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Abstract

Earlier studies have shown that classification accuracies of Bayesian networks (BNs)
obtained by maximizing the conditional log likelihood (CLL) of a class variable, given
the feature variables, were higher than those obtained by maximizing the marginal
likelihood (ML). However, differences between the performances of the two scores in
the earlier studies may be attributed to the fact that they used approximate learning
algorithms, not exact ones. This paper compares the classification accuracies of BNs
with approximate learning using CLL to those with exact learning using ML. The
results demonstrate that the classification accuracies of BNs obtained by maximizing
the ML are higher than those obtained by maximizing the CLL for large data. How-
ever, the results also demonstrate that the classification accuracies of exact learning
of BNs using the ML are much worse than those of other methods when the sample
size is small and the class variable has numerous parents. To resolve the problem,
we propose an exact learning of an augmented naive Bayes classifier (ANB), which
ensures a class variable with no parents. The proposed method is guaranteed to
asymptotically estimate the identical class posterior to that of the exactly learned
BN. Comparison experiments demonstrated the superior performance of the pro-
posed method. Nevertheless, exact learning of large ANBs is difficult because it
entails an associated NP-hard problem that becomes more difficult as the number
of variables increases. Recent reports have described that constraint-based learn-
ing methods with Bayes factor achieve larger network structures than the structure
achieved using traditional methods. This study proposes an efficient learning algo-

rithm of ANBs using recursive autonomy identification (RAI) with Bayes factor. A



unique benefit of the proposed method is that is guaranteed to accelerate execution
of the RAI algorithm when the data follow an ANB model. Numerical experiments

were conducted to demonstrate the effectiveness of the proposed method.
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Chapter 1

Introduction

Classification contributes to solving real-world problems. The naive Bayes classifier,
in which the feature variables are conditionally independent given a class variable,
is a popular classifier (Minsky 1961). Initially, the naive Bayes was not expected to
provide highly accurate classification because actual data were generated from more
complex systems. Therefore, the general Bayesian network (GBN) with learning
by marginal likelihood (ML) as a generative model was expected to outperform the
naive Bayes, because the GBN is more expressive than the naive Bayes. However,
Friedman et al. (1997) demonstrated that the naive Bayes sometimes outperformed
the GBN using a greedy search to find the smallest minimum description length
(MDL) score, which was originally intended to approximate ML. They explained
the inferior performance of the MDL by decomposing the MDL into the log likeli-
hood (LL) term, which reflects the model fitting to training data, and the penalty
term, which reflects the model complexity. Moreover, they decomposed the LL
term into a conditional log likelihood (CLL) of the class variable given the feature
variables, which is directly related to the classification, and a joint LL of the fea-
ture variables, which is not directly related to the classification. Furthermore, they
proposed conditional MDL (CMDL), a modified MDL replacing the LL with the
CLL.

Consequently, Grossman and Domingos (2004) claimed that the Bayesian net-



work (BN) minimizing CMDL as a discriminative model shows better accuracy than
that maximizing ML. Unfortunately, the CLL has no closed-form equation for esti-
mating the optimal parameters. This implies that optimizing CLL requires greedy
search algorithms for structure learning such as gradient descent algorithms (e.g.,
extended logistic regression algorithm (Greiner and Zhou 2002)). Nevertheless, the
optimization algorithm involves the reiteration of each structure candidate, which
renders the method computationally expensive. To avoid searching a structure which
minimizes CMDL, Friedman et al. (1997) proposed an augmented naive Bayes clas-
sifier (ANB) in which the class variable directly links to all feature variables, and
links among feature variables are allowed. ANB ensures that all feature variables
can contribute to classification. Later, various types of restricted ANBs were pro-
posed, such as tree-augmented naive Bayes classifiers (TANs) (Friedman et al. 1997)
and forest-augmented naive Bayes classifiers (FANs) (Lucas 2004).

Because maximization of CLL entails heavy computation, various approximation
methods have been proposed to maximize it. Carvalho et al. (2013) proposed approz-
imated CLL (aCLL), which is decomposable and computationally efficient. Gross-
man and Domingos (2004) proposed BNC2P, which is a greedy learning method
with at most two parents per variable using the hill-climbing search by maximizing
CLL while estimating parameters by maximizing LL. Mihaljevi¢ et al. (2018) pro-
posed MC-DAGGES, which reduces the space for the greedy search of BN Classifiers
(BNCs) using the CLL score. These reports described that the BNC maximizing the
approximated CLL performed better than that maximizing the approximated ML.
Nevertheless, they did not explain why CLL outperformed ML. For large data, the
classification accuracies presented by maximizing ML are expected to be comparable
to those presented by maximizing CLL because ML has asymptotic consistency. Dif-
ferences between the performances of the two scores in these studies might depend
on their respective learning algorithms; they were approximate learning algorithms,
not exact ones.

Recent studies have explored efficient algorithms for the exact learning of GBNs

to maximize ML (Koivisto and Sood 2004, Singth and Moore 2005, Silander and



Myllyméki 2006, De Campos and Ji 2011, Malone et al. 2011, Yuan and Malone
2013, Cussens 2012, Barlett and Cussens 2013, Suzuki 2017).

This study compares the classification performances of the BNC with exact learn-
ing using ML as a generative model and those with approximate learning using CLL
as a discriminative model. The results show that maximizing ML shows better clas-
sification accuracy when compared with maximizing CLL for large data. However,
the results also show that classification accuracies obtained by exact learning of
BNCs using ML are much worse than those obtained by other methods when the
sample size is small, and the class variable has numerous parents in the exactly
learned networks. When a class variable has numerous parents, estimation of the
conditional probability parameters of the class variable becomes unstable because
the number of parent configurations becomes large and the sample size for learning
the parameters becomes small.

To improve the classification accuracies of BNCs learned by ML, this study
proposes an exact learning of ANBs which maximizes ML and ensures that the class
variable has no parents. In earlier studies, the ANB constraint was used to learn the
BNC as a discriminative model. In contrast, we use the ANB constraint to learn
the BNC as a generative model. The proposed method asymptotically learns the
optimal ANB, which asymptotically represents the true probability distribution with
the fewest parameters among all possible ANB structures. Moreover, the proposed
ANB is guaranteed to asymptotically estimate the identical conditional probability
of the class variable to that of the exactly learned GBN. Furthermore, learning ANBs
has lower computational costs than learning GBNs. Although the main theorem
assumes that all feature variables are included in the Markov blanket of the class
variable, this assumption does not necessarily hold. To address this problem, we
propose a feature selection method using Bayes factor for exact learning of the ANB
so as to avoid increasing the computational costs. Comparison experiments show
that our method outperforms the other methods.

