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論文の和文概要 

 

論文題目 
Item response theory based on deep learning with independent student and 

item networks 

氏  名 堤 瑛美子 

近年，教育現場ではオンラインラーニングシステムで収集された教育ビッグデータをいか

に有効に活用するかが課題となっている．人工知能分野では，機械学習を用いて学習者の

課題への反応を予測することにより，学習者への適切な支援を行うアダプティブラーニン

グが注目されている．本研究では深層学習手法と項目反応理論を組み合わせ，パラメータ

の解釈性をもちながら高精度な反応予測を可能とする新たな項目反応理論を提案する．提

案手法は学習者の項目への反応を二つの独立な学習者ネットワークと項目ネットワークで

表現し，項目特性に依存せずに能力値を推定することができる．評価実験では，提案手法

が最先端の反応予測手法と同程度の予測精度を示し，解釈性の高いモデルである従来の項

目反応理論を上回る能力推定精度を示した． 

 



Abstract

Knowledge tracing (KT), the task of tracking the knowledge state of a student over

time, has been assessed actively by artificial intelligence researchers. Recent re-

ports have described that Deep-IRT, which combines Item Response Theory (IRT)

with a deep learning method, provides superior performance. It can express the

abilities of each student and the difficulty of each item as in IRT. Nevertheless, its

interpretability is inadequate compared to that of IRT because the ability parame-

ter depends on each item. Deep-IRT implicitly assumes that items with the same

skills are equivalent, which does not hold when item difficulties for the same skills

differ greatly. For identical skills, items that are not equivalent hinder the inter-

pretation of a student’s ability estimate. To overcome those difficulties, this study

proposes a new IRT based on deep learning that models a student response to an

item using two independent networks: a student network and an item network. The

proposed method learns student parameters and item parameters independently to

avoid impairing the predictive accuracy. Moreover, we propose a novel hypernetwork

architecture for the proposed method to balance both the current and the past data

in the latent variable storing a student’s knowledge states. Results of experiments

demonstrate that the proposed method improves both the prediction accuracy and

the interpretability of earlier KT methods.
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1 Introduction

Recently, along with the advancement of online education, Knowledge Tracing (KT)

has attracted broad attention for helping students to learn effectively by presenting

optimal problems and a teacher’s support [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Important tasks of KT are tracing the student’s evolving knowledge state and dis-

covering concepts that the student has not mastered based on the student’s prior

learning history data. Accurately predicting a student’s performance (correct or

incorrect responses to an unknown item) is important for adaptive learning.

Many researchers have developed various methods to solve KT tasks. Genereally

speaking, KT methods are divisible into probabilistic approaches and deep-learning

approaches. Bayesian Knowledge Tracing (BKT), a traditional and well known

probabilistic model for KT [1], employs a Hidden Markov Model to trace a process

of student ability growth. BKT estimates whether the student has mastered the skill

or not according to the student’s past response data. It then predicts the student’s

responses to unknown items. Researchers have proposed several BKT variants to

improve interpretability [2, 3, 4, 5, 14, 15, 16, 17, 18]. The BKT models predict

a student’s knowledge state using only simple discrete values. Therefore, they are

inflexible with the student knowledge state changes. Moreover, they assume a single

dimension of the ability. They are unable to capture the multi-dimensional ability

sufficiently or predict performance precisely. Recently, Item Response Theory (IRT)

[19], which is used in the test theory area, has come to be used for KT [20, 21].

Actually, IRT predicts a student’s correct answer probability to an item based on

the student’s latent ability parameter and item characteristic parameters. Several

studies have extended standard IRT models to ascertain student ability changes for

learning processes with the Hidden Markov process [20, 21, 22, 23, 24, 25, 26, 27].

These are regarded as generalized models of BKT and IRT because they estimate

the ability as a continuous hidden variable following a Hidden Markov process.

Actually, a learning task is associated with multiple skills. Students must master

the knowledge of multiple skills to solve a task. However, BKT and IRT have a

restriction: they express only uni-dimensional ability. Therefore, BKT and IRT

are unable to capture the multi-dimensional ability sufficiently. They are unable to

predict the performance precisely.

To overcome the limitations, Deep Knowledge Tracing (DKT) [6] was proposed

as the first deep-learning-based method. To predict student performance, DKT

employs Long short - term memory (LSTM) [28]. LSTM relaxes the restrictions of

skill separation and binary state assumptions. That earlier study shows that DKT
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can predict a student’s performance more precisely than traditional models, such

as BKT, can. However, the hidden states include a summary of the past sequence

of learning history data in LSTM. Therefore, DKT does not explicitly treat the

student’s ability of each skill.

To improve the DKT performance, various deep-learning-based methods have

been proposed [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Especially, the dynamic

key-value memory network (DKVMN) was developed to exploit the relations among

underlying skills and to trace the respective knowledge states using a Memory-

Augmented Neural Network and attention mechanisms [8]. It can estimate the

relations between underlying skills and items addressed by students. In addition,

DKVMN has a memory updating component to allow forgetting and updating of

the latent variable memory, which stores the students’ knowledge states during the

learning process [8]. Furthermore, to improve the explanatory capabilities of the

parameters, Deep-IRT was proposed by combining DKVMN with an IRT module

[7]. In fact, Deep-IRT can estimate a student’s ability and an item’s difficulty just as

standard IRT models can. However, the ability parameter of the Deep-IRT depends

on each item characteristic because it implicitly assumes that items with the same

skills are equivalent. The assumption does not hold when the item difficulties for the

same skills differ greatly. Items for the same skills which are not equivalent hinder

interpretation of estimates of a student’s ability.

The self-attentive knowledge tracing (SAKT) method [40] is the first method to

employ an attention mechanism: the Transformer method [41], for KT. To predict

student performance, SAKT identifies the relation between skills and an item ad-

dressed by a student from past learning data. Most recently, Gosh et al. (2020)

proposed attentive knowledge tracing (AKT) [12], which incorporates a forgetting

function of past data to attention mechanisms. AKT optimizes the parameters to

weight the data necessary for student performance prediction from past learning

data. Additionally, they pointed out a shortcoming by which earlier KT methods

assumed that items with identical skills are equivalent. To overcome that shortcom-

ing, they employed both items and skills as inputs. AKT provides state-of-the-art

performance of future learner performance prediction. However, the interpretabil-

ity of the parameters remains inadequate because AKT cannot express a student’s

ability transition of each skill.

Earlier studies have tackled the development of deep-learning-based methods to

give parameter interpretability similarly to IRT models, but those studies have not

achieved it for student ability parameters, which are most important for student

modeling. An important shortcoming is the difficulty of incorporating the ability
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parameters and item parameters independently into deep-learning-based methods

so as not to degrade prediction accuracy. This study addresses that shortcoming.

Recent studies of deep learning have demonstrated that redundancy of parame-

ters for training data reduces generalization error, contrary to Occam’s razor. The

studies also clarify the reasons underlying that finding [42, 43, 44]. Based on reports

of state-of-the-art studies, this study proposes novel IRTs based on deep learning

that model a student’s response to an item by two independent redundant networks:

a student network and an item network [13, 45]. The proposed method learns stu-

dent parameters and item parameters independently to avoid impairment of the

predictive accuracy. Therefore, the ability parameters of the proposed method are

independent of each item’s characteristics.

First, we propose a new IRT based on deep learning for test theory which has two

independent redundant networks assuming that the ability is constant throughout

the learning process [46]. This method is a new method of assessing learner compe-

tence values that solves the IRT problem. Evaluating the abilities of numerous stu-

dents on a single scale requires linkage of students’ abilities estimated from different

tests [47, 48, 49, 50]. Although linkage techniques of IRT assume random sampling

of students’ abilities from a standard normal distribution, students’ abilities have no

guarantee of being sampled randomly from a standard normal distribution. On the

other hand, the proposed method can express actual students’ abilities distributions

flexibly because it does not follow a standard normal distribution. Therefore, it

estimates students’ abilities with high accuracy when the students are not sampled

randomly from a single distribution or when there are no common items among the

different tests. The two independent networks provide a more reliable and robust

ability estimation for actual data than IRT does.

Next, we propose a new IRT based on deep learning for knowledge tracing that

estimates dynamic changes of student abilities in the learning process and predicts

student performances [13]. This proposed method employs memory network archi-

tecture to reflect dynamic changes of student abilities as DKVMN does.The memory

updating component in DKVMN is more effective than the forgetting function of

AKT because it updates the current latent variable, which stores the students’ skills

and abilities using only the immediately preceding values. Because the estimated

ability parameters are independent of each item’s characteristics, they have higher

interpretability than those of earlier Deep-IRT [7].

However, room for improvement remains in the prediction accuracy of the pro-

posed method. In fact, the forgetting parameters which control the degree of forget-

ting the past latent variable are optimized from only the current input data: The
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student’s latest response to an item. It might degrade the prediction accuracy of

the proposed method because the latent variable only insufficiently reflects the past

data. As a result, it might interrupt the accurate estimation of the ability transition

in a long learning process. It should use not only the current input data but also

past latent variables to optimize the forgetting parameters. However, when learning

the proposed method using both current and past input data, it is difficult to op-

timize the weight parameters directly because the number of parameters increases

dynamically. To resolve that difficulty, we combine a novel hypernetwork with the

proposed method because it optimizes the degree of forgetting of the past latent

variables and thereby avoids greatly increasing the number of parameters.

Recent studies in the field of Natural Language Processing (NLP) have proposed

several hypernetworks to optimize the latent variables and the weights of the hidden

layers for LSTM [51, 52]. Some hypernetworks scale the latent variables and columns

of all weight matrices expressing a context-dependent transition [51, 52, 53, 54,

55, 56, 57, 58]. No report of the relevant literature has described a study of the

use of hypernetworks for KT methods. Using the proposed method, the proposed

hypernetwork balances both current input data and past latent variables that store

a student’s knowledge state in the learning process. Before the model updates the

latent variable, it optimizes not only the weights of the forgetting parameters but

also the past latent variables in the hypernetwork. Although Tsutsumi et al. [45]

proposed a hypernetwork for KT, they did not describe any related details: only the

conceptual idea. Tsutsumi et al. [13, 45] improved the parameter interpretability.

However, their prediction accuracies did not outperform AKT, which provided the

best prediction performance among the earlier methods. In contrast, this study

proposes a novel hypernetwork architecture to optimize the balance between the

latest input data and the past latent variables.

As mentioned before, the original tasks of KT are discovering concepts that the

student has not mastered and presenting optimal items by predicting the student’s

responses to unknown items [1, 5, 6, 7, 8]. On the other hand, for adaptive learning

or adaptive testing, online learning systems with IRT estimate the student ability

and the item parameters and presents optimal problems such that the students’

correct probability is 0.5 [59, 60]. The proposed method can realize not only KT

but also the online learning systems with IRT.

We conducted experiments to compare the proposed method’s performance and

those of earlier KT methods. Surprisingly, the results demonstrate that the proposed

method improves the prediction accuracy and the interpretability of earlier KT

methods including AKT, although the parameters of the proposed method are far
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more numerous than those used for earlier methods.

2 Related Works

2.1 Item Response Theory

There are many item response theory (IRT) models [19, 48, 61]. This subsection

briefly introduces two-parameter logistic model (2PLM): an extremely popular IRT

model. For 2PLM, uij represents the response of student i to item j (1..., J) as

uij =





1 (student i answers correctly to item j),

0 (otherwise).

In 2PLM, the probability of a correct answer given to item j by student i with

ability parameter θi ∈ (−∞,∞) is assumed as

Pj(θi) = P (uij = 1 | θi)

=
1

1 + exp(−1.7aj(θi − bj))
, (1)

where aj ∈ (0,∞) represents the j-th item’s discrimination parameter expressing

the discriminatory power for student’s abilities, and bj ∈ (−∞,∞) is the j-th item’s

difficulty parameter representing the degree of difficulty.

From Bayes’ theorem, the posterior distribution of an ability parameter g(θ|u)
is given as

g(θ|u) = L(θ|u)f(θ)
h(u)

, (2)

where L(θ|u) is a likelihood, f(θ) is a prior distribution, and h(u) is a marginal

distribution:

h(u) =

∫ ∞

−∞
L(θ|u)f(θ)dθ. (3)

The parameters are estimated using the expected a priori (EAP) method, which is

known to maximize the prediction accuracy theoretically as

θ̂ =

∫ ∞

−∞
θg(θ|u)dθ. (4)

Because calculating the parameters analytically is difficult, numerical calculation

methods such as Markov Chain Monte Carlo methods (MCMC) are generally used.
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Actually, IRT models are known to have high interpretability. However, in stan-

dard IRT models, the ability is assumed to be constant throughout the learning

process. Therefore, a student’s ability changes are not reflected in the models.

