuring learners’ abilities.

Most of the previous methods were based on Recurrent Neural Networks (RNNs),

which simulate the learning process of learners. With the development of AI in the field

of Natural Language Processing (NLP), the Transformer introduced the self-attention

mechanism which changed the landscape for using RNN models [17]. The self-attention

mechanism was proved to have powerful feature extraction capabilities in many

different tasks. Self-attentive Knowledge Tracing (SAKT) [16] was the first model

applied Transformer to KT. SAKT predicts the learners’ performance by measuring the

correlation of the responses and items in their study histories. However, due to the

difference between KT and NLP tasks, earlier learning histories fail to influence

learners’ performance regularly in KT. As a result, SAKT fails to show a high accuracy.

Gosh et al. (2020) proposed Context-aware Attentive Knowledge Tracing (AKT) [9],
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which introduced a modified self-attention mechanism. In calculating the correlation

between skills in self-attention, they incorporated an exponential function to assign less

importance to items which are further away from the current time point. The

consideration of the prior information allows the model better captures changing

patterns of learners’ performance. However, the modified self-attention algorithm

recalculates correlations between each skill at each time point. Additionally, the results

heavily depend on the nearby learning history data due to the exponential function,

AKT fails to track learners’ knowledge transitions.

To improve the prediction accuracy and the interpretability of learners’ knowledge

statuses, Tsutsumi et al (2021) proposed Deep-IRT with Independent Student and Item

Networks [10]. The item network plays a crucial role in analyzing both the item and its

associated skill [10]. The independent item network, with an adjustable number of

parameters, enables more accurate estimation of difficulty [10]. Moreover, the model

can distinguish between different items that share the same skill [10]. It allows IRT

module more accurately captures learners’ abilities and the future performance [10,35].

However, issues remained in the memory updating component inherited from DKVMN

model. When the parameters storing the learners’ knowledge statuses are updated, the

variables controlling the update process are solely optimized based on the latest

response data. It results in knowledge statuses’ updates are consistent for learners with

the same response, regardless of their knowledge levels. Additionally, the model treats

previous and current responses in learners’ study histories as separate entities without

establishing connections between them. It poses a risk of losing the relevant information

for updates. To address these issues, this paper proposes the incorporation of a

hypernetwork to optimize the update process [18].

In the field of NLP , the concepts of hypernetwork were introduced to optimize

hidden parameters of RNN models [18]. Hypernetworks enable models to effectively

capture information in sentences during time transitions and avoid information loss

from the input data [18,20]. Similarly, KT tasks share features with NLP tasks.

Therefore, we propose to incorporate a hypernetwork to balance the current and the past

data [34]. The hypernetwork optimizes both the forgetting parameters and the variables

that store learners’ knowledge level in the learning process [34]. It enables the

memory updating component to better estimate the degree of forgetting past data [34].

Additionally, we design a modified memory updating component to effectively utilize
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the optimized data and reduce the loss of the relevant information [34]. We present our

research in the paper "Deepirt with a hypernetwork to optimize the degree of forgetting

of past data." [34]. However, due to the incorporation of more parameters from the

modified component and the small scale of datasets in KT, the proposed method suffers

from over-fitting. Adversarial training (AT) was initially proposed in the field of

computer vision (CV) and is widely used in various fields to alleviate the over-fitting

[22,23,24]. We introduce the AT to address the issue. To validate the effectiveness of

the proposed method, we provide experimental results to compare the performance with

previous KT methods. The results demonstrate the proposed method outperforms

previous KT methods in terms of prediction accuracy and interpretability, particularly

for tasks with long-term learning histories [20].
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Chapter 2: Related works

2.1 Item Response Theory

Item Response Theory (IRT) is a logistic regression model. IRT models are widely
used in educational settings, particularly in the adaptive testing, to infer learners’
abilities and provide items that match their knowledge levels [25]. IRT models assume
abilities of learners remain constant during the exam. Among various IRT models, the
two-parameter logistic model (2PLM) is a well-known and widely used model [25]. In
the 2PLM, 풖풊풋 denotes the response of learner i to item j∈ (1,..., n) as below:

풖풊풋 =
ퟏ , (student i answers correctly to item j)
ퟎ , (otherwise) . (1)

The 푷풋(휽풊) represents the probability of the learner i, with the ability 휽, can answer
the item j with the difficulty 휷풋 correctly [25]. The probability is determined by
learners’ abilities and difficulties of items. The function is shown below:

푷풋(휽풊) =
ퟏ

ퟏ+풆풙풑(−휶풋(휽풊− 휷풋) )
. (2)

The 휶풋 represents the discrimination parameter of item j in IRT model, which
expresses the discriminatory power for learners’ abilities. In the standard IRT model,
the learner’s ability is assumed to be constant during the learning process. However,
some researchers proposed the combination of the IRT model and HMMs to capture
changes in the learner’s abilities over time [26]. But for the IRT model, ability
parameters are single-dimensional. As a result, the model can not capture correlations
between different skills and reflect correlations on learners’ abilities.
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2.2 Dynamic Key-Value Memory Networks

DKT is the first deep learning approach of KT. DKT employs LSTM to capture a
learner’s knowledge status and simulate his learning process [6]. However, DKT
summarizes a learner’s abilities of various skills in the hidden state without distinct
treatment [8]. Moreover, DKT employs LSTM without adapting it to characteristics of
KT. Consequently, DKT fails to achieve both accurate predictions and parameter
interpretability.