However, the exact learning of ANBs cannot be applied to network structures

with more than 30 variables. In the field of causal models, a more computationally



efficient structure learning method has been proposed, although it has no asymp-
totic matching of the true structure. This method, called the constraint-based ap-
proach, learns structure by orienting edges using orientation rules (Pearl 2000) on
an undirected graph that is learned by application of the Conditional Independence
test (CI test) between two variables to a fully undirected graph. In the study of
constraint-based approaches, the PC algorithm (Spirtes et al. 2000), the TPDA al-
gorithm (Cheng et al. 2002), the MMHC algorithm (Tsamardinos et al. 2006), and
the RAI algorithm (Yehezkel and Lerner 2009) have been reported. The RAI algo-
rithm is known as an extremely efficient method with this approach. The salient
benefit of the RAI algorithm is that it decreases the number of conditional vari-
ables of CI tests in the constraint-based approach because it decomposes the entire
structure into partial structures based on observed convergence connections. Steck
and Jaakkola (2002b) proposed a conditional independence test with an asymptotic
consistency, a Bayes factor with BDeu. Abelldn et al. (2006) proposed a learning
method by application of the CI test with the BDeu score to the PC algorithm. Fur-
thermore, Natori et al. (2017) reported that the RAI algorithm based on the Bayes
factor yielded the largest and the most accurate learning results. More recently, re-
searchers challenged to employ constraint-based learning methods with Bayes factor
to increase the available learning Bayesian networks size (e.g. Rohekar et al. (2018),
Mokhtarian et al. (2021)).

We propose a constraint-based Learning of ANBs using RAI with Bayes factor
to learn large ANBs. The proposed method is expected to improve efficiency of the
original RAI algorithm without the ANB constraint because the proposed method
is guaranteed to accelerate the structure decompositions that occur during the RAI
algorithm execution when the data follow an ANB model.

Numerical experiments using benchmark datasets show that the proposed algo-

rithm can learn larger networks than the exact solution search approach can.



Chapter 2

Background

In this chapter, we introduce the notation and background material required for our

discussion.

2.1 Bayesian Network

A BN is a graphical model that represents conditional independence among random
variables as a directed acyclic graph (DAG). For the discussions presented herein, we
call a DAG of BN a structure throughout. The BN provides a good approximation
of the joint probability distribution because it decomposes the distribution exactly
into a product of the conditional probabilities for each variable.

Let V = {Xo, X1,..., X} be a set of discrete variables, where X;,i = 0,...,n,
can take values in the set of states {1,...,7;}. One can say X; = k when X takes the
state k. According to a structure G, the joint probability distribution is represented

as
n
P(Xo,X1,..., X, | G) = [[ P(X; | Pa§,,G),
i=0
where Pa)G(i is a set of parent variables of X; in G. When the structure G is obvious
from the context, we use Pay, to denote the parents. In addition, ¢¥2X: denotes the

number of possible patterns of states of variables in Pay,, i.e., ¢¥*¥: = [I,.x,cpa . To-
K2

We assign numbers 1,...,¢F2%: to the respective patterns of states of variables in



P(X,=1)=05

P(X,=1|X,=0)=0.2
P(X,=1|X,=1) =06

P(X,=1|X,=0)=05
P(X,=1|X,=1)=0.2

P(X3=1|X,=0,X,=0) = 0.4
P(Xs=1|X, =1,X,=0) = 0.7
P(X;=1|X,=0,X,=1) = 0.2
P(X3=1|X,=1,X,=1) = 0.4

P(X,=1|X,=0)=0.7
P(X,=1|X,=1) = 0.4

Figure 2.1: Example of a Bayesian network.

Pay,. When variables in Pay, take the pattern j, we write Pay, takes the state
J. Let 0;;, be a conditional probability parameter of X; = k when Pay, takes the
state j. Then, we define ©;; = U;_{0ix},© = U, U?iBIXi{@ij}. A BN is a pair
B = (G, 0). Figure 2.1 depicts an example of a Bayesian network.

A structure of BN represents conditional independence assertions in the proba-
bility distribution by d-separation. First, we define collider, for which we need to
define the d-separation. We designate a sequence of distinct variables, each one

adjacent to the next, a path. Then the collider is defined as shown below.

Definition 1. For any structure G consisting of a variable set V and for any path
p in G, a variable Z € V on p is a collider if and only if Z has two parent variables

which are adjacent to Z on p.
We then define “d-separated” as explained below.

Definition 2. For any structure G consisting of a variable set V and for any X,Y €
V,Z C V\{X,Y}, the two variables X and Y are d-separated, given Z in G, if and

only if every path p between X and Y satisfies either of the following two conditions.
e Z includes a non-collider on p.
e There is a collider Z on p; Z does not include Z and its descendants.

We write Dsepg(X,Y | Z) to denote that X and Y are d-separated given Z in G
(We designate Dsepg(X,Y | Z) d-separation between X and Y given Z in G). We

6



write = Dsepa(X,Y | Z) to denote that X and Y are d-connected given Z in G (We
designate ~Dsepg(X,Y | Z) d-connection).

If we have X,Y,Z € V and X and Y are not adjacent, then the following three
possible types of connections characterize the d-separations: serial connections such
as X — Z — Y, divergence connections such as X < Z — Y, and convergence
connections such as X — Z «+ Y. The following theorem of d-separations for these

connections holds.

Theorem 1. (Koller and Friedman (2009))
First, assume a structure G = (V,E), X,Y,Z € V. If G has a convergence connec-
tion X — Z <Y, then the following two propositions hold:

« VZCV\{X,Y,Z}, ~Dsepe(X,Y | Z,2),
« 3ZCV\{X,Y,Z}, Dsepc(X.,Y | Z).

If G has a serial connection X — Z — Y or divergence connection X < Z — Y,

then negations of the above two propositions hold.
Two DAGs are Markov equivalent when they have the same d-separations.

Definition 3. Let G; and G5 be two DAGs consisting of a variable set V; then G,
and G4 are called Markov equivalent if the following holds:

VX,Y € V,VZ C V\ {X,Y}, (2.1)
DS@pGl(XaY ‘ Z) Mg DS@pG2(X7Y | Z)

Verma and Pearl (1990) described the following theorem to identify Markov

equivalence.

Theorem 2. (Verma and Pearl (1990))
Two DAGs are Markov equivalent if and only if they have identical links (edges

without direction) and identical convergence connections.



Let Ip«(X,Y | Z) denote that X and Y are conditionally independent given Z in
the true joint probability distribution (the underlying distribution) P*. A structure
G is an independence map (I-map) if all the d-separations in G are entailed by

conditional independences in P*:

Definition 4. For any structure G consisting of a variable set V, G is an I-map if

the following proposition holds:
VX, Y €e VVZCV\A{X,Y} Dsepa(X,Y | Z) = Ip«(X,Y | Z).