Recently, several studies have extended standard IRT models to capture student’s

ability changes for the learning processes with the Hidden Markov process[20, 21, 22,

23, 24, 25, 26]. These are regarded as generalized models of BKT and IRT because

they estimate the ability as a continuous hidden variable following a Hidden Markov

process.

For example, Temporal IRT (TIRT) is a Hidden Markov IRT with a parameter to

forget past response data [21]. In TIRT, the probability of a correct answer assigned

to item j by student i at time t with ability parameter θit is assumed as

Pij(xij = 1 | θit) =
1

1 + exp (−ã∆t(θit − bj))
, (5)

ã∆t =
aj√

1 + εa2j∆t

, (6)

where ∆t is a difference between the current time t and the past time tj when the

student answered to item j. aj ∈ (0,∞) is the j-th item’s discrimination param-

eter at time t. In addition, bj ∈ (−∞,∞) is the j-th item’s difficulty parameter

representing the degree of difficulty. Furthermore, θit ∈ (−∞,∞) represents the

student i ability at time t. The prior of θit is a normal distribution described

as θi0 ∼ N (0, 1), θit ∼ N (θit−1, ε). The parameters are estimated using MCMC

method as in 2PL IRT. Moreover, ε is a variance of θit and a forgetting parameter

(tuning parameter), which determines the forgetting degree of the past data. The

smoothness of a student’s ability transition can be controlled by ε. Therefore, as ε

increases, the fluctuation range of the true ability increases at each time point.

However, these IRT models incorporate the assumption of a single dimension of

the ability. In other words, they consider completely independent multiple skills.

Apparently, these are unable to accommodate items that require different skills.

2.2 Deep Knowledge Tracing

Deep knowledge tracing (DKT) [6] was proposed as the first deep-learning-based

method. It exploits recurrent neural networks and Long short - term memory

(LSTM) [28] to simulate transitions of ability. It can capture complex multidimen-

sional features of both items and students and can relax the limitations of traditional

methods such as independence between skills. An earlier study demonstrated that

DKT outperformed BKT [1] in terms of predictive accuracy [6]. However, DKT
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summarizes a student’s ability of all skills in one hidden state, which makes it dif-

ficult to trace the degree to which a student has mastered a certain skill and to

pinpoint concepts with which a student is proficient or unfamiliar.

2.3 Dynamic Key-value Memory Network

To improve the DKT interpretability, researchers have undertaken great efforts to

propose novel methods for use with KT [29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 62,

63, 64, 65, 66, 67, 68, 69, 70, 71]. Specifically, a dynamic key-value memory net-

work (DKVMN) exploits a memory-augmented neural network along with attention

mechanisms to trace student abilities in different dimensions [8]. Figure 1 presents

a brief illustration.

The salient feature of DKVMN is that it assumes N underlying skills and

relations among the input (skills). Underlying skills are stored in key memory

M k ∈ RN×dk . Value memory M v
t ∈ RN×dv holds abilities of underlying skills at

time t. Here, dk and dv are tuning parameters. To express the skill of j-th item, the

input of DKVMN is an embedding vector sj ∈ Rdk of skill tag of item j. DKVMN

predicts the performance of item j at time t as explained below.

First, DKVMN calculates the attention, which indicates how strongly an item j

is related to each skill as

wjl = Softmax
(
M k

l sj
)
, (7)

where Mk
l represents a l th row vector, and wjl signifies the degree of strength of the

relation between the latent skill l and the skill of item j addressed by a student at

time t. Also, Softmax(zi) = exp(zi)/
∑

j exp(zj) and is differentiable. Next, student

vector θ(t,j)
1 is calculated using the weighted sum of value memory.

θ(t,j)
1 =

N∑

l=1

wjl (M
v
tl)

$ , (8)

where M v
tl represents the l-th row vector. Finally, it concatenates θ(t,j)

1 with sj and

predicts a correct probability Pjt for an item j as

θ(t,j)
2 = tanh

(
W (θ2)

[
θ(t,j)
1 , sj

]
+ τ (θ2)

)
, (9)

Pjt = σ
(
W (Pjt)θ(t,j)

2 + τ (Pjt)
)
, (10)

where [·] denotes a concatenation of vectors and σ(·) represents the sigmoid function

defined by σ(z) = 1/(1+exp(−z)). In this thesis, we express W (·) as the weight ma-

trix and weight vector, and τ (·) as the bias vector and scalar. Reportedly, DKVMN
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Figure 1: Network architecture of DKVMN and Deep-IRT. The underside of the

structure describes DKVMN; the whole structure describes Deep-IRT. The blue

components represent the process of getting the attention weight. The yellow com-

ponents are associated with the student network and the process of updating the

value memory. The green components are associated with the item network. The

designation % represents subtraction.

has the capability of predicting performance accurately. However, unfortunately, it

lacks interpretability of the parameters.

2.4 Deep-IRT

To improve the DKVMN interpretability, Deep-IRT is implemented by combining

DKVMN with an IRT module [7]. Deep-IRT exploits both the strong prediction

ability of DKVMN and the interpretable parameters of IRT. Fig.1 presents a simple

illustration.

Deep-IRT adds a hidden layer to DKVMN to gain applicable ability and item

difficulty. Specifically, when a student attempts item j at time t, an ability θ(t,j)3

and item difficulty βj are calculated as described below.

θ(t,j)3 = tanh
(
W (θ3)θ(t,j)

2 + τ (θ3)
)
, (11)

βj = tanh
(
W (β)sj + τ (β)

)
, (12)

The prediction is based on the difference between θ(t,j)3 and βj such as IRT.

Pjt = σ
(
3.0 ∗ θ(t,j)3 − βj

)
. (13)

8



Here, ability θ(t,j)
2 is calculated using sj in equation (9), which depends on the

item to solve because it implicitly assumes that items with the same skills are equiv-

alent. In other words, this method cannot reflect the characteristics of each item. In

fact, the ability estimate for the same student and time might differ if the student

attempts a different item. An important difficulty is that a student’s ability, which

depends on each item, hinders the interpretability of the parameters.

2.5 Attentive Knowledge Tracing

Gosh et al. (2020) proposed attentive knowledge tracing (AKT) [12], which combines

the attention-based model with the Rasch model, which is also known as the 1PLM

IRT model [72]. It is noteworthy that AKT incorporates a forgetting function for

past data into attention-based neural networks. Attention weights in AKT express

the relation between a student’s latest data and past data, decaying exponentially

during the learning process. Specifically, AKT calculates the attention weight matrix

α as

αt,λ =
exp (ft,λ)∑
λ′ exp (ft,λ′)

, (14)

ft,λ =
exp (−ηd(t,λ)) · q!

t kλ√
Dk

, (15)

where η > 0 is a decay rate parameter and d(t,λ) is a temporal distance measure

between time steps t and λ. In addition, qt ∈ RDk denotes the query corresponding

to items to which the student responds at time 1 to t, kλ ∈ RDk denotes the key

for the item at time step λ and Dk denotes dimensions of the key matrix [12]. The

attention weight α decays as the distance between the current input time and the

past input time increases. Furthermore, d(t,λ) with λ ≤ t is obtained as explained

below.

d(t,λ) = |t− λ|
t∑

t′=λ+1

q!
t kt′√
Dk∑

1≤λ′≤t′
q!
t kλ′√
Dk

, ∀t′ ≤ t. (16)

In fact, d(t,λ) adjusts the distance between consecutive time indices according to

how the past input is related to the current input [12].

Additionally, they pointed out that the earlier KT methods assumed that items

with the same skills are equivalent. To resolve the difficulty, AKT employs both

items and skill inputs. Results show that, among the earlier KT methods, AKT

provides the best performance for predicting the students’ responses. Nevertheless,

the interpretability of its parameters remains inadequate because it cannot express

a student’s ability transition for each skill.

9



3 IRT Based on Deep Learning with Independent

Student and Item Networks

Earlier studies have tackled developing deep-learning-based methods to give param-

eter interpretability similar to IRT models, but those studies have not achieved it

for student ability parameters, which are most important for student modeling. The

problem is the difficulty of independently incorporating the ability parameters and

item parameters into deep-learning-based methods so as not to degrade prediction

accuracy. This study addresses that problem.

3.1 IRT Based on Deep Learning for Test Theory

To improve the parameter interpretability of deep learning method, first, we propose

a novel item response theory based on deep learning for test theory. The proposed

method estimates parameters using two independent networks: a student network

and an item network. However, in general, independent networks are known to

have less prediction accuracy than dependent networks have. Recent studies of

deep learning have demonstrated that redundancy of parameters (deep layers of

hidden variables) reduces generalization error, contrary to Occam’s razor [42, 43, 44].

Based on state-of-the-art reports, The proposed method constructs two independent

redundant deep networks as presented in Figure 2.

Furthermore, the proposed method solves the IRT problem for E-testing. E-

testing involves the delivery of examinations and assessments on screen, using either

local systems or web-based systems. In general, e-testing provides automatic assem-

blies of uniform test forms, for which each form comprises a different set of items

but which still has equivalent measurement accuracy [73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83]. Uniform test forms are assembled for which all forms have equiva-

lent qualities for equal evaluation of examinees who have taken different test forms.

Students’ test scores should be guaranteed to become equivalent, even if different

students with the same ability take different tests. However, because it is difficult

to develop perfectly uniform test forms, the calibration process is fundamentally

important when multiple test forms are used.

To resolve this difficulty, IRT has been used as a calibration method. Evaluat-

ing the abilities of numerous students on a single scale requires linkage of students’

abilities estimated from different tests [47, 48, 49, 50]. Although linkage techniques

of IRT assume random sampling of students’ abilities from a standard normal dis-

tribution, students’ abilities have no guarantee of being sampled randomly from a

10



Figure 2: Network architecture of the proposed method with independent student

and item networks for test theory. The green components are associated with the

student network. The blue components are associated with the item network. The

designations % represents element-wise multiplication and subtraction.

standard normal distribution. In addition, IRT requires the assumption of local

independence between items. Although it estimates students’ abilities on the as-

sumption that a student’s response to each item is independent, items might not

always have local independence. However, the proposed method can express actual

students’ abilities distributions flexibly because the method does not assume a stan-

dard normal distribution of the abilities. It estimates students’ abilities with high

accuracy when they are not sampled randomly from a single distribution or when

there are no common items among the different tests. Furthermore, the proposed

method estimates students’ abilities while including consideration of the relations

among items. Therefore, it provides a more reliable and robust ability estimation for

actual data than IRT does. It is expected to have highly interpretable parameters

without impairment of the estimation accuracy.

3.1.1 Student Network

To express the i-th student, the encode of student network is a one-hot vector

si ∈ {0, 1}I , where I represents the number of students. The i-th element is 1;

the other elements are 0s. The student network comprises three layers as described

below.

θ(i)
1 = tanh

(
W (θ1)si + τ (θ1)

)
, (17)

θ(i)
2 = tanh

(
W (θ2)θ(i)

1 + τ (θ2)
)
, (18)

θ(i)3 = W (θ3)θ(i)
2 + τ (θ3). (19)
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Here, W (θ1) and W (θ2) are the weight matrices given as

W (θ1) =





w(θ1)
11 w(θ1)

12 . . . w(θ1)
1I

w(θ1)
21 w(θ1)

22 . . . w(θ1)
2I

...
...

. . .
...

w(θ1)
|θ1|1 w(θ1)

|θ1|2 . . . w(θ1)
|θ1|I




,

W (θ2) =





w(θ2)
11 w(θ2)

12 . . . w(θ2)
1|θ1|

w(θ2)
21 w(θ2)

22 . . . w(θ2)
2|θ1|

...
...

. . .
...

w(θ2)
|θ2|1 w(θ2)

|θ2|2 . . . w(θ2)
|θ2||θ1|




.

Therein, W (θ3) is the weight vector given as

W (θ3) =
(

w(θ3)
1 , w(θ3)

2 , . . . , w(θ3)
|θ2|

)
.