DKVMN is an extension of DKT that aims to improve the interpretability in terms of
learners’ abilities. The structure of the model is shown in Figure 1. The model first
introduces the key-value structure. The key matrix 푴풌 ∈ 푹푵∗풅풌 is a storage of
correlations of skills and employs an attention mechanism to transform the actual skills
into the attention weight 풘풕풍 of latent KCs [8].

풘풕풍 = 푺풐풇풕풎풂풙(푴풍
풌풌풕). (3)

Figure 1: network architecture of DKVMN and Deep-IRT

10
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Where 푴풍
풌 represents the l-th row vector and 풘풕풍 shows the attention weight of

item j on the latent KC l which expresses how strong the correlation between them is.
And the t means a learner’s response to item j at time point t. 풌풕 is the embedded
vector of item j.

Furthermore, learners’ knowledge statuses of KCs are stored in the value matrix
푴풕

풗 ∈ 푹푵∗풅풗. 푴풕
풗 will be updated at each time point based on 풘풕 and 푴풕

풗 to
calculate vector 풓풕 which contains the sum of the ability on each KC. 푴풕풍

풗

represents the l-th row vector of matrix. ⊺ denotes the transposition of matrix.

풓풕 = 풊=ퟏ
푵 풘풕풍∑ 푴풕풍

풗 ⊺ . (4)

One key difference from DKT is that DKVMN predicts the performance of learners

based on both their knowledge statuses 푴풕
풗 and 풌풕. It is opposed to DKT solely

relying on the learner’ knowledge level. The approach provides the additional

information and improve the performance [6,8]. The function is shown below:

풇풕 = 풕풂풏풉(푾풇[ 풓풕 ∙ 풌풕] + 풃풇) , and (5)

푷풕풋 = 흈(푾푷 풇풕 + 풃푷) . (6)

[·] represents the concatenation of vectors, 흈(·) is the sigmoid activation and 풕풂풏풉

is the hyperbolic tangent activation. 푾 is the weight parameter and 풃 is the bias

parameter of layer. 풇풕 is the intermediate variable and 푷풕풋 is the probability of the

learner’s response to the item j at time point t correctly.

The research also proposed an RNN structure for updating learners’ knowledge

statuses, with the reference to LSTM [27,31]. At time point t, 푴풕
풗 is updated with the

embedded vector 풗풕 of input data (풔풋, 풂풋), which represents the learner’s answer a∈

{0,1} towards the item with skill j. The parameters 퐚풕 and 퐞풕 control the updating of

푴풕
풗, 퐚풕 donates the part of the information that needs to be added to the current

knowledge status and the 퐞풕 indicates the degree of the previous knowledge status

should be forgotten. They are calculated with 풘풕풍 to get the l-th latent KC’s updating

value.
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퐞풕 = 흈(푾풆 풗풕 + 풃풆) , (7)

퐚풕 = 풕풂풏풉(푾풂 풗풕 + 풃풂) , (8)

푴� 풕,풍
풗 = 푴풕,풍

풗 ∙ (ퟏ − 풘풕풍풆풕) ⊺ , and (9)

푴풕+ퟏ,풍
풗 = 푴� 풕,풍

풗 + 풘풕풍퐚풕 . (10)

The 푴풕+ퟏ,풍
풗 represents the value matrix will be at the time point t+1 and 푴� 풕,풍

풗 is

the intermediate variable.

2.3 Deep-IRT

To improve the interpretability of DKVMN, Yeung et al (2019) proposed

Deep-IRT as the combination of DKVMN and IRT [6,7,25]. Deep-IRT provides

interpretable parameters in IRT model while maintaining the high prediction accuracy

of DKVMN. The structure of Deep-IRT is shown in Figure 2. Deep-IRT adds two

new hidden layers to estimate items’ difficulties and learners’ abilities as below:

휽풕,풋 = 풕풂풏풉(푾휽풇풕 + 풃휽), and (11)

휷풕,풋 = 풕풂풏풉(푾휷풌풕 + 풃휷). (12)

Where the 휽풕,풋 represents that at time point t the learner’s ability to the item with

skill j and the 휷풕,풋 represents the difficulty of the item. With the hyperbolic tangent

activation the value of them will be restricted to between (-1,1) [7]. The prediction

will be modified to the form of IRT with both of them as below:

푷풕풋 = 흈(ퟑ ∗ 휽풕,풋 + 휷풕,풋) . (13)

As the 흈(max(휽풕,풋 ) - min(휷풕,풋)) = 흈(2) ≈ 0.881, 휽풕,풋 multiplies with 3 can

increase the accuracy of predictions [7]. However, despite the improvement in the

interpretability, Deep-IRT assumes that items sharing the same skill are identical,

which can decrease the accuracy of the model’s IRT parameters [6,7].
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Therefore, Tsutsumi et al.(2021) proposed a Deep-IRT with independent student

and item networks. The independent student and item networks help model better

capture the interpretable value of 휷 and 휽 [19,34]. The structure of Deep-IRT

(Tsutsumi et al. 2021) is shown in Figure 2. In Deep-IRT (Tsutsumi et al. 2021), the

presumption of 휽 will no longer depend on the features of items, allowing the

model captures changes in learners’ abilities on the multi-dimensional KCs

independently [19,34]. The addition of multiple layers in the independent item

network allows for more precise feature extraction from items. It also enables the

model to better distinguish different items that share the same skill.