We introduce the following notations required for our discussion on learning BNs.
Let D = {x!,...,x% ..., x"} be a complete dataset consisting of N i.i.d. instances,

where each instance x¢

is a data-vector (z&,z¢,... z%). For a variable set Z C 'V,
we define N; Z as the number of samples when Z takes a state j in the dataset D,
and define N7, as the number of samples of X; = k when Z takes a state j in D. In
addition, we define a joint frequency table JFT(Z) as a list of sz forj=1,...,¢%.
For a variable X € V, we define a conditional frequency table CFTp(X,Z). For
example, CFTp(X;,Z) is a list of Ngk forj=1,...,¢%, and k=1,...,r;

The most popular parameter estimator of BNs is the expected a posteriori (EAP)
of Equation (2.2), which is the expectation of §;;; with respect to the density p(©;; |
D, @) of Equation (2.3), assuming Dirichlet prior density p(©;; | G) of Equation

(2.4).

NPaX

ik = E0in | D,G) = [ 03 p(©4 | D,G)dOy; = N+ N 2.2
gk (Jk| ) Jk <J| ) J N’—i—NPX ( )

PaX

R\ /
§(©4 | D,G) = SN Ny H@Zk’“” o (2.3)
=y DN + Ny, k=1

D(X, N
(0 | G :——” o 2.4
( J ’ ) F<Nlljk H ijk ( )

In Equations (2.2) through (2.4), N}, denotes the hyperparameters of the Dirichlet
prior distributions, with N/, = 32}, Nj;,. In addition, for every positive real number

z, [(z) = [ t* tetdt.



The structure must be estimated from observed data because it is generally un-
known. This problem is called “structure learning.” A goal of the structure learning
is to obtain the I-map with the fewest parameters. The number of parameters of
a structure G consisting of a variable set V is represented as Y1, ¢F2%i(r; — 1).
The most common learning approach is a score-based approach, which seeks the
best structure maximizing a score function Score(G, D). Seeking the best structure
among all the possible structures consisting of V is designated as “exact learning.”
To learn the I-map with the fewest parameters, we maximize the score with an

asymptotic consistency defined as shown below.

Definition 5. (Chickering (2002))
Let G; and G5 be two structures consisting of a variable set V. A score function
Score has an asymptotic consistency if the following two properties almost surely

hold when the sample size of D is sufficiently large.
o If Gy is an [-map and G5 is not an I-map, then Score(Gy, D) > Score(Gs, D).

o If G; and G5 both are I-maps, and if Gy has fewer parameters than G5, then
Score(Gy, D) > Score(Gay, D).

The marginal likelihood (ML), P(D | G), is known to have asymptotic consis-
tency (Chickering 2002). Moreover, the ML score has the following asymptotic local
consistency (Chickering 2002).

Definition 6. (Chickering (2002))

Let GGy be any structure consisting of a variable set V, and let G5 be the structure
that results from adding the edge Y — X to G;. A score function Score has an
asymptotic local consistency if the following two properties almost surely hold when

the sample size is sufficiently large.
o Ip-(X,Y | Pa§!) = Score(Gy) > Score(Gs).

o =Ip(X,Y | Pa§') = Score(Gy) < Score(Gy).



When we assume the Dirichlet prior density of Equation (2.4), ML is represented as

P G) =TT —S 0 P+ N

i—0 j=1 D(Nj; +N; ) k51 L(NV/;.)

T'(N!

ijk

In particular, Heckerman et al. (1995) presented the following constraint related to

hyperparameters N,

i1 for ML satisfying the score-equivalence assumption, where the

ML takes the same value for the Markov equivalent structures:
Nl = N'P(X; = k,Pax, = j | G"),

where N’ is a equivalent sample size (ESS) determined by users, and G" is a hy-
pothetical structure that reflects the prior knowledge of users. ML with the above
constraint of Ny,

Buntine (1991) described, Nj;; =

is designated as the Bayesian Dirichlet equivalent (BDe) score. As
N'/(r;q®2%:) is regarded as a special case of the
BDe score. Heckerman et al. (1995) called this special case the Bayesian Dirichlet

equivalent uniform (BDeu), defined as

D ’ G ﬁ ﬁz (N’/anX') s F(N//( Pay. ) + NPax )
=0 o1 D(N'/gPaxi 4 Ny i DN/ (g ))
In addition, the minimum description length (MDL) score presented in (5),

which approximates the negative logarithm of ML, is often used for learning BNs.

1 N N
o8 Z anXi (ri - 1) - Z IOg P(ZL‘g, xila s axi | B) (25)
i=0 d=1

MDL(B| D) =

The first term of Equation (2.5) is the penalty term, which signifies the model
complexity. The second term, LL, is the fitting term that reflects the degree of
model fitting to the training data.

Both BDeu and MDL are decomposable, i.e., the scores can be expressed as a sum
of local scores depending only on the conditional frequency table for one variable
and its parents as follows.

Score(G, D) = Z LocalScore(CFTp(X;, Pay,)),

1=0

10



For example, the local score of log BDeu for CFTp(X;, Pay,) is

LocalScore(CFTp(X;, Pay,))

PaXi , P r ’ Pa Pax.
_ qz log [D(N'/q i) 5:10 D(N'/(rig™2%:) + Ny ")
j=1 (N’ /qPaxi + N]-Paxi) k=1 T(N'/(rig"2x:))

(2.6)

The decomposable score enables an extremely efficient search for structures (Silander

and Myllyméki 2006, Barlett and Cussens 2013).

2.2 Bayesian Network Classifiers

A Bayesian network classifier (BNC) can be interpreted as a BN for which X,
is the class variable and Xi,...,X,, are feature variables. Given an instance x =
(x1,...,x,) for feature variables Xj, ..., X,, the BNC B infers class ¢ by maximizing

the posterior probability of X, as

¢ € argmax P(c|xy,...,z,, B) (2.7)
CE{I ..... ’r’o}

n g% r;

= argmax H H H (Qijk)l“’“

c€{l,...mo} =0 j=1 k=1

anXO ro anXO ;
= argmax H H (Hojk)loj’“ X H H H (Oijk)l”’“,
ce{l,...,ro} j=1 k=1 #X;€C j=1 k=1

where 1;;, = 1 it X; = k and Pay, takes a state j in x, and 1;;, = 0 otherwise.
Furthermore, C is the set of children of the class variable Xy. From Equation (2.7),
we can infer class ¢ given only the values of the parents of Xy, the children of X,
and the parents of the children of Xy. A set of these feature variables is called a
Markov blanket of Xj.