In addition, τ (θ1) =
(
τ (θ1)1 , τ (θ1)2 , ..., τ (θ1)|θ1|

)$
and τ (θ2) =

(
τ (θ2)1 , τ (θ2)2 , ..., τ (θ2)|θ2|

)$
are

the bias parameters vectors; τ (θ3) is the bias parameter. In this study, the last layer

θ(i)3 is expressed as the i-th student’s ability parameter. Although the estimated

student’s ability parameters have discrimination, we standardize them according to

the standard IRT models.

An overview of the calculation in terms of the student network is presented in

Figure 3. Here, uij represents the response of student i to item j and the weight

matrix W represents an estimate of the relation between a student’s ability and

all other students’ abilities. Therefore, the proposed method does not require the

assumption of random sampling students’ abilities from a statistical distribution

because it estimates a student’s ability by adjusting the other students’ ability esti-

mates.

3.1.2 Item Network

Similarly, to express the j-th item, the encoding of the item network is a one-hot

vector qi ∈ {0, 1}J , where J stands for the number of items. The j-th element is 1;

the other elements are 0s. The item network consists of three layers as follows.

β(j)
1 = tanh

(
W (β1)qj + τ (β1)

)
, (20)

β(j)
2 = tanh

(
W (β2)β(j)

1 + τ (β2)
)
, (21)

β(j)
3 = W (β3)β(j)

2 + τ (β3). (22)
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Figure 3: Student layer structure.

In addition, W (β1) and W (β2) are the weight matrices given as presented below.

W (β1) =





w(β1)
11 w(β1)

12 . . . w(β1)
1J

w(β1)
21 w(β1)

22 . . . w(β1)
2J

...
...

. . .
...

w(β1)
|β1|1 w(β1)

|β1|2 . . . w(β1)
|β1|J




,

W (β2) =





w(β2)
11 w(β2)

12 . . . w(β2)
1|β1|

w(β2)
21 w(β2)

22 . . . w(β2)
2|β1|

...
...

. . .
...

w(β2)
|β2|1 w(β2)

|β2|2 . . . w(β2)
|β2||β1|




.

Here, W (β3) is the weight vector given as shown below.

W (β3) =
(

w(β3)
1 , w(β3)

2 , . . . , w(β3)
|β2|

)
.

Additionally, τ (β1) =
(
τ (β1)
1 , τ (β1)

2 , ..., τ (β1)
|β1|

)$
and τ (β2) =

(
τ (β2)
1 , τ (β2)

2 , ..., τ (β2)
|β2|

)$
are

the bias parameters vectors. τ (β3) is the bias parameter. For this study, we consider

the last layer β(j)
3 as the j th item’s difficulty parameter. Similarly to sampling of

students, this method does not assume random sampling of item difficulty parame-

ters from a statistical distribution.

Then, the proposed method represents a student’s correct response probability

to an item using the difference between the student’s ability parameter and the item

difficulty parameter. Specifically, student i’s correct response probability to j’s item

is described using a hidden layer h(i,j) = (h(i,j)
0 , h(i,j)

1 )$ as

h(i,j) = (W (y))(θ(i)3 − β(j)
3 ) + τ (y), (23)
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ŷij = Softmax(h(i,j))

=
exp(h(i,j)

1 )

exp(h(i,j)
0 ) + exp(h(i,j)

1 )
. (24)

Here, W (y) = (w(y)
1 , w(y)

2 )$ and τ (y) = (τ (y)1 , τ (y)2 )$ are the weight vector and bias

parameters vector.

The proposed method does not assume random sampling of students’ abilities

and item difficulties from any statistical distribution. Instead, it uses a deep learning

method to estimate the relation between a students’ ability and all other students’

abilities by maximizing the prediction accuracy of students’ responses. The unique

feature of this method is to estimate a student’s ability by adjusting the other

students’ ability estimates.

3.1.3 Prediction of Student Response to an Item

In general, deep learning methods learn their parameters using the back-propagation

algorithm by minimizing a loss function. The loss function of the proposed method

employs cross-entropy, which reflects classification errors. It is calculated from the

predicted responses ŷij and the true responses uij as

*(uij, ŷij) = −uij log ŷij − (1− uij) log(1− ŷij). (25)

Like other machine learning techniques, deep learning methods are biased to

data they have encountered before. Therefore, the generalization capacity of the

methods depends on the training data, which leads to sub-optimal performance.

Consequently, the proposed method cannot predict responses of students or items

accurately with an extremely small number of (in)correct answers. To overcome this

shortcoming, cost-sensitive learning, which weights minority data over majority, has

been used widely [84]. Therefore, we add the loss function based on a cost-sensitive
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approach as

Lossclass =
∑

i

∑

j

*(uij, ŷij) (26)

+ γ1
∑

i∈Le

∑

j∈(uij=1)

*(uij, ŷij)

+ γ2
∑

i∈He

∑

j∈(uij=0)

*(uij, ŷij)

+ γ3
∑

j∈Li

∑

i∈(uij=1)

*(uij, ŷij)

+ γ4
∑

j∈Hi

∑

i∈(uij=0)

*(uij, ŷij),

where Le stands for a group of students whose correct answer rates are less than

αLe , He denotes a group of students whose correct answer rates are more than αHe ,

Li signifies a group of items of which correct answer rates are less than αLi , and Hi

represents a group of items with correct answer rates that are more than αHi . Here,

γ1, γ2, γ3, γ4 and αLe ,αHe ,αLi ,αHi are tuning parameters. All of the parameters are

learned simultaneously using a popular optimization algorithm: adaptive moment

estimation [85].

Although this method have high parameters interpretability, a student’s ability

is constant throughout a learning process. Therefore, it can not be applied to

knowledge tracing.

3.2 IRT Based on Deep Learning for Knowledge Tracing

In this section, we propose a novel IRT based on deep learning for knowledge tracing

which estimates dynamic changes of student abilities in the learning process and

predicts student performances. The ability parameter of Deep-IRT [7] depends on

each item because it implicitly assumes that items with the same skills are equivalent.

That assumption does not hold when the item difficulties for the same skills differ

greatly. Therefore, when the items for the same skills are not equivalent, it is

difficult to interpret a student’s ability estimate. To resolve the difficulty, this study

proposes a novel IRT based on deep learning comprising two independent neural

networks: the student network and the item deep network, as presented in Figure

4. The student network employs memory network architecture such as DKVMN

to ascertain changes in student ability comprehensively. The item network includes

inputs of two kinds: the item attempted by a student and the necessary skills to solve

the item. Using outputs of both networks, the probability of a student answering
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Figure 4: Network architecture of the proposed method with independent student

and item networks for KT. The yellow components are associated with the student

network. The green components are associated with the item network. In addition,

the right side of figure presents the memory updating component. The designations

⊗ and ⊕ respectively represent element-wise multiplication and addition.

an item correctly can be calculated. The proposed method can estimate student

parameters and item parameters independently such that the prediction accuracy

does not decline because the two independent networks are designed to be more

redundant than they are with earlier methods, based on state-of-the-art reports

[42, 43, 44].

As mentioned before, the original tasks of KT are discovering concepts that the

student has not mastered and presenting optimal items by predicting the student’s

responses to unknown items [1, 5, 6, 7, 8]. On the other hand, for adaptive learning

or adaptive testing, online learning systems with IRT estimate the student ability

and the item parameters and presents optimal problems such that the students’

correct probability is 0.5 [59, 60]. The proposed method can realize not only KT

but also the online learning systems with IRT.

The proposed method calculates Pjt, the probability of a correct answer assigned

to the item j at time t, using the item difficulties and the student abilities, as shown

hereinafter.
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3.2.1 Item Network

In the item network, two difficulty parameters of item j are estimated: the item

characteristic difficulty parameter βj
item and the skill difficulty βj

skill. The item char-

acteristic difficulty parameter represents the unique difficulties of the item, excepting

the required skill difficulty. The proposed method expresses item difficulty as the

sum of the two difficulty parameters of βj
item and βj

skill.

In the proposed method, to express the j-th item, an input of the item network is

an embedding vector qj ∈ Rdk of item j. The item characteristic difficulty parameter

of item j is calculated using a feed forward neural network as

βj
1 = tanh

(
W (β1)qj + τ (β1)

)
, (27)

βj
k′ = tanh

(
W (βk′ )βj

k′−1 + τ (βk′ )
)
, (28)

βj
item = W (βitem)βj

k + τ (βitem). (29)

In this report, we represent {k ∈ N|2 ≤ k′ ≤ k} as the number of hidden layers

determined depending on the prediction accuracy of actual data. The last layer

βj
item represents the j-th item characteristic difficulty parameter.

Similarly, to compute the difficulty of skills, the proposed method uses the input

of necessary skills sj ∈ Rdk . The embedding vector sj is calculated from the skill

tag of item j.

γj
1 = tanh

(
W (γ1)sj + τ (γ1)

)
, (30)

γj
k′ = tanh

(
W (γk′ )γj

k′−1 + τ (γk′ )
)
, (31)

βj
skill = W (βskill)γj

k + τ (βskill), (32)

where {k ∈ N|2 ≤ k′ ≤ k}. The last layer βj
skill denotes the difficulty parameter of

the required skills to solve the j-th item.

3.2.2 Student Network

In the student network, the proposed method calculates θ(t,j)
1 based on the latent

variable M v
t expressing a student’s latent knowledge state at time t, as

θ(t,j)
1 =

N∑

l=1

wjl (M
v
tl)

$ , (33)

where M v
tl represents a l-th row vector and wtl is the attention weight of underlying

skill l. wtl is estimated similarly to DKVMN in equation (7). Next, an interpretable
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student’s ability vector θ(t,j) can be estimated as presented below.

θ(t,j)
k′ = tanh

(
W (θk′ )θ(t,j)

k′−1 + τ (θk′ )
)
, (34)

θ(t,j) =
N∑

l=1

wtlθ
(t,j)
kl , (35)

where {k ∈ N|2 ≤ k′ ≤ k} and θ(t,j)
k = {θ(t,j)k1 , θ(t,j)k2 , · · · , θ(t,j)kN }. Also, θ(t,j)

k′ ∈ Rdv and

θ(t,j)
k ∈ RN . One important difference between the proposed method and Deep-IRT

[7] is that the proposed method does not calculate θ(t,j)
k using features of items such

as equations (6) and (8). Therefore, the ability parameter θ(t,j) is independent of

the difficulty parameters of the respective items. In addition, the value of θ(t,j)
k

represents the abilities of the latent skills. In other words, θ(t,j)
k can be inferred as

a measurement model, such as multidimensional IRT [86].

3.2.3 Prediction of Student Response to an Item

The proposed method calculates a student’s response probability to an item using

the difference between a student’s ability θ(t,j) to solve item j at time t and the sum

of two difficulty parameters βj
item and βj

skill.

Pjt = σ
(
3.0 ∗ θ(t,j) − (βj

item + βj
skill)

)
. (36)

After the procedure, the latent value memory M v
t is updated using the embed-

ding vector of (sj, ujt) denoted as vt ∈ Rdv as in DKVMN [8]. Here, ujt is the

student’s response to item j at time t: ujt is 1 when the student answers the item

correctly; it is 0 otherwise.

et = σ(W evt + τ e), (37)

at = tanh(W avt + τ a), (38)

M̃ v
t+1,l = M v

t,l ⊗ (1− wjlet)
$, (39)

M v
t+1,l = M̃ v

t+1,l + wjla
$
t . (40)

Therein, W e ∈ Rdv×dv ,W a ∈ Rdv×dv are weight matrices and τ e ∈ Rdv , τ e ∈ Rdv

are bias vectors. l is a underling skill and {l ∈ N|1 ≤ l ≤ N}. ⊗ represents the

element-wise product. In equations (37) and (39), et controls how much the value

memory forgets (remembers) the past ability. In addition, at in equations (38) and

(40) controls how strongly current performance is reflected. It is noteworthy that

et and at, which control the degree of forgetting the past latent value memory M v
t ,

are optimized from only the student’s latest response to an item ujt.
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In general, deep-learning-based methods learn their parameters using the back-

propagation algorithm by minimizing a loss function. The loss function of the pro-

posed method employs cross-entropy, which reflects classification errors. Then the

cross-entropy of the predicted responses Pjt and the true responses ujt is calculated

as

*(ujt, Pjt) = −
∑

t

(ujt logPjt + (1− ujt) log(1− Pjt)) . (41)

All parameters are learned simultaneously using a well known optimization algo-

rithm: adaptive moment estimation [85].