Deep-IRT(Tsutsumi et al. 2021) demonstrates high prediction accuracy equivalently

and provides more accurate estimatation of interpretable parameters.

Figure 2: network architecture of Deep-IRT(Tsutsumi et al. 2021)
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2.4 Context-Aware Attentive Knowledge Tracing

AKT demonstrates the best performance of predicting learners’ responses among

previous methods [9]. AKT deploys a Transformer backbone model, which is widely

used in the field of NLP. The self-attention mechanism of Transformer demonstrates

the superior performance on the prediction accuracy in various tasks. Similar to the

ordinary Transformer model, AKT has a dual structure of self-attention mechanisms:

the encoder and the decoder [17]. The function of self-attention is shown below:

휶풕,풓 = 풆풙풑(풇풕,풓)

풓, 풆풙풑(풇풕,풓,)∑
, (14)

풇풕,풓 =

풒풕⊺풌풓
푫풌

, (퐸푛푐표푑푒푟)
풆풙풑(−휼풅(풕,풓))∙풒풕⊺풌풓

푫풌
, (퐷푒푐표푑푒푟)

. (15)

Where 풒풕 ∈ 푹푫풌 is the query matrix of self-attention that represents learners’

response data from time point 1 to t. 풌풓 ∈ 푹푫풌 is the key matrix of self-attention.

풌풓 also represents the information of the response data and self-attention calculates

items’ correlation by multiplying 풒풕 and 풌풓. 푫풌 is the dim size of matrix. 휶풕,풓 is

the attention between the data at time point t and r.

The encoder in AKT calculates the attention of the current item to each previous

data [9]. Only the data with high relevance to the current data will be extracted. In

the research field of NLP, words with the valuable information could be present

anywhere in a sentence. The self-attention mechanism can correctly extract them

regardless of their positions. However, in the case of learners’ study process,

premature learning histories fail to influence learners’ performance regularly [9].

Therefore, AKT incorporates the decoder with a forgetting function, which employs

an exponential function, to reduce the importance of items that are further away from

the current time point [9]. The structures of the encoder and the decoder are shown

below:
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풅(풕, 풓) = |풕 − 풓| 풕'
풕

풒풕⊺풌풓
푫풌

ퟏ≤풓,≤풕,
풒풕⊺풌풓,
푫풌

∑
∑ . (16)

As a result, in the decoder, the attention 휶풕,풓 between the current and each past

responses will be reduced by the elapsed time |풕 − 풓| to simulate learners’

forgetting process. The algorithm enables AKT to incorporate the prior information

into the model and learn about the particular dataset distribution, leading to a

significant improvement in prediction accuracy. Moreover, the attention 휶풕,풓
serves as a good representation of the correlation between the each item, thus

improving the model’s interpretability [9,17]. However, the results heavily depend

on the nearby historical information due to the exponential function. As a result, The

approach results in significant changes in predictions at each time point and hinders

the model’s ability to estimate the learners’ knowledge levels accurately.
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Chapter 3: The proposed method

Tsutsumi et al. (2021) proposed a new Deep-IRT with two independent networks,

the item network and the student network. The method improves the interpretation of

estimating difficulty and ability parameters compared to previous methods. However,

there is still room for the improvement in the memory updating component. The

previous structure, inherited from DKVMN, encounters following challenges:

1. The memory updating component calculates the degree of updating based on

connections between the current response and learning histories. However, the

current and the past response data are treated separately until (9). Therefore, the

model insufficiently captures the correlations between responses at each time point.

The issue leads to the loss of the valuable information for updates of the value

matrix [20].

2. The parameters 퐚풕 and 퐞풕, which update the value matrix 푴풕
풗, are solely

calculated based on the current response. Consequently, learners with the same

response will receive the similar degree of updating. However, it is evident that

learners with varying knowledge levels could exhibit different changes in abilities

even if they have the same response.

These issues lead to the inaccurate estimation of learners’ abilities and have a

negative impact on the the accuracy of predictions. To address above issues, we

propose a modified memory updating component with a hypernetwork to optimize

the update process. Recently, the concept of hypernetworks has been proposed as an

extension of RNN models. On the basis, Melis et al. (2020) introduced the

“Mogrifier component” as a type of the hypernetwork [18,20]. The Mogrifier

component enables interaction between the input data and the hidden state before

entering the gate unit of LSTM [18,20]. As a result, it can reduce the loss of the

relevant information for updates and improving predicting accuracy, particularly for

datasets with longer sequences [20].

In this paper, we propose the incorporation of a hypernetwork to help Deep-IRT in

optimizing the updating degree of past data. We also modify the memory updating

component to incorporate the capabilities of the hypernetwork.
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3.1 Hypernetwork

In the memory updating component inherited from DKVMN, the parameters 퐚풕
and 퐞풕 that control the updating degree of 푴풕

풗 are solely optimized based on the

current response data 풗풕. It hinders the component from accurately capturing the

connection between 풗풕 and past responses (풗ퟏ,...,풗풕−ퟏ) which are stored in 푴풕
풗. To

address the issue, we propose the incorporation of a hypernetwork [18]. The

hypernetwork enables the memory updating component to optimize the balance

between 풗풕 and 푴풕
풗. As a result, it helps the model extract more relevant

information for updates [20,34].