However, Friedman et al. (1997) reported that BNC minimizing MDL cannot
optimize classification performance. They proposed the sole use of the following

CLL of the class variable given feature variables, instead of the LL for learning BNC

11



structures.

N
CLL(B| D) =Y logP(z}|z{,...,2%,B)

s U
d=1

N N 0
=Y log P(zf,xf,...,2% | B) = > log> P(c,af,...,z% | B). (2.8)
d=1 d=1 =1

Furthermore, they proposed conditional MDL (CMDL), which is a modified MDL
replacing LL. with CLL, as shown below.

log N &

CMDL(B| D)= =

q"**i(r; — 1) — CLL(B | D).

=0
Consequently, they claimed that the BN minimizing CMDL as a discriminative
model showed better accuracy than that maximizing ML as a generative model.

Unfortunately, CLL is not decomposable because we cannot describe the second
term of Equation (2.8) as a sum of the log parameters in ©. This finding implies that
no closed-form equation exists for the maximum CLL estimator for ©. Therefore,
learning the network structure that minimizes the CMDL requires a search method
such as gradient descent over the space of parameters for each structure candidate.
Therefore, exact learning of structures by minimizing CMDL is computationally
infeasible.

As a simple way of resolving that difficulty, Friedman et al. (1997) proposed an
augmented naive Bayes classifier (ANB) that ensures an edge from the class variable
to each feature variable and allows edges among feature variables. Furthermore, they
proposed a tree-augmented naive Bayes classifier (TAN) in which the class variable
has no parents and each feature variable has a class variable and at most one other
feature variable as parent variables.

Various approximate methods to maximize CLL have been proposed. Carvalho
et al. (2013) proposed an aCLL score, which is decomposable and computationally
efficient. Let Ganp be an ANB structure. In addition, let N, be the number of
samples of X; = k when Xy = c and Pay, \ { X} takes the state j, (i =1,...,n;5 =

1,...,gPaxiMXokoe — 1 rgik = 1,...,7;). In addition, let N” > 0 represent

12



hyperparameters. Under several assumptions, aCLL can be represented as
Pax,\{Xo}

S Nz c
d=1

ij+c

GCLL(GANB ’ D) X

n q
1=

1 =1 k=le=1l
where
s . T 124
Nijer, + B3 —1 Nijerre if Nijew + B2 0—1 Nijow > N

Nij+ck -
N otherwise,

ri
Nijte =Y Nijick-
=1

The value of 3 is found by using the Monte Carlo method to approximate CLL.
There exists a value of g such that aCLL becomes a minimum-variance unbiased
approximation of the CLL.

Moreover, Grossman and Domingos (2004) proposed a learning structure method
using a greedy hill-climbing algorithm (Heckerman et al. 1995) by maximizing the
CLL while estimating the parameters by maximizing the LL. Recently, Mihalje-
vié¢ et al. (2018) identified the smallest subspace of DAGs that covered all possible
class-posterior distributions when the data were complete. All the DAGs in this
space, which they call minimal class-focused DAGs (MC-DAGs), are such that ev-
ery edge is directed toward a child of the class variable. In addition, they proposed
a greedy search algorithm in the space of Markov equivalent classes of MC-DAGs
using the CLL score. These reports described that the BNC maximizing the approx-
imated CLL provides better performance than that maximizing the approximated
ML. However, they did not explain why CLL outperformed ML. For large data, the
classification accuracies obtained by maximizing ML are expected to be comparable
to those obtained by maximizing CLL because ML has asymptotic consistency. Dif-
ferences between the performances of the two scores in these earlier studies might
depend on their learning algorithms to maximize ML; they were approximate learn-

ing algorithms, not exact ones.

13



Chapter 3

Classification Accuracies of Exact

Learning of GBNs

This chapter presents experiments comparing the classification accuracies of the
exactly learned GBN by maximizing BDeu as a generative model with those of
the approximately learned BNC by maximizing CLL as a discriminative model.
Although determining the hyperparameter N’ of BDeu is difficult (Silander et al.
2007, Steck 2008, Ueno 2008, Suzuki 2017), we use N’ = 1.0 that allows the data to
reflect the estimated parameters to the greatest degree possible (Ueno 2010, 2011).

The experiment compares the respective classification accuracies of seven meth-
ods in Table 3.1. All the methods are implemented in Java. The source code is
available at http://www.ai.lab.uec.ac.jp/software/. Throughout this paper,
our experiments are conducted on a computational environment in Table 3.2. This
experiment uses 43 classification benchmark datasets from the UCI repository (Lich-
man 2013). Continuous variables are discretized into two bins using the median value
as the cut-off, as in (De Campos et al. 2014). In addition, data with missing values
are removed from the datasets. We use EAP estimators as conditional probability
parameters of the respective classifiers. Hyperparameters N, of EAP are found to

be 1/(r;g¥2xi). Through our experiments, we define “small datasets” as the datasets
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Table 3.2: Computational environment.

CPU 2.2 GHz XEON 10-core processor
System Memory | 128 GB

OS Windows 10

Software Java

with less than 200 samples, and define “large datasets” as the datasets with 10,000
or more samples.

Table 3.3 presents the classification accuracies of the respective classifiers. We
will discuss the results of ANB-BDeu and fsANB-BDeu in a later chapter. The
values shown in bold in Table 3.3 represent the best classification accuracies for
each dataset. Here, the classification accuracies represent the average percentage of
correct classifications from a ten-fold cross-validation. Moreover, to investigate the
relation between the classification accuracies and GBN-BDeu, Table 3.4 presents
the details of the achieved structures using GBN-BDeu. “Parents” in Table 3.4
represents the average number of parents of the class variable in the structures
learned by GBN-BDeu. “Children” denotes the average number of children of the
class variable in the structures learned by GBN-BDeu. “Sparse data” denotes the
average number of value patterns j of the parents of X, with null data, N;) o —
0(j=1,...,¢*%) in the structures learned by GBN-BDeu.

From Table 3.3, GBN-BDeu shows the best classification accuracies among the
methods for large data, such as dataset Nos 22, 29, and 33. From the asymp-
totic consistency of BDeu, GBN-BDeu almost surely converges to an [-map with
the fewest parameters. The joint probability distribution represented by an I-map
approaches the true distribution as the sample size increases. However, it is worth
noting that GBN-BDeu provides much worse accuracy than the other methods in
datasets No. 3 and No. 9. In these datasets, the learned class variables by GBN-
BDeu have no children. Numerous parents are shown in “Parents” and “Children”

in Table 3.4. When a class variable has numerous parents, the estimation of the
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Table 3.3: Classification accuracies of GBN-BDeu, ANB-BDeu, fsANB-BDeu, and
traditional methods (bold text signifies the highest accuracy).