3.3 IRT Based on Deep Learning with Hypernetwork for

Knowledge Tracing

The preceding section described the proposed method with independent student and

item networks. However, room for improvement of the prediction accuracy remains

because the parameters which control the degree of forgetting the past latent value

memory M v
t are optimized using only the student’s latest response to an item. It

might degrade the prediction accuracy of the proposed method because the latent

value memory insufficiently reflects past data. As a result, it might present diffi-

culty for accurate estimation of the ability transition in a long learning process. It

should use not only the current input data but also past data to optimize the forget-

ting parameters. However, when using both current and past data, optimizing the

weight parameters directly is difficult because the number of parameters increases

dynamically.

Recent reports of studies conducted in the field of Natural Language Processing

(NLP) have proposed extension components to LSTM [28] in the form of mutual

gating of the current input data and previous hidden variable [51]. These extension

components are called hypernetworks. In standard LSTM [28], the hidden variables

change with time, but the weights used to update them are fixed values that are

not optimized for each time point. To resolve this difficulty, various hypernetworks

have been proposed to support the main recurrent neural network by optimizing

the non-shared weights for each time point in the hidden layers [51, 53, 54, 55, 56,

57, 58]. Their results demonstrate that LSTM with a hypernetwork works better

than the standard LSTM [28]. Furthermore, Melis et al. (2020) earlier proposed

the ”Mogrifier component,” which is a kind of hypernetwork for LSTM in the field

of NLP [53]. Mogrifier scales the hidden variables using not only the current inputs

but also the output of the hidden variable at the earlier time point. They reported
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Figure 5: Memory updating component of the proposed method with hypernetwork.

The proposed hypernetwork is located at the beginning of the Memory Updating

Component. It estimates the optimal forgetting parameters by balancing both the

current input data and the past latent variable before the model updates the latent

variable.

that LSTM with the Mogrifier component outperforms the other methods for long

input data lengths.

Inspired by the results obtained from those studies, we incorporate a novel hy-

pernetwork into the memory updating component (in Figure 4), which updates

the latent variable M v
t expressing a student’s knowledge state, to avoid greatly

increasing the number of parameters. Although Tsutsumi et al. [45] proposed a

hypernetwork for KT, that report presented no details but just its conceptual idea.

This study proposes a novel hypernetwork architecture to optimize the balance be-

tween the latest input data and the past latent variables. No report of the relevant

literature has described a study of the use of the hypernetworks for KT methods.

Figure 5 presents the proposed hypernetwork architecture and the memory up-

dating component of the proposed method. The hypernetwork optimizes the degree

of forgetting of past data in the proposed method and improves prediction accuracy

with parameter interpretability. Specifically, before the method updates the latent

variable M v
t+1, the proposed hypernetwork balances both the current input data vt

and the latent variable M v
t using the past latent variables {M v

t ,M
v
t−1, · · · ,M v

t−λ}
at time t − λ to t. Here, λ represents the degree of the past latent variables to be

accessed. For the proposed method, we optimize λ for each learning dataset.
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3.3.1 Hypernetwork

In the memory updating components of DKVMN and Deep-IRT [8, 7], the forget-

ting parameters are optimized only from current input data. Therefore, their value

memory M v
t might inadequately forget past data. Therefore, to optimize the for-

getting parameters et, and at at time t, the proposed hypernetwork balances the

current input data and the past latent value memory to store sufficient information

of the learning history data before calculating the latent variables M v
t+1.

The proposed hypernetwork structure is located at the beginning of the Memory

Updating Component (Figure 5). The inputs of the hypernetwork are the embedding

vector vt ∈ Rdv and the past value memory M̃ v
t . The embedding vector vt is

calculated from the current input data (sj, ujt) when a student responds to item j.

In addition, M̃ v
t is calculated as

M̃ v
t =





M v

t (λ = 0),

σ(W [M v
t ,M

v
t−1, · · · ,M v

t−λ] + τ ) (otherwise).
(42)

Where, W is the weight vector and τ is the bias parameter vector. Next, vt and

M̃ v
t are optimized in the hypernetwork as

ṽr′

t = δ1 ∗ σ(W vM̃ vr′−1
t ), vr′−1

t , (43)

M̃ vr′

t = δ2 ∗ σ(WM ṽr′

t ), M̃ vr′−1
t , (44)

where δ1 ∈ R, δ2 ∈ R, r is a hyperparameter and 1 ≤ r′ ≤ r. r represents the number

of rounds in the recurrent architecture. If r′ = 1, then ṽ0
t = vt and M̃ v0

t = M̃ v
t . Be-

cause of the repeated multiplications in equations (43) and (44), this hypernetwork

balances current data ṽt and past value memory M̃ v
t . For the proposed methods,

we optimize the number of rounds r for each learning dataset. Details are presented

in the Experiment section.

3.3.2 Memory Updating Component

Next, we estimate the forgetting parameters et and at using the optimized ṽr and

M̃ vr
t . These forgetting parameters et and at are important to update the latest value

memory M v
t+1 optimally. The earlier memory updating component of DKVMN

and Deep-IRT calculates the forgetting parameters from vt with only current input

information in equations (37) and (38). By contrast, we calculate them using the

optimized current input data ṽr
t and the past latent value M̃ vr

t . Furthermore, the

unique feature of the proposed method is a new layer zt, which helps to optimize
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at. The memory updating component is located next to the hypernetwork on the

upper right of Figure 5. The forgetting parameters et and at are calculated as

e(l)
t = σ(W e1ṽr

t +W e2M̃ vr
t,l + τ e), (45)

z(l)
t = σ(W z1ṽr

t +W z2M̃ vr
t,l + τ z), (46)

a(l)
t = tanh(W a1z(l)

t +W a2M̃ vr
t,l + τ a). (47)

Where, W (·) is the weight vector and τ (·) is a bias vector. Then, the proposed

method updates the latent value M v
t+1,l as shown below.

M v
t+1,l = M̃ vr

t,l ⊗ (1− wjle
(l)
t )$ + wjla

(l)$
t . (48)

By optimizing ṽt and M̃ v
t in the hypernetwork, the parameters et and at are

also estimated as optimizing the degree of forgetting of past data and as reflecting

the current input data. Furthermore, the proposed method can capture the student

knowledge state changes accurately because the latent knowledge state M v
t has

sufficient information related to the past learning history data.

4 Experiment of IRT Based on Deep Learning for

Test Theory

4.1 Data Format

For test theory, we use a matrix of the students’ responses as input data. The

matrix size is I × J when the number of items is I, the number of students is

J . Each element uij is 1 when the student i answers the item j correctly; it is 0

otherwise. All students address all items in the same order. If a student i does not

address the item j, then the response uij is missing data.

4.2 Simulation Experiments

This section presents evaluation of the performances of the proposed method for test

theory in Section 3.1 (designated as ”Proposed”) using simulation data according to

earlier IRT studies of the linkage or the multi-population [87, 88]. We implemented

Proposed using Chainer1, a popular frameworks for neural networks. The values

of tuning parameters are presented in Table 1. For implementation of IRT, we

1https://chainer.org/
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employ 2PLM and estimate the parameters using EAP estimation with the MCMC

algorithm.

For this experiment, we evaluate root mean square error (RMSE), Pearson’s

correlation coefficient, and the Kendall rank correlation coefficient between the esti-

mated abilities and the true values. For calculation of RMSE, the estimated abilities

of Proposed are standardized. The Kendall rank correlation coefficient is known to

provide robust estimates for aberrant values.

Table 1: Values of tuning parameters.
Parameter Value Parameter Value

|θ(i)
1 | 50 γ1 0.1

|θ(i)
2 | 50 γ2 0.1

|β(j)
1 | 50 γ3 0.1

|β(j)
2 | 50 γ4 0.1

Epoch 300 αLe 0.2

αHe 0.8

αLi 0.2

αHi 0.8

stu
de

nt

item

Test1
Test2 missing

Test3
…

missing Test K-1
Test K

Figure 6: An example of item response pattern matrix.

Ability parameter !
-3 -2 -1 0 1 2 3

Test1
Test2
Test3

Figure 7: System generation.
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4.2.1 Estimation Accuracy for Randomly Sampled Student Data

To underscore the effectiveness of Proposed for data of student’ abilities that are

not randomly sampled, this subsection presents evaluation of the estimation accu-

racy with changing student assignments for different tests. The procedures of this

experiment are explained hereinafter.

This experiment generates 10 test data that have no common students. Also,

the k-th test (k = 1, ..., 10) has common items only among the k− 1-th test and the

k+1-th test. Figure 6 shows an example of tests and the cells with brown hatching

represent the common items. The true parameters were generated randomly:

θ ∼ N (0, 1), log a ∼ N (0, 1), b ∼ N (1, 0.4). (49)

Here, the simulation data were generated based on 2PLM in the following two ways.

The first way is that students are assigned randomly to each test according to

their abilities generated from N (0, 1). The other way is that students are assigned

systematically to each test as described below.

1. The students’ abilities are sampled randomly from N (0, 1).

2. The students are sorted in order of their ascending ability. Furthermore, the

students are divided equally into groups of 10 students in order of their re-

spective abilities as shown in Figure 7.

3. The k-th student group is assigned to the k-th test.

Table 2 demonstrates the average of estimation accuracies under the condition of

random generation. In Table 2, ”No. items” represents the number of items for each

test and ”No. students” represents the number of students for each test. Results of

the random assignment condition show that IRT outperforms Proposed. The reason

is that the condition is an ideal situation for IRT because the data are generated

randomly from the IRT model. However, for a small number of students or items,

the differences between IRT and Proposed become smaller because the parameters

can not be calculated accurately.

On the other hand, Table 3 demonstrates the average of estimation accuracies

under the condition of system generation the results show that Proposed outperforms

IRT for all datasets. Although, evaluating the abilities of numerous students on a

single scale requires a linkage of students’ abilities estimated from different tests,

the linkage techniques of IRT assume random sampling of students’ abilities from a

standard normal distribution. Therefore, when this assumption does not guarantee,
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IRT might not accurately estimate the students’ abilities. In contrast, Proposed

does not follow a standard normal distribution. As a result, Proposed suppresses

the decline of accuracy in cases without common items among different tests. These

results are expected to be beneficial for applying Proposed with actual data.

4.2.2 Estimation Accuracy for Multi-population Data

As described earlier, IRT assumes that students’ abilities follow a standard normal

distribution. Furthermore, it is known that no optimal linkage occurs under the

assumption [89]. Additionally, no guarantee exists that students’ abilities follow a

standard normal distribution. When the assumption is violated, the ability estima-

tion accuracy of IRT becomes extremely worse, even without the linkage problem.

However, because Proposed does not assume random sampling from a statistical

distribution, robust ability estimation is expected to be provided even when the

IRT presumption is violated. To demonstrate the benefits of the proposed method,

this subsection evaluates estimation accuracies of IRT and Proposed when students’

abilities follow multiple populations.

For this experiment, the abilities of students taking different tests are assumed

to be sampled from different populations. For this study, we assume two tests

including 50 items. The abilities of the tests are sampled randomly from N1(µ1, σ2)

and N2(µ2, σ2).For this experiment, the abilities of students taking different tests

are assumed to be sampled from different populations. For this study, we assume

two tests including 50 items. The abilities of the tests are sampled randomly from

N1(µ1, σ2) and N2(µ2, σ2). Table 4 shows the average of estimation accuracies of

students’ abilities (RMSE) with different ability distributions and the number of

common items. The standard deviation of each distribution was ascertained so that

the total abilities’ standard deviation is close to 1.0. Here, Wilcoxon’s signed rank

test is applied to infer whether the accuracies of IRT and Proposed are significantly

different. The results showed that when the difference between µ1 and µ2 becomes

small, IRT provides significantly high accuracy because the distribution approaches

a single normal distribution. By contrast, as the difference between µ1 and µ2

becomes large, Proposed estimates student’ abilities accurately. Therefore, Proposed

is robust for estimation of student’ abilities when they follow different distributions.

The results also show that, when there is no common item, Proposed estimates

the student’ abilities more accurately than IRT does. Consequently, Proposed can

estimate student’ abilities accurately without common items.