Figure 3 shows the structure of the combination of the hypernetwork and the

memory updating component. The input data of the hypernetwork 푴� 풕
풗 is calculated

as below:

푴� 풕
풗 =

푴풕
풗 , (흀 = ퟎ)

흈(푾[푴풕
풗 , 푴풕−ퟏ

풗 , . . . , 푴풕−흀
풗 ] + 풃) , (풐풕풉풆풓풘풊풔풆) . (17)

Figure 3: Memory updating component of the proposed DeepIRT (Tsutsumi
et al. 2021) with hypernetwork.
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We propose to incorporate the past knowledge statuses into the hypernetwork. It

helps the hypernetwork include the information that might have been forgotten at

previous time points but is relevant to the current data. The presence of more

relevant data optimizes updating parameters for the current response data 풗풕. The

흀 ∈ {ퟎ, ퟏ, . . . , 퐭} is the hyper-parameter which determines the number of previous

value matrices that should be included. [] represents the concatenate of matrices. In

hypernetwork, 풗풕 and 푴� 풕
풗 are optimized as below:

풗�풕풓 = 휹ퟏ ∗ 흈(푾풗푴� 풕
풗풓−ퟏ) ⊗ 풗풕풓−ퟐ , and (18)

푴� 풕
풗풓 = 휹ퟐ ∗ 흈(푾푴풗�풕풓−ퟏ) ⊗푴풕

풗풓−ퟐ . (19)

Where 휹ퟏ, 휹ퟐ∈ R and rounds r = {1,...,R } are hyper-parameters. In the previous

research, a fixed value of ퟐ was used for 휹ퟏ, 휹ퟐ. It enables the transformed data after

the sigmoid activation function to close to identity [20]. However, the setting is not

appropriate due to the difference of KT datasets. Therefore, we optimize 휹ퟏ, 휹ퟐ for

each dataset to ensure the best performance. r represents the number of

multiplication rounds of 풗�풕풓 and 푴� 풕
풗풓. When r = 1, the 풗�풕−ퟏ = 풗풕 and 푴� 풕

풗ퟎ =

푴� 풕
풗 and the hypernetwork won’t be utilized [20]. By conducting multiple rounds of

multiplications as shown in equations (18) and (19), the hypernetwork optimizes the

balance between 풗�풕풓 and 푴� 풕
풗풓. The rounds r is optimized for each dataset. Details of

hyper-parameters are presented in the section of Experiment.

3.2 Modified memory updating component

By increasing the relevant information, the hypernetwork better optimized the

balance between 풗�풕풓 and 푴� 풕
풗풓. Continuing with the previous structure leads to the

loss of the optimized information obtained from the hypernetwork. Meanwhile, as

the parameters 퐚퐭 and 퐞퐭, which update the value matrix 푴풕
풗, are solely calculated

based on the current response, learners with the same response will receive the

similar degree of updating. As a result, the model can not accurately distinguish
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learners with varying knowledge levels. To address the issues, we propose a

modified memory updating component. The updating parameters 퐚t, 퐞퐭 and value

matrix at the next time point 푴풕+ퟏ
풗 are calculated as shown below:

퐞퐭 = 훔(푾풆ퟏ풗�풕풓 +푾풆ퟐ푴� 풕
풗풓 + 풃풆) , (20)

풛풕 = 흈(푾풛ퟏ풗�풕풓 +푾풛ퟐ푴� 풕
풗풓 + 풃풛) , (21)

퐚퐭 = 풕풂풏풉(푾퐚ퟏ 풛풕 +푾퐚ퟐ푴� 풕
풗풓 + 풃퐚) , and (22)

푴풕+ퟏ
풗 = 푴� 풕

풗풓 ⊗ (ퟏ − 풘풕풆풕) + 풘풕퐚퐭 . (23)

By incorporating the new input 푴� 풕
풗풓, the degree of updating for 푴풕

풗 will be

optimized by considering both the current and past responses [34]. The learners’

knowledge statuses, stored in 푴풕
풗, will be updated accurately by introducing their

previous knowledge levels. As a result, the ability parameters of learners with

varying knowledge levels will be better distinguished. Furthermore, we add a new

layer 퐳퐭 for helping optimize layer 퐚퐭 [34].

The proposed method follows a typical deep learning method. Trainable

parameters are updated using the back-propagation algorithm based on the loss [34].

The loss is calculated by the binary cross-entropy, which is a commonly used metric

for binary classification tasks. The function is shown below:

풍풐풔풔 = − 풕 (풚풕풍풐품푷풕풋 + (ퟏ − 풚풕)풍풐품(ퟏ − 푷풕풋) )∑ . (24)

Where 풚풕∈(0,1) donates the true value at time point t and 0,1 indicates correct or

incorrect [34].