Sample Naive- GBN- TAN- 8GBN- MC-DAG GBN- ANB- fsANB-
No. Dataset Variables Classes size  Bayes CMDL BNC2P aCLL BDeu GES BDeu BDeu BDeu
1 Balance Scale 5 3 625 0.9152 0.3333 0.8560 0.8656 0.9152 0.7432 0.9152 0.9152 0.9152
2 banknote authentication 5 2 1372 0.8433 0.8819 0.8797 0.8761 0.8819 0.8768 0.8812 0.8812 0.8812
3 Hayes-Roth 5 3 132 0.8182 0.6136 0.6894 0.6742 0.7525 0.6970  0.6136 0.8182 0.8333
4 iris 5 3 150  0.7133 0.7800 0.8200 0.8200 0.8133  0.7800 0.8267 0.8200 0.8200
5 lenses 5 3 24 0.7500 0.8333 0.6667 0.7083 0.8333 0.8333 0.8333 0.7500 0.8750
6  Car Evaluation 7 4 1728  0.8571 0.9497 0.9416 0.9433 0.9416 0.9126 0.9416 0.9427 0.9416
7 liver 7 2 345  0.6319 0.6145 0.6290 0.6609 0.6029 0.6435 0.6087 0.6348 0.6377
8  MONK’s Problems 7 2 432 0.7500 1.0000 1.0000 1.0000 0.8449 1.0000 1.0000 1.0000 1.0000
9  mux6 7 2 64 0.5469 0.3750 0.5625 0.4688 0.4063 0.7656 0.4531 0.5469 0.5547
10 LED7 8 10 3200 0.7294 0.7366 0.7375 0.7350 0.7297  0.7331  0.7294 0.7294 0.7294
11 HTRU2 9 2 17898 0.7031 0.7096 0.7070 0.7018 0.7188 0.7214 0.7305 0.7188 0.7161
12 Nursery 9 5 12960 0.6782 0.7126 0.6092 0.5862 0.7126 0.6322 0.7126 0.6782 0.7126
13 pima 9 2 768  0.8966 0.9086 0.9118 0.9130 0.9092 0.9093 0.9112 0.9141 0.9141
14  post 9 3 87 0.9033 0.5823 0.9442 09177 0.9291 0.9046 0.9340 0.9181 0.9177
15 Breast Cancer 10 2 277 09751 0.8917 0.9473 0.9488 0.7058  0.6354 0.9751 0.9751 0.9751
16 Breast Cancer Wisconsin 10 2 683  0.7401 0.6209 0.6823 0.7184 0.7094 0.9780 0.7184 0.7040 0.7473
17 Contraceptive Method Choice 10 3 1473 0.4671 0.4501 0.4745 0.4705 0.4440 04576  0.4542 0.4650 0.4725
18 glass 10 6 214 0.5561 0.5654 0.5794 0.6308 0.4626  0.5888  0.5701 0.6449 0.5888
19  shuttle-small 10 6 5800  0.9384 0.9660 0.9703 0.9583 0.9683 0.9586  0.9693 0.9716 0.9695
20 threeOf9 10 2 512 0.8164 0.9434 0.8691 0.8828 0.8652 0.8750  0.8887 0.8730 0.8633
21 Tic-Tac-Toe 10 2 958  0.6921 0.8841 0.7338 0.7203 0.6754  0.7557  0.8340 0.8497 0.8570
22 MAGIC Gamma Telescope 11 2 19020 0.7482 0.7849 0.7806 0.7631 0.7844  0.7781  0.7873 0.7874 (.7865

23 Solar Flare 11 9 1389 0.7811 0.8265 0.8315 0.8229 0.8431 0.8013 0.8431 0.8229 0.8373

24 heart 14 2 270 0.8259 0.8185 0.8037 0.8148 0.8222 0.8333 0.8259 0.8185 0.8296
25  wine 14 3 178 0.9270 0.9438 0.9157 0.9326 0.9045 0.9438 0.9270 0.9270 0.9270
26 cleve 14 2 296  0.8412 0.8209 0.8007 0.8378 0.7973 0.8041 0.7973 0.8277 0.8243
27  Australian 15 2 690  0.8290 0.8312 0.8348 0.8464 0.8420 0.8406 0.8536 0.8246 0.8522
28 orx 15 2 653  0.8377 0.8346 0.8208 0.8560 0.8622 0.8576 0.8591 0.8515 0.8591
29 EEG 15 2 14980 0.5778 0.6787 0.6374 0.6125 0.6732 0.6182 0.6814 0.6864 0.6864
30 Congressional Voting Records 17 2 232 09095 0.9698 0.9612 0.9181 0.9741 0.9009  0.9655 0.9483 0.9397

31 zoo 17 5 101 0.9802 0.9109 0.9505 1.0000 0.9505  0.9802  0.9307 0.9505 0.9604
32 pendigits 17 10 10992 0.8032 0.9062 0.8719 0.8700 0.9253  0.8359 0.9290 0.9279 0.9279
33 letter 17 26 20000 0.4466 0.5796 0.5132 0.5093 0.5761  0.4664 0.5761 0.5935 0.5881
34 ClimateModel 19 2 540 0.9222 0.9407 0.9241 0.9333 0.9370  0.9296  0.9000 0.8426 0.9278
35 Image Segmentation 19 7 2310 0.7290 0.7918 0.7991 0.7407 0.8026  0.7476  0.8156 0.8225 0.8225
36 lymphography 19 4 148 0.8446 0.7939 0.7973 0.8311 0.7905  0.8041  0.7500 0.7770 0.7838
37  vehicle 19 4 846 0.4350 0.5910 0.5910 0.5816 0.5461  0.5414  0.5768 0.6253 0.6217
38  hepatitis 20 2 80 0.8500 0.7375 0.8875 0.8750 0.8500 0.8875 0.5875 0.6250 0.8375
39 German 21 2 1000 0.7430 0.6110 0.7340 0.7470 0.7140 0.7180  0.7210 0.7380 0.7410
40  bank 21 2 30488 0.8544 0.8618 0.8928 0.8618 0.8952  0.8708 0.8956 0.8950 0.8953
41 waveform-21 22 3 5000 0.7886 0.7862 0.7754 0.7896 0.7698  0.7926  0.7846 0.7966 0.7972
42 Mushroom 22 2 5644 0.9957 1.0000 1.0000 0.9995 1.0000 0.9986  0.9949 1.0000 1.0000
43 spect 23 2 263 0.7940 0.7940 0.7903 0.8090 0.7603  0.8052  0.7378 0.8240 0.8240
Arithmetic average 0.7764 0.7721 0.7936  0.7943 0.7867  0.7944  0.7963 0.8061 0.8184
p-value (ANB-BDeu vs. the other methods) 0.00308 0.04136 0.00672 0.05614 0.06876 0.06010 0.22628 - -
p-value (fsANB-BDeu vs. the other methods) 0.00001 0.00014 0.00013 0.00280 0.00015 0.00212 0.00064 0.01101 -
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Table 3.4: Statistical summary of GBN-BDeu and fsANB-BDeu.