Next, we demonstrate that Proposed can accommodate the abilities of multiple

populations. Specifically, we generate abilities according to multiple populations for
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Table 2: Parameter estimation accuracies. (randam)
Assignment No. items No. common items No. students Method RMSE Pearson Kendall

(Total no. items) (Total no. students)

random

10

5 (55)

50 (500)
Proposed 0.469 0.890 0.748

IRT 0.420 0.912 0.781

100 (1000)
Proposed 0.447 0.900 0.766

IRT 0.438 0.904 0.770

500 (5000)
Proposed 0.434 0.907 0.769

IRT 0.432 0.907 0.776

1000 (10000)
Proposed 0.424 0.908 0.771

IRT 0.411 0.911 0.733

0 (100)

50 (500)
Proposed 0.458 0.896 0.747

IRT 0.456 0.896 0.751

100 (1000)
Proposed 0.455 0.832 0.765

IRT 0.440 0.903 0.767

500 (5000)
Proposed 0.433 0.852 0.785

IRT 0.423 0.861 0.789

1000 (10000)
Proposed 0.412 0.910 0.799

IRT 0.403 0.914 0.794

30

5 (255)

50 (500)
Proposed 0.328 0.921 0.855

IRT 0.301 0.941 0.865

100 (1000)
Proposed 0.319 0.949 0.865

IRT 0.292 0.957 0.870

500 (5000)
Proposed 0.339 0.942 0.834

IRT 0.290 0.958 0.873

1000 (10000)
Proposed 0.329 0.947 0.844

IRT 0.298 0.968 0.879

0 (300)

50 (500)
Proposed 0.328 0.946 0.860

IRT 0.308 0.952 0.858

100 (1000)
Proposed 0.339 0.943 0.851

IRT 0.314 0.951 0.858

500 (5000)
Proposed 0.321 0.941 0.853

IRT 0.299 0.945 0.873

1000 (10000)
Proposed 0.302 0.938 0.853

IRT 0.281 0.948 0.881

50

5 (455)

50 (500)
Proposed 0.317 0.950 0.882

IRT 0.251 0.969 0.895

100 (1000)
Proposed 0.312 0.964 0.891

IRT 0.243 0.970 0.896

500 (5000)
Proposed 0.288 0.959 0.894

IRT 0.232 0.973 0.901

1000 (10000)
Proposed 0.278 0.961 0.894

IRT 0.234 0.973 0.901

0 (500)

50 (500)
Proposed 0.360 0.935 0.856

IRT 0.274 0.962 0.876

100 (1000)
Proposed 0.261 0.966 0.884

IRT 0.251 0.968 0.892

500 (5000)
Proposed 0.341 0.942 0.887

IRT 0.241 0.971 0.899

1000 (10000)
Proposed 0.266 0.968 0.889

IRT 0.241 0.972 0.901
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Table 3: Parameter estimation accuracies. (system)
Assignment No. items No. common items No. students Method RMSE Pearson Kendall

(Total no. items) (Total no. students)

system

10

5 (55)

50 (500)
Proposed 0.665 0.778 0.568

IRT 1.111 0.381 0.237

100 (1000)
Proposed 0.622 0.807 0.629

IRT 0.779 0.696 0.466

500 (5000)
Proposed 0.611 0.812 0.639

IRT 0.792 0.702 0.499

1000 (10000)
Proposed 0.621 0.822 0.651

IRT 0.712 0.702 0.501

0 (100)

50 (500)
Proposed 0.997 0.502 0.267

IRT 1.170 0.314 0.184

100 (1000)
Proposed 0.721 0.740 0.561

IRT 1.176 0.308 0.197

500 (5000)
Proposed 0.701 0.761 0.591

IRT 1.016 0.498 0.277

1000 (10000)
Proposed 0.698 0.782 0.591

IRT 0.808 0.673 0.457

30

5 (255)

50 (500)
Proposed 0.561 0.835 0.696

IRT 0.613 0.786 0.622

100 (1000)
Proposed 0.501 0.875 0.716

IRT 0.573 0.836 0.672

500 (5000)
Proposed 0.499 0.878 0.722

IRT 0.553 0.846 0.679

1000 (10000)
Proposed 0.495 0.892 0.731

IRT 0.534 0.851 0.691

0 (300)

50 (500)
Proposed 0.661 0.781 0.586

IRT 0.786 0.691 0.489

100 (1000)
Proposed 0.579 0.832 0.664

IRT 0.762 0.709 0.506

500 (5000)
Proposed 0.561 0.852 0.684

IRT 0.732 0.705 0.512

1000 (10000)
Proposed 0.539 0.850 0.644

IRT 0.712 0.709 0.506

50

5 (455)

50 (500)
Proposed 0.376 0.929 0.802

IRT 0.426 0.909 0.760

100 (1000)
Proposed 0.393 0.923 0.811

IRT 0.805 0.750 0.543

500 (5000)
Proposed 0.372 0.930 0.810

IRT 1.044 0.454 0.282

1000 (10000)
Proposed 0.392 0.914 0.798

IRT 0.923 0.512 0.342

0 (500)

50 (500)
Proposed 0.635 0.798 0.599

IRT 0.782 0.694 0.489

100 (1000)
Proposed 0.408 0.916 0.785

IRT 0.612 0.812 0.532

500 (5000)
Proposed 0.421 0.891 0.765

IRT 0.598 0.822 0.495

1000 (10000)
Proposed 0.411 0.901 0.785

IRT 0.602 0.829 0.498
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Table 4: Estimation accuracies (RMSE) for multi-population data.

No. students

for each test

No. common

items
µ1 µ2 σ2 IRT Proposed

500

5

-0.3 0.3 0.7 0.186** 0.216

-0.5 0.5 0.5 0.184** 0.232

-0.7 0.7 0.3 0.210 0.206

-0.9 0.9 0.1 0.207 0.195*

0

-0.3 0.3 0.7 0.358 0.325*

-0.5 0.5 0.5 0.501 0.324**

-0.7 0.7 0.3 0.993 0.382**

-0.9 0.9 0.1 1.027 0.385**

**p<.01 *p<.05

data N1(−0.7, 0.3) and N2(0.7, 0.3) in Table 4. Figure 8 shows histograms of the

true abilities, the estimated abilities using IRT, and the estimated abilities using

Proposed. Figure 8 shows that Proposed clearly estimates a bimodal distribution

as the ability distribution similar to the true distribution. The result demonstrates

that Proposed flexibly expresses actual student’ abilities distributions that do not

follow a standard normal distribution.

Next we evaluate the estimated ability distributions of IRT and Proposed using

a fitting scores to the true distribution as

∑

k∈{1,2}

Ik∑

i=1

log p(θ̂ki|µk, σ), (50)

where Ik represents the number of students who took the k-th test. Also, θ̂ki is the

estimated ability of i-th student for the k-th test. In addition, p(θ̂ki|µk, σ) is the

likelihood of estimated abilities given the true ability distribution as

p(θ̂ki|µk, σ) =
1√
2πσ2

exp

(
−(θ̂ki − µk)2

2σ2

)
. (51)

If the method fits the true distribution, then the estimated distribution approaches

the true distribution. The fitting score of IRT is -1633.4. That of Proposed is -

1437.1. The latter is higher than the former. Therefore, Proposed expresses the

student’ ability distributions more accurately than IRT does.
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(a) True abilities

(b) Abilities estimated using IRT

(c) Abilities estimated using Proposed

Figure 8: Histograms of estimated abilities for multi-population data.

4.3 Actual Data Experiments

The simulation experiments suggested that Proposed might estimate student’ abil-

ities with high accuracy for actual data. This section evaluates the effectiveness

of Proposed using the following actual datasets. Table 5 presents the number of

students (No. Students), the number of items (No. Items), the average rate of items

that a student did not address in the learning process (Rate.Sparse”).

1. Information datasets consist of two test data (Information 1, 2) related to

information technology. Information 1 has 169 students over 50 items. Infor-

mation 2 has 266 students over 50 items. The tests were conducted of learning
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management system, ”Samurai” developed by [90, 91, 92]. Rate.Sparse is 0%.

2. Critical thinking dataset has 1221 undergraduate students over 179 items about

critical thinking. Rate.Sparse is 87.8%.

3. Program datasets consist of two test data (Program 1, 2) about programming.

Program 1 has 93 students over 13 items. Rate.Sparse is 0%. Program 2 has

74 students over 19 items with 6.8% Rate.Sparse.

4. Practice Exam dataset consists of two test data for high school students. Each

test relates to mathematics and physics. Mathematics data have 12348 stu-

dents over 48 items. Physics data have 9172 students over 24 items. The

respective values of Rate.Sparse are 16.4% and 12.0%.

5. CDM datasets, which are widely used open datasets, are included in the R

package CDM [93]. We used two datasets: ECPE and TIMSS. ECPE data

include those for 2922 students over 28 language-related items. TIMSS data

include those for 757 students over 23 math items. Rate.Sparse is 0%.

6. Information Ethics dataset has 31 undergraduate students over 90 items re-

lated to information ethics. Rate.Sparse is 46.3%.

7. Engineer Ethics dataset has 85 undergraduate students over 69 items related

to engineer ethics. Rate.Sparse is 26.4%.

8. Classi datasets consist of three tests data for high school students: tests relate

to physics, chemistry, and biology. The tests were conducted on the web-based

system, ”Classi2” using a tablet. Datasets have 239, 1139, and 192 students,

respectively, and 119, 364, and 114 items. The respective values of Rate.Sparse

are 92.4%, 96.4%, and 93.5%.

4.3.1 Reliability of Ability Estimation

This subsection presents evaluation of the reliability of abilities estimation of Pro-

posed. Because the true values of parameters are unknown, we evaluate the reli-

abilities as follows. 1) Each dataset is divided equally into two sets of data. 2)

Parameters of each method are estimated for the divided data from each dataset. 3)

The RMSE and correlation between the two sets of the estimated parameters from

the two divided datasets are calculated. 4) These procedures are repeated 10 times.

2https://classi.jp
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Table 5: Summary of actual datasets.
Dataset No. Students No. Items Rate.Sparse(%)

Information 1 169 50 0.0

Information 2 266 50 0.0

Critical Thinking 1221 179 87.8

Program 1 93 13 0.0

Program 2 74 19 6.8

Practice Math 12348 48 16.4

Practice Physics 9172 24 12.0

ECPE 2922 28 0.0

TIMSS 757 23 0.0

Information Ethics 31 90 46.3

Engineer Ethics 85 69 26.4

Classi Physics 239 119 92.4

Classi Chemistry 1139 364 96.4

Classi Biology 192 114 93.5

The average of the RMSEs and correlations are calculated. Table 6 presents the re-

sults. Here, a Wilcoxon signed rank test is applied to infer whether the reliabilities

of IRT and Proposed are significantly different.

Table 6 shows that Proposed provides more reliable ability estimates than IRT

does. Especially, regarding the average of Kendall rank correlation coefficient, which

is known to provide a robust estimate for aberrant values, Proposed outperforms IRT

significantly. Results indicate that Proposed can estimate parameters more reliably

than IRT does for actual test data. It is surprising that Proposed outperforms IRT

for small datasets such as Program 1, Program 2, Statistics, Information Ethics,

and Engineer Ethics. This result indicates Proposed as effective even for small

datasets. For Practice Math, and Practice Physics, IRT has a higher Kendall rank

correlation coefficient than Proposed does because the ability estimation of IRT

tends to become stable when the dataset becomes large. IRT has that stability

because it is guaranteed to converge asymptotically to the true joint probability

distribution.