320

20

3.3 Adversarial training

Furthermore, we propose the incorporation of AT in the model. AT was initially

introduced in the field of CV and has been widely adopted in various deep learning

tasks [22,23,24]. The function is shown below:

휼 = 흐 휵풙 푱(흆,풙,풚)
휵풙 푱(흆,풙,풚) ퟐ

, and (25)

풙� = 풙 + 휼 . (26)

Where x donates the embedded vector of input data and y donates the target labels.

흆 donates the parameters of model. 푱 donates the loss of neural networks. 휵

donates the vector differential operator. 휼 donates the adversarial sample which is

made from the gradient of input data. ∙ ퟐ donates the L2 norm of the matrix. 흐

donates the hyper-parameter which controls the sample’s impact to x. 풙� donates the

new input data of the model.

As the proposed method incorporates more parameters to optimize the memory

updating process, the parameters complexity increases. Moreover, the small scale of

dataset in KT results in significant differences in data distribution between training

and test sets. These factors contribute to the over-fitting problem in the proposed

method.

Although various approaches have been proposed to alleviate over-fitting

[37,38,39], AT was reported to have the best performance among them [22,23,24,36].

L1 and L2 regularization are the most representative methods. They introduce

regularization terms into the loss function [40]. The regularization terms constrain

the complexity of the model parameters to improve the robustness [40]. The dropout

addresses the over-fitting issue by randomly deactivating certain neurons during

training [40]. These approaches essentially alleviate over-fitting by reducing

parameter complexity, which prevents the model from being fully trained on the

training set [40]. However, these approaches result in the loss of valuable features at

the same time [40].
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Nonetheless, AT alleviates the over-fitting problem by introducing perturbations

to input data. The perturbations alter the input data distribution, enabling model to

extract more generalized features from the dataset [22,23,24]. AT forces the

parameters not to over-fit the training data [24]. As a result, the model will be robust

to the noisy data and the data in different distributions. AT does not result in the loss

of valuable features and it is contrary to the previous methods that decrease the

complexity of parameters [24]. Furthermore, since perturbations are generated from

the gradient, the new input data become harder for the model to predict [23,24]. As a

result, AT also improves the model’s predictive power when faced with more

difficult data [23,24].

To validate the effectiveness of AT, we conduct a simple experiment on the

ASSISTments2009 dataset, which has a small scale and where the model exhibited

over-fitting. The results are presented in the Table 1. Although previous approaches

are observed to slow down the training set fitting process during training, they did

not exhibit superior performance on the test set. In contrast, AT remarkably

improves the accuracy of the proposed method on the test set. The improvement can

be attributed to the distinctive approach of AT in alleviating over-fitting and its

ability to improve the prediction accuracy for the difficult data.

Dataset metrics
Proposed

method
dropout L1-regularization L2-regularization AT

ASSISTments2009

( with both Item and Skill

Inputs)

AUC

Acc

82.55

77.42

82.52

77.31

82.58

77.38

82.42

77.44

82.82

77.48

TABLE 1
Prediction Accuracy of Alleviating Over-fitting Approaches
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Chapter 4: Experiments

In this section, we conducted experiments to compare the prediction accuracy of

the proposed method with the mainstream deep learning methods: DKVMN,

Deep-IRT, AKT and Deep-IRT (Tsutsumi et al. 2021). Moreover, we performed

analytical experiments to support the claim that the proposed method also improve

the interpretability.

The 5-fold cross validation is applied on the datasets. Each fold comprises 20% of

the data for test sets, 20% for validation sets, and 60% for training sets. The

proposed method trains the model using training sets and tune the hyper-parameters

using the validation sets, and results on test sets will be presented. We compare the

performance on six benchmark datasets: ASSISTments2009, ASSISTments2015,

ASSISTments2017, Statics2011, Junyi, and Eedi. The detailed information is

presented in Table 2 and below:

1. ASSISTments datasets (including ASSISTments2009, ASSISTments2015,

ASSISTments2017) are collected from online tutoring systems and have been widely

used as benchmark datasets for KT.

2. Statics2011 is collected from an engineering statics course.

3. Eedi is collected from a Korean mathematics education platform which contains

the data from 2018 to 2020. The multiple skills combination will be transformed to

an unique number.

Dataset No. students No. Skills No. Items Rate Correct Learning length

ASSISTments2009

ASSISTments2015

ASSISTments2017

Statics2011

Junyi

Eedi

4151

19840

1709

333

48925

80000

111

100

102

1223

705

1200

26684

N/A

3162

N/A

N/A

27613

63.6%

73.2%

39.0%

79.8%

82.8%

64.3%

52.1

34.2

551.0

180.9

345.0

177.0

TABLE 2
Summary of Benchmark Datasets
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4. Junyi is collected from the Chinese online learning system called Junyi Academy.

4.1 Hyper-parameter selection

We conducted experiments to optimize hyper-parameters mentioned before for

each dataset. We performed experiments to determine the optimal number of rounds

r for each dataset and results are presented in Table 3.