Sample Sparse Max Removed
No. Variables Classes size Parents Children data MB size parents variables

1 5 3 625 0.4 3.6 0.0 4.0 1.0 0.0
2 5 2 1372 0.0 2.0 0.0 4.0 4.0 0.0
3 5 3 132 3.0 0.0 17.2 3.0 1.0 1.0
4 5 3 150 1.8 1.2 0.0 3.0 2.0 0.0
5 5 3 24 1.1 1.0 0.0 2.1 1.1 2.0
6 7 4 1728 2.0 3.0 0.0 5.0 2.0 1.0
7 7 2 345 0.0 1.9 0.0 3.4 2.0 0.1
8 7 2 432 3.0 0.0 0.0 3.0 3.0 0.0
9 7 2 64 5.8 0.0 5.2 5.8 1.0 2.1
10 8 10 3200 0.9 6.1 0.0 7.0 1.0 0.0
11 9 2 17898 1.8 4.2 0.0 4.2 2.0 0.9
12 9 5 12960 4.0 3.0 0.0 0.0 0.0 8.0
13 9 2 768 1.4 1.7 0.0 7.0 4.0 0.0
14 9 3 87 0.0 0.0 0.0 7.0 3.0 0.1
15 10 2 277 0.9 8.0 0.0 1.0 1.0 0.0
16 10 2 683 0.7 0.3 0.0 8.9 2.0 5.0
17 10 3 1473 0.7 0.8 0.0 1.7 2.5 0.6
18 10 6 214 0.6 3.1 0.0 4.3 2.7 2.0
19 10 6 5800 2.0 4.0 0.0 7.0 5.0 1.9
20 10 2 512 5.0 2.1 0.0 7.6 2.7 0.2
21 10 2 958 1.2 2.2 0.0 5.3 3.0 0.3
22 11 2 19020 0.0 6.1 0.0 8.0 4.0 1.7
23 11 9 1389 0.8 0.2 0.0 1.0 2.0 5.3
24 14 2 270 1.8 4.2 0.0 6.3 2.0 1.8
25 14 3 178 1.7 5.3 0.0 8.1 2.1 0.0
26 14 2 296 1.8 4.5 0.0 6.6 2.0 3.1
27 15 2 690 1.4 2.8 0.0 4.5 2.8 3.3
28 15 2 653 1.3 2.8 0.0 4.2 2.2 2.7
29 15 2 14980 0.4 8.2 0.0 12.8 5.0 0.0
30 17 2 232 1.3 2.6 0.1 6.2 3.8 1.8
31 17 5 101 4.3 1.6 20.3 7.4 5.1 1.2
32 17 10 10992 2.6 13.4 0.1 16.0 5.6 0.0
33 17 26 20000 2.9 9.1 0.0 13.0 5.0 2.0
34 19 2 540 1.8 4.4 0.0 16.6 1.0 12.9
35 19 7 2310 0.7 10.4 0.0 13.2 4.0 0.0
36 19 4 148 1.6 5.9 0.2 13.1 2.2 5.3
37 19 4 846 1.1 5.1 0.1 10.1 4.1 0.5
38 20 2 80 1.3 6.1 0.4 16.0 6.9 5.4
39 21 2 1000 1.1 2.8 0.0 4.1 2.1 7.4
40 21 2 30488 4.1 2.0 32.5 9.9 6.0 4.0
41 22 3 5000 3.8 10.1 0.0 14.5 4.0 2.0
42 22 2 5644 1.3 3.3 9.0 6.4 6.4 0.0
43 23 2 263 2.0 3.4 0.0 7.7 3.0 0.0
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conditional probability parameters of the class variable becomes unstable because
the configurations of parents of the class variable become numerous. Then, the sam-
ple size for learning the parameters becomes small, as presented in “Sparse data”
in Table 3.4. Therefore, numerous parents of the class variable might be unable to

reflect the feature data for classification when the sample is not sufficiently large.
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Chapter 4

Exact Learning of ANBs

The preceding chapter suggested that exact learning of GBNs by maximizing BDeu
to have no parents of the class variable might improve the accuracy of GBN-BDeu.
In this chapter, we propose an exact learning of ANBs, which maximizes BDeu
and ensures that the class variable has no parents. In earlier reports, the ANB
constraint was used to learn the BNC as a discriminative model. In contrast, we
use the ANB constraint to learn the BNC as a generative model. The space of all
possible ANB structures includes at least one I-map because it includes a complete
graph, which is an I-map. From the asymptotic consistency of BDeu (Definition 5),
the proposed method is guaranteed to achieve the I-map with the fewest parameters
among all possible ANB structures when the sample size becomes sufficiently large.
Our empirical analysis in Chapter 3 suggests that the proposed method can improve
the classification accuracy for small data. We employ the dynamic programming
(DP) algorithm learning GBN (Silander and Myllyméki 2006) for the exact learning
of ANBs. The DP algorithm for the exact learning of ANBs is almost twice as
fast as that for the exact learning of GBNs. We prove that the proposed ANB
asymptotically estimates the identical conditional probability of the class variable

to that of the exactly learned GBN.
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4.1 Learning Procedure

Our method is intended to seek the optimal structure that maximizes the BDeu score
among all possible ANB structures. Our algorithm employs dynamic programming
(DP) based on the decomposability of BDeu. The local score of the class variable
in ANB structures is constant because the class variable has no parents in the ANB
structure. Therefore, we can ascertain the optimal ANB structure by maximizing
Scoreanp(G, D) = Score(G, D) — LocalScore(CFTp(Xo,1)).

Before we describe the procedure of our method, we introduce the following
notations. Let G*(Z) denote the optimal ANB structure composed of a variable set
Z,(Xo € Z). When a variable has no child in a structure, we say it is a sink in
the structure. We use X (Z) to denote a sink in G*(Z). Additionally, letting I1(Z)
denote the set of all subsets of Z that include X, we define the best parents of X;
in a candidate set I1(Z) as the parent set that maximizes the local score in I1(Z):

9: (II(Z)) = argmax LocalScore(CFTp(X;, W)).
WeIl(Z)

Our algorithm has four logical steps. The following process improves the DP

algorithm proposed by (Silander and Myllyméki 2006) to learn the optimal ANB

structure.