4.3.2 Prediction Accuracies for Student Performance

In the field of artificial intelligence in education, prediction of student’s responses

to unknown items from the student’s past response history becomes important for

adaptive learning systems [6, 8, 7, 59, 60]. This subsection presents comparison of

the prediction accuracy of Proposed with that of IRT. Specifically, using ten-fold
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Table 6: Reliability of ability parameter estimation.
Dataset Method RMSE Pearson Kendall

Information 1
IRT 0.466 0.891 0.685

Proposed 0.514 0.867 0.687

Information 2
IRT 0.562 0.841 0.668

Proposed 0.555 0.845 0.662

Critical Thinking
IRT 1.064 0.464 0.318

Proposed 1.025 0.474 0.327

Program 1
IRT 0.890 0.599 0.403

Proposed 0.864 0.622 0.417

Program 2
IRT 0.752 0.713 0.468

Proposed 0.720 0.737 0.475

Practice Math
IRT 0.589 0.748 0.533

Proposed 0.744 0.723 0.514

Practice Physics
IRT 0.884 0.609 0.424

Proposed 0.911 0.585 0.411

ECPE
IRT 0.875 0.615 0.435

Proposed 0.874 0.618 0.440

TIMSS
IRT 0.753 0.716 0.525

Proposed 0.753 0.716 0.523

Information Ethics
IRT 0.394 0.920 0.643

Proposed 0.382 0.925 0.712

Engineer Ethics
IRT 0.544 0.850 0.403

Proposed 0.517 0.865 0.313

Classi Physics
IRT 1.053 0.444 0.299

Proposed 0.943 0.554 0.403

Classi Chemistry
IRT 1.077 0.420 0.297

Proposed 0.923 0.574 0.439

Classi Biology
IRT 1.020 0.475 0.326

Proposed 0.748 0.717 0.531

Average
IRT 0.764 0.680 0.451

Proposed 0.742 0.707 0.495*

* p<0.05

cross validation, the parameters are learned from training data and are used to

predict responses in the remaining data. Then, we calculate the accuracy rates for

the cross validation experiments. In this experiment, we use F1 score for the metric

of the prediction accuracy. Here, a Wilcoxon signed rank test is applied to infer

whether the respective accuracies of IRT and Proposed are significantly different.

Table 7 shows the results: the average of F1 value of Proposed is significantly

higher than that of IRT. Proposed can predict student’ responses to unknown items

more accurately than IRT can. It is noteworthy that Proposed does not always

outperform for large data. For Critical Thinking, IRT provides better performance

than Proposed does, because Critical Thinking has high values of Rate.Sparse. Pro-
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Table 7: Prediction accuracies of responses to unknown items.
Data No. students No. items Rate.Sparse IRT Proposed

Information 1 169 50 0% 0.734 0.737

Information 2 266 50 0% 0.699 0.700

Critical Thinking 1221 179 87.8% 0.695 0.689

Program 1 94 13 0% 0.719 0.729

Program 2 74 19 6.8% 0.676 0.685

Practice Math 12348 48 16.4% 0.783 0.780

Practice Physics 9172 24 12.0% 0.721 0.710

ECPE 2922 28 0% 0.719 0.729

TIMSS 757 24 0% 0.711 0.712

Information Ethics 31 90 46.3% 0.746 0.803

Engineer Ethics 85 69 26.4% 0.634 0.685

Classi Physics 239 119 92.4% 0.720 0.721

Classi Chemistry 1139 364 96.4% 0.710 0.711

Classi Biology 192 114 93.5% 0.722 0.725

Average 0.719 0.728*

*p<.05

posed might be weak in dealing with sparse datasets. In contrast, for datasets

with low values of Rate.Sparse, Proposed outperforms IRT even for small datasets.

Generally speaking, the IRT prediction accuracy increases along with the number

of students. Therefore, IRT has high prediction accuracies for Practice Math and

Practice Physics.

Furthermore, Figure 9 depicts histograms of abilities estimated from Practice Math,

where the prediction accuracy of IRT is higher than that of Proposed. Figure 10

depicts histograms of abilities estimated from Classi Biology data where the predic-

tion accuracy of Proposed is higher than that of IRT. Figure 10 shows estimates

conducted using both methods for the ability distribution similar to the standard

normal distribution. In contrast, Figure 8 shows that Proposed expresses a multi

modal distribution, although IRT estimates a unimodal distribution. Proposed can

predict responses to unknown items because it can flexibly express distributions of

various abilities.
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(a) Abilities estimated using IRT (b) Abilities estimated using Proposed

Figure 9: Histograms of abilities estimated using IRT and Proposed for Prac-

tice Math data.

(a) Abilities estimated using IRT (b) Abilities estimated using Proposed

Figure 10: Histograms of abilities estimated using IRT and Proposed for

Classi Biology data.

5 Experiment of IRT Based on Deep Learning for

Knowledge Tracing

5.1 Data Format

For KT, we use time-series data consisting of the students’ responses collected from

the online learning systems. The students’ response uij is 1 when the student i

answers the item j correctly; it is 0 otherwise. The students address similar items

repeatedly to master a certain concept. Therefore, the numbers of responses differs

among students. Furthermore, we use item and skill tags for input data to estimate

the relation between each item and skill.
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5.2 Prediction Accuracies for Student Performance

In the preceding section, we showed that the proposed method for test theory has

higher parameter interpretability and prediction accuracy for students’ performance

than the standard IRT model has. As described in this section, we conduct experi-

ments to compare the performances of the proposed method for KT in Section 3.2

(designated as ”Proposed-KT”) and the proposed method with a hypernetwork in

Section 3.3 (designated as ”Proposed-HN”) against existing solutions. This section

presents a comparison of the prediction accuracies for student performance of the

proposed methods with those of earlier methods (DKVMN [8], Deep-IRT [7], AKT

[12]) using six benchmark datasets as ASSISTments20093, ASSISTments20154, AS-

SISTments20175, Statics20116, Junyi7, Eedi8. The details of the dataset are as

follows.

1. ASSISTments datasets (ASSISTments2009, ASSISTments2015, and ASSIST-

ments2017) collected from online learning systems have been used as the stan-

dard benchmark for KT methods.

2. Statics2011 dataset was collected from college-level engineering courses on stat-

ics.

3. Junyi dataset was collected by Junyi Academy, a Chinese online learning sys-

tem [94]. We use only the students’ exercise records in the math curriculum.

Additionally, we select items that the students attempted for the first time

without hints. We also changed the question types into unique skill number

tags.

4. Eedi dataset includes data from the school years of 2018–2020, with student

responses to mathematics questions from Eedi, a leading educational platform

by which millions of students interact daily around the globe [95]. For Eedi,

each item has a list of hierarchical knowledge components. We convert these

lists into unique skill number tags.

ASSISTments2009, ASSISTments2017, and Eedi have item and skill tags, al-

though most methods explained in the relevant literature adopt only the skill tag

3https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
4https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
5https://sites.google.com/view/assistmentsdatamining
6https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
7http://www.junyiacademy.org/
8https://eedi.com/projects/neurips-education-challenge
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as an input. However, methods with skill inputs rely on the assumption that items

with the same skill are equivalent [12]. That assumption does not hold when an

item’s difficulties in the same skill differ greatly. Therefore, as inputs to AKT and

the proposed method, we employ not only skills but also items [12, 13, 45]. Also,

for ASSISTments2015, Statics2011, and Junyi with only skill tags, we employ the

skill as input data. Table 8 presents the number of students (No. Students), the

number of skills (No. Skills), the number of items (No. Items), the rate of cor-

rect responses (Rate Correct), and the average length of the items which students

addressed (Learning length).

These datasets include the numerous students’ responses to the numerous items

in the long learning process. Although the online learning system helps students to

learn effectively by presenting the optimal item for adaptive learning, it is difficult

to choose the optimal item only from the student ability parameters and the item

parameters. Therefore, predicting a student’s response is important to identify the

optimal problem and to discover concepts that the student has not mastered.

Table 8: Summary of benchmark datasets.
Dataset No. students No. skills No. Items Rate Correct Learning length

ASSISTments2009 4151 111 26684 63.6% 52.1

ASSISTments2015 19840 100 N/A 73.2% 34.2

ASSISTments2017 1709 102 3162 39.0% 551.0

Statics2011 333 1223 N/A 79.8% 180.9

Junyi 48925 705 N/A 82.78% 345

Eedi 80000 1200 27613 64.25% 177
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Figure 11: AUC and the number of layers for ASSISTments2009. The vertical axis

shows AUC on the left side. The horizontal axis shows the number of layers.
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5.3 Hyperparameter Selection and Evaluation

We used standard five-fold cross-validation to evaluate the respective prediction

accuracies of the methods. According to Ghosh et al. (2020) [12], for each fold, 20%

learners are used as the test set, 20% are used as the validation set, and 60% are

used as the training set. We employ Adam optimization with a learning rate of 0.003

and batch-size 32. For all methods, the hidden layer size and memory dimension

are chosen from {10, 20, 50, 100, 200} using cross-validation. In addition, for the

earlier methods, we used the hyperparameters reported from earlier studies [7, 12].

Additionally, we set 200 items as the upper limit of the input length according to

an earlier study [7, 8]. When the input length of items is greater than 200, we use

the first 200 response data for all methods.

To ascertain the number of layers k for the proposed method, we conducted

some experiments to gain experience using ASSISTments2009 while changing the

layer number. The results are presented in Figure 11. As the figure shows, the AUC

score reaches its highest value when k = 2 and k = 4. Based on this finding, we

employ k = 2 for the following experiments because the computation time of the

proposal increases exponentially as the number of layers increases.

If the calculated correct answer probability for the next item is 0.5 or more,

then the student’s response to the next item is predicted as correct. Otherwise, the

student’s response is predicted as incorrect. For this study, we leverage three metrics

for prediction accuracy: Accuracy (Acc) score, AUC score, and Loss score. The

first, Acc represents the concordance rate between the student predictive responses

and the actual responses. The second, AUC provides a robust metric for binary

prediction evaluation. When an AUC score is 0.5, the prediction performance is

equal to that of random guessing. Loss represents the cross-entropy in equation

(28).

5.4 Hyperparameter Selection in Hypernetwork

5.4.1 Optimal Tuning Parameter δ1 and δ2 Estimation

For our experiments, we optimize the δ1 and δ2 to adjust the hypernetwork for

each dataset. To choose the optimal parameters δ1 and δ2, we conducted some

experiments using all training datasets by changing δ1 and δ2, respectively. The

optimal tuning parameters {δ1, δ2} are estimated as {1.5, 1.5} for ASSISTments2009,

ASSISTments2015 and ASSISTments2017, {1.0, 1.7} for Statics2011, {1.0, 1.0} for

Junyi and Eedi. Based on this result, we employ these tuning parameters for the
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Table 9: Prediction accuracy and hyperparameter r.
Dataset Number of rounds r

2 3 4 5 6 7

Statics2011
82.25 82.24 82.20 82.20 82.16 82.11

(skill)

ASSISTments2009
81.19 81.83 81.25 81.23 81.2 80.96

(skill)

ASSISTments2015
72.91 72.95 72.90 72.89 72.81 72.73

(skill)

ASSISTments2017
85.06 82.73 81.64 80.17 73.23 72.64

(skill)

Junyi
79.00 78.74 78.71 78.67 78.62 78.65

(skill)

Eedi
75.53 N/A N/A N/A N/A N/A

(skill)

ASSISTments2009
81.30 81.14 81.38 81.49 82.55 81.20

(item & skill)

ASSISTments2017
75.94 76.17 76.74 76.70 76.85 76.74

(item & skill)

Eedi
79.27 N/A N/A N/A N/A N/A

(item & skill)

following experiments.

5.4.2 Optimal Number of Rounds r Estimation

To ascertain the number of rounds r in the hypernetwork, we conducted some ex-

periments to gain experience using the training datasets by changing the value of

r. The results are presented in Table 9. As the table shows, the numbers of rounds

r are estimated as r = 2 for Statics2011, ASSISTments2017 and Junyi with skill

inputs, as r = 3 for ASSISTments2009 and ASSISTments2015 with skill inputs and

as r = 6 for ASSISTments2009 and ASSISTments2017 with item and skill inputs.

For Eedi dataset with numerous students, the proposed method can not complete

the calculation because of exploding gradients under the condition of r = 3 or more.

The prediction accuracy of the proposed method tends to follow a convex function

of the number of rounds r. Therefore, the proposed method estimates the number

of each round r by incrementing the value from the initial value r = 2 to maximize

the prediction accuracy. Especially, the optimal r estimates for ASSISTments2009
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and ASSISTments2017 with item and skill inputs provide large values. The optimal

value of r might be related to the number of input data.

5.4.3 Optimal Degree of Past Latent Variables to be Assessed

The input of the hypernetwork M̃ v
t is calculated from the past latent variables

{M v
t ,M

v
t−1, · · · ,M v

t−λ} at time t− λ to t. We optimize λ by changing the value of

λ ∈ {0, 1, 2, · · · , t} using the optimal δ1, δ2, and r for each learning dataset. Results

show that the optimal λ can be estimated as λ = 1 for ASSISTments2009 and Junyi

with skill inputs, and as ASSISTments2009 and ASSISTments2017 with item and

skill inputs. When using the other datasets, optimal λ is estimated as λ = 0.