Dataset
Number of rounds r

2 3 4 5 6 7

Statics2011

(skill)
82.25 82.24 82.20 82.20 82.16 82.11

ASSISTments2009

(skill)
81.19 81.83 81.25 81.23 81.20 80.96

ASSISTments2015

(skill)
72.91 72.95 72.90 72.89 72.81 72.73

ASSISTments2017

(skill)
85.06 82.73 81.64 80.17 73.23 72.64

Junyi

(skill)
79.00 78.84 78.71 78.67 78.62 78.65

Eedi

(skill)
75.53 N/A N/A N/A N/A N/A

ASSISTments2009

(item & skill)
81.30 81.14 81.38 81.49 82.55 81.20

ASSISTments2017

(item & skill)
75.94 76.17 76.74 76.70 77.69 76.74

Eedi

(item & skill)
79.27 N/A N/A N/A N/A N/A

TABLE 3
Prediction Accuracy and Hyper-Parameters r
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1. {휹ퟏ, 휹ퟐ} are tuned as {1.5,1.5} for ASSISTments2009, ASSISTments2015 and

ASSISTments2017, {1.0, 1.7} for Statics2011, {1.0, 1.0} for Junyi and Eedi.

2. As shown in Table 3, AUC score reaches its highest level when r = 2 for

Statics2011, ASSISTments2017 and Junyi with only skill inputs, r = 3 for

ASSISTments2009 and ASSISTments2017 with only skill inputs, r = 6 for

ASSISTments2009 and ASSISTments2017 with both item and skill inputs. As Eedi

datasets has a numerous size, the model suffers from the problem of gradient

exploding for r >= 3.

3. 흀 determines the number of previous value matrices {푴풕
풗 , 푴풕−ퟏ

풗 , . . . , 푴풕−흀
풗 } that

should be included as input. We conducted experiments to optimize 흀 based on the

optimal setting of {휹ퟏ, 휹ퟐ} and r. Results show that 흀 is optimized as 흀 = 1 for

ASSISTments2009 and Junyi with only skill inputs, and as ASSISTments2009 and

ASSISTments2017 with both item and skill inputs. For the remaining datasets, 흀 =

0. The hyper-parameters of the previous methods are set according to the optimal

settings in the corresponding papers.

Datasets metrics DKVMN Deep-IRT AKT
Deep-IRT

(Tsutsumi et
al. 2021)

Proposed

method

Proposed

method with AT
ϵ

ASSISTments2009 AUC

Acc

81.21 +/- 0.31

75.11 +/- 0.66

81.34 +/- 0.39

76.55 +/- 0.45

80.81 +/- 0.41

76.57 +/- 0.55

81.34 +/- 0.24

76.91 +/- 0.24

81.83 +/- 0.30

76.80 +/- 0.49

81.92 +/- 0.36

76.95 +/- 0.19
1.0

ASSISTments2015 AUC

Acc

72.61 +/- 0.16

75.05 +/- 0.18

72.53 +/- 0.23

74.97 +/- 0.14

72.97 +/- 0.12

75.25 +/- 0.10

72.34 +/- 0.13

74.95 +/- 0.39

72.95 +/- 0.14

75.02 +/- 0.15

73.06 +/- 0.21

75.03 +/- 0.14
0.5

ASSISTments2017 AUC

Acc

72.67+/- 0.37

68.46 +/- 0.24

72.08 +/- 0.32

68.36 +/- 0.30

73.25+/- 0.41

69.17+/- 0.70

72.32+/- 0.69

68.07 +/- 0.54

85.06 +/- 1.17

79.11 +/- 1.06

85.63 +/- 1.08

79.26+/- 0.95
1.0

Statics2011 AUC

Acc

81.20 +/- 0.42

79.24 +/- 0.84

81.38 +/- 0.42

80.33 +/- 0.78

82.15 +/- 0.35

80.41 +/- 0.67

81.45 +/- 0.45

79.18 +/- 0.67

82.25 +/- 0.55

80.63 +/- 0.85

82.47 +/- 0.47

80.69 +/- 0.79
0.2

Junyi AUC

Acc

78.59 +/- 0.21

86.61 +/- 0.28

78.39 +/- 0.20

86.57 +/- 0.30

78.84 +/- 0.19

86.54 +/- 0.25

78.47 +/- 0.21

86.58 +/- 0.27

79.00 +/- 0.26

86.76 +/- 0.24

79.50 +/- 0.24

86.82 +/- 0.26
1.0

Eedi AUC

Acc

75.11 +/- 0.16

71.23 +/- 0.24

75.63 +/- 0.17

71.34 +/- 0.29

75.81 +/- 0.15

71.38 +/- 0.20

75.76 +/- 0.17

71.41 +/- 0.25

75.53 +/- 0.15

71.30 +/- 0.24

75.60 +/- 0.21

71.36 +/- 0.25
1.0

Average AUC

Acc

76.89

74.46

76.83

75.05

77.30

76.55

76.91

76.18

79.35

78.27

79.70

78.36

TABLE 4
Prediction Accuracy of Student’s Performance with Only Skill Inputs
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4.2 Results

1. With only skill inputs: The results of Accuracy and AUC for benchmark datasets

are presented in Table 4. The results demonstrate the proposed method outperforms

previous methods in terms of average AUC and Accuracy. Moreover, the proposed

method exhibits significant improvements on datasets with longer response

sequences, such as ASSISTments2017 and Statics2011. It aligns with the previous

research and supports the notion that the hypernetwork plays a crucial role in the

improvement [20].