1. For all possible pairs of a variable X; € V \ {X(} and a variable set Z C V' \
{Xi}, (Xo € Z), calculate the local score LocalScore(CFTp(X;,Z)) (Equation

(2.6)).

2. For all possible pairs of a variable X; € V \ {X;} and a variable set Z C
V\ {X;}, (Xo € Z), calculate the best parents ¢g*(I1(Z)).

3. Forall Z C V,(Xy € Z), calculate the sink X*(Z).
4. Calculate G*(V) using Steps 3 and 4.

Steps 3 and 4 of the algorithm are based on the observation that the best net-

work G*(Z) necessarily has a sink X*(Z) with incoming edges from its best parents
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gy (I(Z \ {X}(Z)})). The remaining variables and edges in G*(Z) necessarily con-
struct the best network G*(Z \ {X(Z)}). More formally,

X(Z)= )?E%I&?(X} {LocalScore(CFT(X;,g;(I(Z\ {X;})))) + Scoreanp(G*(Z\ {X;}),D)}.

(4.1)
From Equation (4.1), we can decompose G*(Z) into G*(Z \ {X(Z)}) and X}(Z)
with incoming edges from ¢ (II(Z\ {X*(Z)}). Moreover, this decomposition can be
done recursively. At the end of the recursive decomposition, we obtain n pairs of
the sink and its best parents, which comprise G*(V).

The number of iterations to calculate all the local scores, best parents, and best
sinks for our algorithm are (n — 1)2"72, (n — 1)2"2, and 2"~!, respectively, and
those for GBN are n2"~!, n2"~! and 2", respectively. Therefore, the DP algorithm
for ANB is expected to be almost twice as fast as that for GBN.

4.2 Asymptotic Properties of the Proposed Method

Under some assumptions, the proposed ANB is proven to asymptotically estimate
the identical conditional probability of the class variable, given the feature vari-
ables of the exactly learned GBN. When the sample size becomes sufficiently large,
the structure learned by the proposed method and the exactly learned GBN are

classification-equivalent defined as follows:

Definition 7. (Acid et al. (2005))

Let G be the set of all structures consisting of a variable set V. Also, let D be any
finite dataset. For all G1, Gy € G, we say that G; and GG, are classification-equivalent
if P(Xy | x,G1,D) = P(Xy | x,G3, D) for any value x of the feature variables.

To derive the main theorem, we introduce five lemmas as below.

Lemma 1. (Mihaljevi¢ et al. (2018))
For any structure G consisting of a variable set V, G is classification-equivalent to

G', which is a modified G by the following operations.
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1. For all X,Y € Pa)G(O, add an edge between X and Y in G.

2. For all X € Pa?‘éﬂ, reverse an edge from X to X in G.

Next, we use the following lemma from Chickering (2002) to derive the main

theorem:

Lemma 2. (Chickering (2002))
Let G'™% be the set of all [-maps consisting of a variable set V. When the sample
size becomes sufficiently large, then the following proposition holds.
VG, Gy € GImep, (4.2)
(VX,Y e V.VZC V\{X,Y}, Dsepg,(X,Y | Z) = Dsepg,(X,Y | Z))
= Score(Gy, D) < Score(Ga, D)).

Moreover, we provide Lemma 3 under the following assumption.

Assumption 1. There exists a structure G* consisting of a variable set V which

satisfies the following property:
VX, Y €e VVZCV\{X,Y} Dsepe«(X,Y | Z) & Ip-(X,Y | Z).
For the discussion presented herein, we call G* a true structure throughout.

Lemma 3. Let GYi be the set of all I-map ANBs consisting of a variable set
V. For all GiWE e Gim? and all X,V € V, if G* has a convergence connection

X — Xy« Y, then G has an edge between X and Y.

Proof. We prove Lemma 3 by contradiction. We assume that G2 has no edge

between X and Y. Because G'{s% has a divergence connection X + Xy — Y, we

obtain
JZ C V\{X,Y, Xo}, Dsepczmap(X, Y | Xo,Z). (4.3)
ANB

Because G* has a convergence connection X — Xy < Y, the following proposition

holds from Theorem 1:

VZ C V\{X,Y, Xo}, ~Dsepgima (XY | X0, Z). (4.4)
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This result contradicts (4.3). Consequently, G'\A*2 has an edge between X and

Y. [l

Furthermore, under Assumption 1 and the following assumptions, we derive

Lemma 4.

Assumption 2. All feature variables are included in the Markov blanket M of the

class variable in the true structure G*.
Assumption 3. For all X € M, X and X, are adjacent in G*.

Lemma 4. We assume Assumptions 1 through 3. Let G be the modified G* by the
operation 1 in Lemma 1. In addition, let G, be the modified G} by the operation

2 in Lemma 1. G7 is Markov equivalent to G7s.

Proof. From Theorem 2, we prove Lemma 4 by showing the following two proposi-
tions: (I) G} and G7j, have the same links (edges without direction) and (II) they
have the same set of convergence connections. Proposition (I) can be proved imme-
diately because the difference between G} and G7, is only the direction of the edges
between X, and the variables in Pagz. For the same reason, G7 and G7, have the
same set of convergence connections as colliders in V' \ (Pa§, U {Xy}). Moreover,
there are convergence connections with colliders in Pa)G(Z U {Xo} in neither G} nor
G715 because all the variables in Pa)G(; U {Xo} are adjacent in the two structures.
Consequently, they have the same set of convergence connections; i.e., Proposition

(IT) holds. This completes the proof. O

Finally, under Assumptions 1 through 3, we derive the following lemma.

Lemma 5. We assume Assumptions 1 through 3. Let G be the modified G* by the
operation 1 in Lemma 1. In addition, let G}, be the modified G} by the operation

2 in Lemma 1. G7, is an I-map.

Proof. From Assumption 1 and Definition 4, G* is an I-map. The DAG G} results
from adding the edges between the variables in Pa)G(Z to G*. Because adding edges
does not create a new d-separation, GG} remains an I-map. Lemma 5 holds because

G7 is a Markov equivalent to G, from Lemma 4. O

24



Under Assumptions 1 through 3, we prove the following main theorem using

Lemmas 1 through 5.

Theorem 3. Under Assumptions 1 through 3, when the sample becomes sufficiently
large, the proposal (learning ANB using BDeu) achieves the classification-equivalent

structure to G*.