5.5 Results

5.5.1 Skill Inputs

The respective values of Acc, AUC, and Loss for all benchmark datasets with only

skill inputs are presented in Table 10. Additionally, this report describes the stan-

dard deviations across five test folds. Proposed-KT and Proposed-HN respectively

represent variants of the proposed method with and without the hypernetwork.

Results show that the averages of AUC, ACC, and Loss obtained using Proposed-

KT are better than those using Deep-IRT, although the proposed method separates

student and item networks. This result implies that redundant deep student and

item networks function effectively for performance prediction. These results are

explainable from reports of state-of-the-art methods [42, 43, 44].

Also, Proposed-HN, which optimizes the forgetting parameters in the hyper-

network, provides the best average scores for all metrics. Proposed-HN improves

the prediction accuracy of Proposed-KT. However, the performances of Proposed-

HN and AKT were found to have no significant difference in multiple compari-

son tests. The findings suggest that the Proposed-HN performs comparably to

AKT, which reportedly has the highest accuracy among the earlier methods. For

each dataset, results indicate that Proposed-HN provides the best AUC scores for

ASSISTments2009, ASSISTments2017, Statics2011, and Junyi. Especially for AS-

SISTments2017 with long learning lengths, the performance of the Proposed-HN

markedly outperforms that of AKT. By contrast, Proposed-HN tends to have lower

prediction accuracies for ASSISTments2015 with a shorter learning length than AKT

has. Results suggest that the proposed hypernetwork functions effectively, especially

for datasets with long learning lengths.
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Table 10: Prediction accuracies of student’s performance with skill inputs.

Dataset metrics DKVMN Deep-IRT AKT Proposed-KT Proposed-HN

AUC 81.21 +/- 0.31 81.34 +/- 0.39 80.81 +/- 0.41 81.34 +/- 0.24 81.83 +/- 0.30

ASSISTments2009 Acc 75.11 +/- 0.66 76.55 +/- 0.45 76.57 +/- 0.55 76.91 +/- 0.24 76.80 +/- 0.49

Loss 0.47 +/- 0.05 0.48 +/- 0.10 0.49 +/- 0.08 0.47 +/- 0.10 0.46 +/- 0.11

AUC 72.61 +/- 0.16 72.53 +/- 0.23 72.97 +/- 0.12 72.34 +/- 0.13 72.95 +/- 0.14

ASSISTments2015 Acc 75.05 +/- 0.18 74.97 +/- 0.14 75.25 +/- 0.10 74.95 +/- 0.39 75.02 +/- 0.15

Loss 0.51 +/- 0.02 0.52 +/- 0.03 0.51 +/- 0.01 0.52 +/- 0.02 0.51 +/- 0.03

AUC 72.67+/- 0.37 72.08 +/- 0.32 73.25+/- 0.41 72.32+/- 0.69 85.06 +/- 1.17

ASSISTments2017 Acc 68.46 +/- 0.24 68.36 +/- 0.30 69.17+/- 0.70 68.07 +/- 0.54 79.11 +/- 1.06

Loss 0.58+/- 0.03 0.59 +/- 0.07 0.58+/- 0.09 0.60 +/- 0.08 0.48 +/- 0.24

AUC 81.20 +/- 0.42 81.38 +/- 0.42 82.15 +/- 0.35 81.45 +/- 0.45 82.25 +/- 0.55

Statics2011 Acc 79.24 +/- 0.84 80.33 +/- 0.78 80.41 +/- 0.67 79.18 +/- 0.67 80.63 +/- 0.85

Loss 0.42 +/- 0.14 0.42 +/- 0.18 0.42 +/- 0.13 0.42 +/- 0.12 0.41 +/- 0.20

AUC 78.59 +/- 0.21 78.39 +/- 0.20 78.84 +/- 0.19 78.47 +/- 0.21 79.00 +/- 0.26

Junyi Acc 86.61 +/- 0.28 86.57 +/- 0.30 86.54 +/- 0.25 86.58 +/- 0.27 86.76 +/- 0.24

Loss 0.31 +/- 0.07 0.31 +/- 0.07 0.31 +/- 0.04 0.31 +/- 0.06 0.30+/- 0.05

AUC 75.11 +/- 0.16 75.63 +/- 0.17 75.81 +/- 0.15 75.76 +/- 0.17 75.53 +/- 0.15

Eedi Acc 71.23 +/- 0.24 71.34 +/- 0.29 71.38 +/- 0.20 71.41 +/- 0.25 71.30 +/- 0.24

Loss 0.59 +/- 0.06 0.56 +/- 0.07 0.56 +/- 0.03 0.56 +/- 0.06 0.57 +/- 0.06

AUC 76.89 76.83 77.30 76.91 79.35

Average Acc 74.46 75.05 76.55 76.18 78.27

Loss 0.48 0.48 0.48 0.48 0.46

To investigate the reason for that phenomenon, we analyze the forgetting pa-

rameters et and at in the memory updating component of the proposed method.

As described above, et influences the degree to which the value memory forgets

the past ability. Also, at controls how much the value memory reflects the current

input data. We calculate the l2-norm of the forgetting parameters et and at for

the earlier memory updating component (of Proposed-KT) and the new memory

updating component with hypernetwork (of Proposed-HN), respectively using the

ASSISTments2017 dataset. This experiment is not aimed at comparing the pre-

dictive accuracies but at analyzing the parameter estimators within the memory

updating component. Furthermore, each method is tuned to maximize the per-

formance prediction accuracy (AUC) of the validation set. Table 11 presents the

averages of the l2-norms of et and at at time t ∈ {1, 2, · · · , T}. Table 11 shows

that Proposed-KT has the larger l2-norm value of et than at. The earlier memory

updating component drastically forgets the student’s past ability information and

reflects the current input data when the latent variable memory is updated. The

reason is that the forgetting parameters et and at are calculated using only the

current input data. Therefore, their latent value memory M v
t might not store the
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Table 11: Forgetting parameters’ norm average.

norm average Proposed-KT Proposed-HN

|et| 5.12 1.99

|at| 3.17 2.58
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Figure 12: Average of attention weights in AKT for ASSISTments2017.

student’s past ability information. By contrast, Proposed-HN has a larger l2-norm

value of at than et. In the memory updating component of Proposed-HN, at and

et are calculated using both the current input data vt and the past latent value

memory M v
t . Furthermore, these vt and M v

t are optimized in the hypernetwork

to balance both the current input data and the student’s past ability information.

The results obtained for the other datasets are almost identical to those obtained

for ASSISTments2017, although they are omitted to avoid redundant descriptions.

Therefore, results suggest that the Proposed-HN works more effectively for long

learning processes because hypernetwork facilitates the reflection of past data.

Findings indicate that AKT provides the best performance for ASSISTments2015.

However, the AKT performance results are worse than those of Proposed-HN for

ASSISTments2017. Figure 12 shows the average of attention weights of all students

for the 200 items in ASSISTments2017. The vertical axis presents the average of

attention weights. The horizontal axis presents the number of items the student

addressed. Figure 12 shows that the attention weight α decays as the distance be-

tween the current input time and the past input time increases. It is noteworthy
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that the attention weight α converges to a certain non-zero value. This finding im-

plies that AKT does not completely forget even past data obtained at an extremely

long time prior. Consequently, AKT might inadequately forget the past response

data from long learning processes. However, Gosh et al. (2020) reported that AKT

is more effective for large datasets. Therefore, AKT provides the best performance

for AUC of Eedi, which has an extremely large number of students. The perfor-

mance results obtained using DKVMN are almost identical to those obtained using

Deep-IRT because they have similar network structures.

5.5.2 Item and Skill Inputs

Furthermore, we compared the performances of the proposed methods with those

of AKT for ASSISTments2009, ASSISTments2017, and Eedi with item and skill

inputs according to [12]. The respective values of Acc, AUC, and Loss are presented

in Table 12. Results indicate that the Proposed-HN provides the best performance

for the all metrics: averages of AUC, Acc, and Loss. For each dataset, the Proposed-

HN provides the best scores for ASSISTments2009 and for ASSISTments2017. As

described above, the Proposed-HN greatly outperforms AKT for ASSISTments2017

with a long learning length because the proposed hypernetwork functions effectively.

However, for Eedi, AKT provides the best scores for all the metrics. In fact, AKT

with item and skill inputs provides higher performance than those achieved using

only skill inputs, as shown in [12]. In contrast, the proposed methods with item and

skill inputs do not necessarily outperform those with only skill inputs. The reason

might be that input item information cannot be used effectively because the latent

value memory M v
t is optimized using only input skills in the memory updating

component. In addition, for Eedi, because of the increased number of parameters,

it might not completely tune the hyperparameters in the hypernetwork.

Moreover, we experimented with Temporal IRT (TIRT) [20, 21]. It is a Hidden

Markov IRT with a parameter to forget past response data, as described earlier in

section 2.1. IRT-based methods rely on an assumption of local independence among

the student item responses. They should not be applied to learning processes that

allow a student to respond to the same item repeatedly. Therefore, we employ not

skills but items as inputs using ASSISTments2009 and ASSISTments2017. Addi-

tionally, we respectively decompose these datasets into each skill group and estimate

the parameters from skill data independently because TIRT assumes a single dimen-

sion skill of the ability. In other words, TIRT predicts performance using only an

ability corresponding to one skill for an item. To estimate the student ability and

item parameters of TIRT, we employ the expected a posteriori (EAP) estimators
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Table 12: Prediction accuracies of student performance with item and skill inputs.

Dataset metrics AKT Proposed-KT Proposed-HN

AUC 82.20 +/- 0.25 80.70 +/- 0.56 82.55 +/- 0.32

ASSISTments2009 Acc 77.30 +/- 0.55 76.13 +/- 0.58 77.42 +/- 0.49

Loss 0.49 +/- 0.10 0.54 +/- 0.10 0.47 +/- 0.11

AUC 74.54+/- 0.21 74.15+/- 0.27 77.69 +/- 0.51

ASSISTments2017 Acc 69.83+/- 0.15 68.73+/- 0.11 72.16 +/- 0.55

Loss 0.58+/- 0.06 0.57+/- 0.06 0.54 +/- 0.13

AUC 79.42 +/- 0.11 79.11 +/- 0.14 79.27 +/- 0.15

Eedi Acc 73.59 +/- 0.16 73.42 +/- 0.24 73.49 +/- 0.27

Loss 0.52 +/- 0.02 0.53 +/- 0.00 0.53 +/- 0.00

AUC 78.72 78.00 79.83

Average Acc 73.57 72.76 74.36

Loss 0.53 0.55 0.51

using the Markov chain Monte Carlo (MCMC) method. The results indicate that

AUC is 80.38, Acc is 76.39, and Loss is 0.49 for ASSISTments2009. For ASSIST-

ments2017, results show that AUC is 75.52, Acc is 84.71, and Loss is 0.46. Surpris-

ingly, TIRT outperforms AKT with skill input for ASSISTments2017. That finding

suggests that TIRT might estimate the student ability transition accurately. For

the Eedi dataset, TIRT can not complete the calculations within 24 hour because

of its data size.

6 Parameter Interpretability

6.1 Estimation Accuracy of Ability Parameters

In the preceding section, we showed that the proposed method has higher prediction

accuracy than other methods have. As described in this section, to evaluate the in-

terpretability of the ability parameters of the proposed method, we use simulation

data to compare the parameter estimates with those of Deep-IRT [7]. These datasets

are generated from TIRT [20, 21]. The prior of θit is a normal distribution described

as θi0 ∼ N (0, 1), θit ∼ N (θit−1, ε). Therein, ε represents the variance of θit. It

controls the smoothness of a student’s ability transition. Therefore, as ε increases,

the fluctuation range of the true ability increases at each time point. For this experi-

ment, the priors of the j-th item parameters are log aj ∼ N (0, 1), bj ∼ N (0, 1). Each
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Table 13: Correlation coefficients of the estimated abilities.