2. With both item and skill inputs: Furthermore, we compared the performance of

the proposed method with AKT and Deep-IRT (Tsutsumi et al. 2021) for

ASSISTments2009, ASSISTments2017, and Eedi datasets with both item and skill

inputs. The results are presented in Table 5. The proposed method consistently

exhibits the highest accuracy on average. AKT shows the highest accuracy on Eedi,

which can be attributed to the effectiveness of self-attention mechanisms for larger

datasets, whereas RNN-based models tend to be relatively weaker with larger

datasets. To validate the effectiveness of the modified memory updating component,

we conduct experiments on the proposed method without it. The result shows a

significant decrease in the prediction accuracy. In dataset with longer response

Datasets metrics AKT
Deep-IRT

(Tsutsumi et
al. 2021)

Proposed
method without

modified
component

Proposed
method

Proposed method
with AT ϵ

ASSISTments2009
AUC

Acc

82.20 +/- 0.25

77.30 +/- 0.55

80.70 +/- 0.56

76.13 +/- 0.58

82.29 +/- 0.28

77.34+/- 0.53

82.55 +/- 0.32

77.42 +/- 0.49

82.82 +/- 0.39

77.48 +/- 0.49
1.0

ASSISTments2017
AUC

Acc

74.54+/- 0.21

69.83+/- 0.15

74.15+/- 0.27

68.73+/- 0.11

76.52 +/- 0.36

71.07 +/- 0.24

77.69 +/- 0.51

72.16 +/- 0.55

77.94 +/- 0.59

72.39 +/- 0.63
0.2

Eedi
AUC

Acc

79.42 +/- 0.11

73.59 +/- 0.16

79.11 +/- 0.14

73.42 +/- 0.24

79.16 +/- 0.13

73.40 +/- 0.19

79.27 +/- 0.15

73.49 +/- 0.27

79.34 +/- 0.17

73.52 +/- 0.31
1.0

Average
AUC

Acc

78.72

73.57

78.00

72.76

79.60

73.96

79.83

74.36

80.03

74.46

TABLE 5
Prediction Accuracy of Student’s Performance with both Item and Skill Inputs
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sequences, it even shows a greater decrease. The result validates that the modified

memory updating component helps the hypernetwork to utilize the optimized data

more efficiently.

We also conduct experiments on datasets to demonstrate the effectiveness of AT.

The experimental setup and results are presented in Table 4 and 5. AT consistently

improves the performance of the proposed method across all datasets. It indicates the

effectiveness of AT in alleviating over-fitting and improving model’s robustness.

However, the improvement on large-scale datasets such as Eedi is not as significant

as on smaller datasets. It could be attributed to the abundance of data available in

Eedi for training the model.

No. items 50 100 200 300 50 100 200 300 50 100 200 300

σ Method Pearson Spearman Kendall

0.1

Deep-IRT

Deep-IRT
(Tsutsumi)

proposed
method

0.626

0.885

0.902

0.667

0.907

0.916

0.740

0.924

0.930

0.738

0.916

0.927

0.626

0.892

0.910

0.660

0.915

0.923

0.750

0.940

0.943

0.745

0.938

0.941

0.441

0.710

0.736

0.473

0.746

0.761

0.550

0.785

0.790

0.549

0.782

0.792

0.3

Deep-IRT

Deep-IRT
(Tsutsumi)

proposed
method

0.730

0.827

0.840

0.799

0.891

0.905

0.808

0.883

0.900

0.823

0.890

0.907

0.751

0.863

0.877

0.831

0.926

0.932

0.862

0.941

0.947

0.873

0.945

0.954

0.551

0.671

0.720

0.654

0.755

0.755

0.676

0.758

0.768

0.692

0.761

0.779

0.5

Deep-IRT

Deep-IRT
(Tsutsumi)

proposed
method

0.773

0.855

0.874

0.800

0.870

0.871

0.807

0.860

0.869

0.814

0.849

0.859

0.812

0.893

0.901

0.861

0.928

0.928

0.877

0.929

0.934

0.890

0.930

0.940

0.605

0.705

0.720

0.654

0.755

0.755

0.676

0.758

0.768

0.692

0.761

0.779

1.0

Deep-IRT

Deep-IRT
(Tsutsumi)

proposed
method

0.788

0.843

0.854

0.809

0.830

0.840

0.824

0.844

0.854

0.813

0.834

0.836

0.834

0.886

0.894

0.884

0.911

0.920

0.891

0.919

0.930

0.888

0.918

0.919

0.626

0.696

0.708

0.684

0.728

0.744

0.695

0.740

0.762

0.692

0.740

0.743

TABLE 6
Correlation Coefficient’s of The Estimated Abilities
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4.3 Analysis of interpretable parameters

1. Estimation of ability parameters

In this section, we conduct experiments on the simulation dataset to evaluate the

performance of interpretability in learners’ abilities. Similar to Deep-IRT (Tsutsumi

et al. 2021) [10,35], the simulation data is generated from the TIRT model, which is

a time-series IRT [32,33,34]. The probability of a correct answer assigned to itme j

by student i at time t with ability parameter 휽풊풕 is assumed as

푷풊풋(풙풊풋 = ퟏ|휽풊풕) =
ퟏ

ퟏ+풆풙풑(−풂�∆풕휽풊풕−풃풋)
,and (27)

풂�∆풕 =
ퟏ

ퟏ+흈풂풋
ퟐ∆풕

(28)

Where ∆풕 = 풕 − 풕풋 and 풂�∆풕 ∈ (ퟎ, ∞) is the discrimination parameter at time t.

풃풋 ∈ ( −∞, ∞) is the j-th item’s difficulty parameter representing the degree of

difficulty [31,32]. 휽풊풕 ∈ ( − ∞, ∞) represents the ability of student i at time t. The

prior of 휽풊풕 is a normal distribution described as 휽풊ퟎ ∼ 푵 (ퟎ, ퟏ) and 휽풊풕 ∼

푵 (휽풊풕−ퟏ, 흐) [31,32]. 흈 is a variance of 휽풊풕 and a forgetting parameter [31,32].

For the experiments, we used datasets consisting of 2000 learners’ responses to

{50, 100, 200, 300} items. The datasets are divided into a 90% training set and a

10% test set [34]. We compared the estimated parameters of the test set. The

hyper-parameter σ = {0.1, 0.3, 0.5, 1.0} controls the degree of learners’ forgetting

[34]. A larger value of σ indicates a greater potential for changes in learners’

abilities over time [34]. The Pearson’s correlation coefficients, the Spearman’s rank

correlation coefficients, and the Kendall’s rank correlation coefficients which

calculated between the ability generated by TIRT and estimated parameters of

models. In this experiment, we employed the following three metrics [34]. Each

model calculates Spearman’s rank correlation is the non-parametric version of the

Pearson’s correlation. The Kendall’s rank correlation provides robust estimates for

the aberrant value. Because the distribution of learners’ abilities varies over time,
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the root mean square error (RMSE) is not employed as a metric in this case [34].

The correlation coefficients are calculated based on learners’ abilities at time t∈

{1, 2, ..., T}, and the average of coefficients is presented in Table 6. The proposed

method outperforms to previous methods in all the datasets. The results demonstrate

the proposed method improves the performance in accurately capturing learners'

abilities and better distinguishing the abilities of learners with varying knowledge

levels.

2. Analysis of learner ability transitions

In this section, we evaluate estimated learners’ ability transitions of the proposed

method and compare them with Deep-IRT (Tsutsumi et al. 2021) [10,35].

Visualized ability transition graphs assist teachers to analyze learners’ knowledge

levels in each skill. Similar to previous researches, we estimate a learner’s ability

which from the ASSISTments2009 dataset and provide our evaluation of the results

[7,8,31,32].

In Figure 4, we present the comparison of Deep-IRT (Tsutsumi et al. 2021) and

the proposed method. The vertical axis shows the learner’s ability value and the

range is shown on the right side. The horizontal axis shows four different skills. The

Figure 4: Example of a learner’s ability transition from the ASSISTments2009 dataset.
The comparison between Deep-IRT(Tsutsumi et al. 2021) and the proposed
method.The filled and the hollow circles respectively represent correct and incorrect
responses.

Deep-IRT(Tsutsumi et al. 2021)

Proposed



329

29

skill inputs are labeled as ordering factions (orange), equation solving more than two

steps (grey), equation solving two or fewer steps (green), finding percentages

(yellow). The filled and the hollow circles respectively represent correct and

incorrect responses.

In the overall view, the proposed methods improve the model’s ability to capture

learners ability transitions and accurately present the correlations between

multi-dimensional skills. Additionally, there are distinct changes observed in the

ability of each individual skill. In contrast, the abilities in Deep-IRT (Tsutsumi et al.

2021) are relatively independent. The observation indicates that the proposed

method effectively captures correlations between different skills and provides more

traceable estimation of learner’s ability.

In the microscopic view, there is a strong connection between equation solving

with more than two steps (grey) and equation solving with two or fewer steps (green).

The results demonstrate the proposed method establish a similar pattern between

them. Moreover, the proposed method exhibits a stronger influence of the current

response on the learner’s ability. As the balance between past and latest responses

are optimized by the proposed method, learners’ abilities receive a stronger impact

from the current response and the effect from premature data is also reduced.
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Chapter 5: Conclusions
Knowledge Tracing (KT) is the task of assessing learners’ proficiency in skills

based on their study history. It has attracted significant attention due to its ability for

its capacity to improve learners’ learning effectiveness in the field of education.

This research proposed to incorporate a hypernetwork and a modified memory

updating component. The modified memory updating component with a

hypernetwork improved Deep-IRT model’s capability to balance the current input

data and past latent variables. With the proposed method, the memory updating

component obtained more relevant data for updates and could adaptively update for

learners with varying knowledge levels. Additionally, we introduced adversarial

training to improve the model’s robustness against over-fitting and achieve higher

accuracy. Experimental results on benchmark datasets demonstrated that the

proposed method outperformed existing methods. Consistent with prior studies [20],

the proposed method exhibited significant efficacy, especially for datasets with

longer sequences. Additionally, we conducted experiments on simulation data

generated from the TIRT model. The results demonstrated that the ability parameters

estimated by the proposed method exhibited higher correlations in all situations. The

results also indicated that the proposed method improves both the interpretability

and performance of the model.

However, the proposed method with a higher complexity structure encounters the

challenge of gradient exploding. The model might experience breakdown in the later

stages of training. Simplifying the hypernetwork to reduce the model’s complexity

without compromising accuracy becomes an important task for the future research.
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