No. items 50 100 200 300 50 100 200 300 50 100 200 300

ε Method Pearson Spearman Kendall

Deep-IRT 0.626 0.667 0.740 0.738 0.626 0.660 0.750 0.745 0.441 0.473 0.550 0.549

0.1 Proposed-KT 0.885 0.907 0.924 0.916 0.892 0.915 0.940 0.938 0.710 0.746 0.785 0.782

Proposed-HN 0.902 0.916 0.930 0.927 0.910 0.923 0.943 0.941 0.736 0.761 0.790 0.792

Deep-IRT 0.730 0.799 0.808 0.823 0.751 0.831 0.862 0.873 0.551 0.628 0.659 0.670

0.3 Proposed-KT 0.827 0.891 0.883 0.890 0.863 0.926 0.941 0.945 0.671 0.755 0.778 0.785

Proposed-HN 0.840 0.905 0.900 0.907 0.877 0.932 0.947 0.954 0.689 0.767 0.791 0.804

Deep-IRT 0.773 0.800 0.807 0.814 0.812 0.861 0.877 0.890 0.605 0.654 0.676 0.692

0.5 Proposed-KT 0.855 0.870 0.860 0.849 0.893 0.928 0.929 0.930 0.705 0.755 0.758 0.761

Proposed-HN 0.874 0.871 0.869 0.859 0.901 0.928 0.934 0.940 0.720 0.755 0.768 0.779

Deep-IRT 0.788 0.809 0.824 0.813 0.834 0.884 0.891 0.888 0.626 0.684 0.695 0.692

1.0 Proposed-KT 0.843 0.830 0.844 0.834 0.886 0.911 0.919 0.918 0.696 0.728 0.740 0.740

Proposed-HN 0.854 0.840 0.854 0.836 0.894 0.920 0.930 0.919 0.708 0.744 0.762 0.743

dataset includes 2000 student responses to {50, 100, 200, 300} items. The discrimi-

nation parameter a and the item’s difficulty parameter b are estimated using 1800

students’ response data. Given the estimated a and b, we estimate the students’

ability parameters using the remaining 200 students’ response data. In addition, for

each dataset, we obtain results while changing ε = {0.1, 0.3, 0.5, 1.0}.
We evaluate the Pearson’s correlation coefficients, the Spearman’s rank corre-

lation coefficients, and the Kendall rank correlation coefficients between the true

ability parameters of the true model (TIRT) and the estimated ability parameters

of the KT methods (Deep-IRT, Proposed-KT, and Proposed-HN). The Spearman’s

rank correlation is the nonparametric version of Pearson’s correlation. The Kendall

rank correlation coefficient is known to provide robust estimates for aberrant val-

ues [46]. Generally, the estimation accuracy of the ability parameters is evaluated

using root mean square error (RMSE). However, a student’s ability of TIRT does

not assume a standard normal distribution because the student ability distribution

differs at each time. We are unable to evaluate RMSE in this experiment because

TIRT, Deep-IRT [7], and the proposed methods are unable to not standardize their

student abilities.

We calculate a correlation coefficient using a student’s abilities θt at time t ∈
{1, 2, · · · , T}, as estimated using TIRT and the KT methods (Deep-IRT, Proposed-

KT, and Proposed-HN). Next, we average these correlation coefficients of all stu-

dents. Table 13 presents the average correlation coefficients of the methods for

the respective conditions. Results show that, for all conditions, Proposed-KT and

Proposed-HN provide stronger correlation with the true ability parameters than
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Deep-IRT does. The results of Spearman’s rank correlation coefficients of the pro-

posed method are greater than those of Pearson’s correlation coefficients because the

student’s ability distribution changes constantly over time in TIRT. Especially, the

results obtained for the Kendall rank correlation coefficients suggest that Proposed-

KT and Proposed-HN estimate the abilities robustly, even for aberrant values. The

results demonstrate that the two independent networks proposed function effectively

to provide appropriate interpretability of the estimated parameters. Moreover, the

students’ ability parameters are estimated accurately with sufficient information

from past learning history data because the hypernetwork optimized the forget-

ting parameters using both current input data and past data. Furthermore, the

proposed methods tend to produce stronger correlations as the number of items

increases. These findings suggest that the proposed methods represent the true

student’s ability transition accurately in long learning processes.

6.2 Ability Estimate Characteristics Analyses

This section we analyze the ability estimates of Proposed-KT and compare them

with those of Proposed-HN. [13]. To compare the parameter characteristics, we

calculate the following two metrics.

1. Intra-individual variance: Vi denotes the variance of student i’s abilities during

student i’s learning process (t ∈ {1, · · · , Ti}). V stands for the average of all

students’ Vi.

θ̄i =
1

Ti

Ti∑

t=1

θti , (52)

Vi =
1

Ti

Ti∑

t=1

(θti − θ̄i)
2, (53)

V =
1

I

I∑

i=1

Vi. (54)

Therein, θti represents the time point of the ability θ(t,j) of student i at time t.

2. Inter-individual variance: V
′
t is the variance of all students’ abilities at time t.
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V
′
is the average of all students’ V

′
t .

θ̄t =
1

I

I∑

i=1

θti , (55)

V
′

t =
1

I

I∑

i=1

(θti − θ̄t)2, (56)

V
′
=

1

Ti

Ti∑

t=1

V
′

t . (57)

We use ASSISTments2017 with only skill inputs and item and skill inputs to demon-

strate that Proposed-HN works effectively in the long learning process. ASSIST-

ments2017 has the longest learning length in the datasets (shown in Table 10 and

Table 12). Table 14 shows the Inter-individual variances V of the students’ ability

estimated by Proposed-KT and Proposed-HN. As a result, Proposed-HN has larger

inter-individual variances than Proposed-KT has. The larger inter-individual vari-

ance means that the model discriminates for each student’s ability well. Therefore,

Proposed-HN can distinguish more accurately the students’ abilities than Proposed-

KT can.

Next, Table 15 shows the intra-individual variances V
′
of the students’ abil-

ity estimated by Proposed-HN and Proposed-KT. Proposed-HN has larger intra-

individual variances than Proposed-KT has. The large intra-individual variance

signifies that the range of a student’s ability transition is wide. That is to say,

the ability estimates of Proposed-HN fluctuate largely over a wide range. On the

other hand, Proposed-KT has small intra-individual variances. When the students

address the items in the long learning process, the ability estimate of Proposed-KT

might converge to a certain value because its memory updating component is not

optimized.

These results demonstrated that Proposed-HN can accurately capture each stu-

dent’s skill abilities change. This advantage is important to construct a student

model for adaptive learning,

Table 14: Inter-individual variances.

Inputs Proposed-KT Proposed-HN

skill 0.1020 2.2128

item&skill 0.0503 0.0896
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Table 15: Intra-individual variances.

Inputs Proposed-KT Proposed-HN

skill 0.0704 1.9631

item&skill 0.0339 0.0724

6.3 Student Ability Transitions

This section shows student ability transitions using the proposed method (Propsoed-

HN). Visualizing the ability transition for each skill is helpful for both students and

teachers because they can reveal student strengths and weaknesses and can improve

the learning method to fill in the learning gaps. Yeung (2019) [7] demonstrated a

student ability transition for each skill using Deep-IRT. However, their results in-

cluded some counter-intuitive ability estimates. For example, even when the student

answered incorrectly, the corresponding student ability estimate increased. More-

over, Deep-IRT cannot identify a relation among multidimensional skills. In some

cases, a student’s ability for low-level skills decreases even when the student responds

correctly to items for high-level skills.

Fig. 13 depicts an example of student ability transitions of each skill estimated

using Deep-IRT and Proposed-HN for the ASSISTments2009 according to earlier

studies [7, 45]. The vertical axis shows the student’s ability value on the right side.

The horizontal axis shows the item number. The student response is shown by filled

circles ”•” when the student answers the item correctly; it is shown by hollow circles

”◦” otherwise. In the first 30 attempts, the student attempted skills of ”equation

solving more than two steps” (shown in grey), ”equation solving two or few steps”

(shown in green), ”ordering factions” (shown in orange), and ”finding percents”

(shown in yellow).

For Deep-IRT, as in earlier reports [7], some part of ability changes might be

inconsistent with response data. For instance, the ability of skill ”equation solving

more than two steps” (grey), which is a higher-level skill, decreases even though

the student responds correctly to items 11–17. In another instance, the student

responds correctly to items for high-level skills even when a student’s ability for low-

level skills ”equation solving two or few steps” (green) decreases. These unstable

behaviors of Deep-IRT might engender severe difficulties, which will consequently

confuse students and teachers, as a student model.

In contrast, Fig. 13 indicates that Proposed-HN can provide accurate estimates

to reflect the student responses. Additionally, it can estimate relations among the
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Figure 13: Example of a student ability transition from the ASSISTments2009

dataset. The skill inputs are classified respectively as ordering factions (orange),

equation solving more than two steps (grey), equation solving two or fewer steps

(green), finding percentages (yellow). The filled and the hollow circles respectively

represent correct and incorrect responses.

skills. Therefore, when a student responds to an item, not only the corresponding

skill ability but those for other skills change. Especially, because the skills of ”equa-

tion solving more than two steps” (grey) and ”equation solving two or few steps”

(green) are similar, the ability changes of each skill also indicate a strong correla-

tion. Consequently, the results demonstrate that the proposed method improves the

interpretability of Deep-IRT.

It is noteworthy that the student’s responses are not immediately reflected in the

estimated ability change when the student provides a different response from the

previous several continuous same responses. For example, the ability for ”finding

percents” (yellow) increases in items 18–19 despite incorrect responses because the

Proposed-HN estimates the student’s ability with the past responses. Then, the

estimated ability values change slightly later when the student provides a different

response from the previous several continuous same responses. In addition, the

abilities for ”ordering factions” (orange), ”equation solving more than two steps”

(grey), and ”equation solving two or fewer steps” (green) decrease faster than that

of ”finding percents” (yellow) in items 17–18, which suggests that the 18-th item

is related to untagged skills. The Proposed-HN estimates a student’s ability by

assessing not only the tagged skill but also the relation with other skills. However,

when a teacher tags a skill to items inappropriately, the estimated ability of the skill

does not reflect the response data accurately. In such cases, verifying the relation

between each item and the corresponding skill is necessary.
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7 Conclusions

This study proposed a novel IRT based on deep learning that models a student’s

response to an item by two independent redundant networks: a student network

and an item network. Because of two independent redundant neural networks, the

parameters of the proposed method can be interpreted to a considerable degree while

maintaining high prediction accuracy.

First, we proposed a new IRT based on deep learning for test theory which has

two independent redundant networks assuming that the ability is constant through-

out the learning process. Although the standard IRT assume random sampling of

students’ abilities from a standard normal distribution, the proposed method can

express actual students’ abilities distributions flexibly because it does not follow a

standard normal distribution. Therefore, it estimates students’ abilities with high

accuracy when the students are not sampled randomly from a single distribution or

when there are no common items among the different tests. The two independent

networks provide a more reliable and robust ability estimation for actual data than

IRT does.

Next, we proposed a new IRT based on deep learning for knowledge tracing that

estimates dynamic changes of student abilities in the learning process and predicts

student performances. Furthermore, we improved the prediction accuracy of the

proposed method by combining it with a novel hypernetwork. In the earlier mem-

ory updating component, the forgetting parameters, which control the degree of

forgetting the past latent value memory, are optimized only from the current in-

put data. That restriction might degrade the prediction accuracy of the proposed

method because the value memory only insufficiently reflects the past learning infor-

mation. The proposed hypernetwork can estimate the optimal forgetting parameters

by balancing both the current input data and the past latent variables.

Experiments conducted with the benchmark datasets demonstrated that the pro-

posed method improves both the ability parameter interpretability and the predic-

tion accuracies of the earlier KT methods. Especially, results showed that the pro-

posed method with the hypernetwork is effective for tasks with a long-term learning

process. Experiments for the simulation dataset demonstrated that the proposed

method provides stronger correlations with true parameters of TIRT than the earlier

method does. Furthermore, the proposed method estimates the abilities robustly,

even with aberrant values.

This study employed slightly redundant deep networks compared to earlier meth-

ods. In future work, we intend to use the proposed method to investigate the per-
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formances of more-redundant and deeper networks. Additionally, we will try to

optimize a hypernetwork to maximize the prediction accuracy for large datasets.

Most recently, results of some studies have indicated that each item’s characteristics

differ according to their texts, although they require the same skill. To resolve this

difficulty, they proposed KT methods to estimate the relation between the item’s

text content and the student’s performance using the NLP technique or graph neu-

ral network [9, 11, 30, 34, 37, 38, 39]. As future work, we expect to incorporate the

item’s text content into the proposed method to improve the student performance

prediction accuracy. Furthermore, deep-learning approaches for KT have been used

for Computerized Adaptive Testing (CAT) [82, 83]. The main purpose of CAT is

the measurement of the student ability in the personalized test for online education.

Therefore, we infer that the proposed method might be effective for CAT because

it can estimate the student’s ability correctly.
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