Proof. Let G7, be the modified G* by the operations 1 and 2 in Lemma 1. Because
G, is classification-equivalent to G* from Lemma 1, we prove Theorem 3 by showing
that the proposed method asymptotically learns a Markov-equivalent structure to
G75. That is, we show that G7, asymptotically has the maximum BDeu score among

all the ANB structures:
VG anpg € Ganp, Score(Gang, D) < Score(Giy, D). (4.5)

From Definition 5, the BDeu scores of the I-maps are higher than those of any non-
[-maps when the sample size becomes sufficiently large. Therefore, it is sufficient to
show that the following proposition holds asymptotically to prove that Proposition
(4.5) asymptotically holds:
VG e G - Seore(GYWE D) < Score(Gry, D). (4.6)

From Lemma 5, G7, is an I-map. Therefore, from Lemma 2, a sufficient condition
of (4.6) is as follows:

YGUNE € Gang, VXY € M U {Xo},

VZ C MU{Xo}\{X,Y}, DsepGi%ag(X,Y | Z) = Dsepg:,(X,Y | Z). (4.7)
We prove (4.7) by dividing it into two cases: X € Pa§ AY € Pa§ and X ¢
Pa§ VY ¢ Pa§ .

Case I: X € Pa)G(; ANY € Pag;(;

From Lemma 3, all variables in Pa§, are adjacent in G{y'5. Moreover, all

variables in Pag;(; are adjacent in G7j,. From Definition 2, we obtain
VZ CM U{X} \{X,Y},

—Dsepgiman (X, Y | Z) AN =2Dsepe:, (X, Y | Z). (4.8)

ANB
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For two Boolean propositions p and ¢, the following holds:

(P A=q) = (p=q). (4.9)
From (4.8) and (4.9), we obtain

VZ CM U{X}\ {X,Y},

DS@pGﬁ@“g (X,Y | Z) = Dsepg:,(X,Y | Z).
This completes the proof of (4.7) in Case 1.

Case II: X ¢ Pa§ VY ¢ Pa§

From Definition 4 and Assumption 1, we obtain

VZ CM U{Xo}\ {X,Y},

DS@prJXIaBg(X7Y ’ Z) = DS@pG*(X,Y ‘ Z)
Thus, we can prove (4.7) by showing that the following proposition holds:

VZ CM U{Xo} \{X,Y},

Dsepa-(X,Y | Z) < Dsepg: (X, Y | Z). (4.10)

For the remainder of the proof, we prove (4.10) by dividing it into two cases:

Xo € Z and X, ¢ Z.

Case i: Xg€Z
All pairs of variables in Pag?; in G* comprise a convergence connec-
tion with collider Xy. From Theorem 1, these pairs are necessarily d-
connected, given X, in G*. Therefore, G* and G} represent identical
d-separations given Z because X, € Z. Because GG} is Markov equivalent

to G, from Lemma 4, G* and G7, represent identical d-separations given

Z; i.e., Proposition (4.10) holds.
Case ii: X ¢ Z
We divide (4.10) into two cases: X = XoVY = Xgand X # XgAY # X,.
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Case 1: X =X,VY =X,
Because all the variables in the X,’s Markov blanket M are ad-
jacent to Xy in both Gj, and G* from Assumption 2, we obtain
~Dsepgr, (X, Y | Z) N =Dsepe-(X,Y | Z). From (4.9), Proposition
(4.10) holds.

Case 2: X # X A\Y # X,
If both G}, and G* have no edge between X and Y, they have a
serial or divergence connection: X — Xy — Y or X < X, — Y.
When X, ¢ Z, the serial and divergence connections represent d-
connections between X and Y given Z from Theorem 1. Therefore,
we obtain —Dsepg: (X,Y | Z) A =Dsepg-(X,Y | Z). From (4.9),
Proposition (4.10) holds.

Thus, we complete the proof of (4.7) in Case II.
Consequently, Proposition (4.7) is true, which completes the proof of Theorem 3. [

We proved that the proposed ANB asymptotically estimates the identical con-
ditional probability of the class variable to that of the exactly learned GBN.

4.3 Numerical Examples

This section presents numerical experiments conducted to demonstrate the asymp-
totic properties of the proposed method. To demonstrate that the proposed method
asymptotically achieves the [-map with the fewest parameters among all the possible
ANB structures, we evaluate the structural Hamming distance (SHD) (Tsamardi-
nos et al. 2006), which measures the distance between the structure learned by the
proposed method and the [-map with the fewest parameters among all the possible
ANB structures. The SHD is the total number of three types of errors: extra edges,
which exist in the learned structure but which do not exist in the true structure;
missing edges, which exist in the true structure but which do not exist in the learned

structure; and incorrect edges, which are edges oriented incorrectly in the learned
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Figure 4.1: A network which satisfies Assumptions 2 and 3 (CANCER network
(Scutari 2010)).

Figure 4.2: A network which violates Assumptions 2 and 3 (ASIA network (Scutari
2010)).
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structure. To demonstrate Theorem 3, we evaluate the Kullback-Leibler divergence
(KLD) between the learned class variable posterior using the proposed method and
that by the true structure. For discrete probability distributions P and @) for the

same sample space €2, the KLLD between P and () is defined as

KLD(P || Q) = %P(x) log (SEQ) .

This experiment uses two benchmark datasets from bnlearn (Scutari 2010): CAN-
CER and ASIA, as depicted in Figures 4.1 and 4.2. We use the variables “Cancer”
and “either” as the class variables in CANCER and ASIA, respectively. In that case,
CANCER satisfies Assumptions 2 and 3, but ASIA satisfies neither Assumption 2
nor Assumption 3.

From the two networks, we randomly generate sample data for each sample size
N =100, 500, 1,000, 5,000, 10,000, 50,000, and 100, 000. Based on the generated
data, we learn BNC structures using the proposed method and then evaluate the
SHDs and KLDs.

Table 4.1 presents results. The results show that the SHD converges to 0 when
the sample size increases in both CANCER and ASIA. Thus, the proposed method
asymptotically learns the [-map with the fewest parameters among all possible ANB
structures. Furthermore, in CANCER, the KLD between the learned class vari-
able posterior by the proposed method and that by the true structure becomes 0
when N > 1,000. The results demonstrate that the proposed method learns a
classification-equivalent structure of the true one when the sample size becomes suf-
ficiently large, as described in Theorem 3. In ASIA however, the KLD between
the learned class variable posterior by the proposed method and that by the true
structure does not reach 0 even when the sample size becomes large because ASTA

does not satisfy Assumptions 2 and 3.
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Table 4.1: The SHD between the structure learned by the proposed method and the
[-map with the fewest parameters among all the ANB structures, the KLD between
the learned class variable posterior by the proposed method and learned one using

the true structure.

Sample SHD-(Proposal, KLD-(Proposal,

Network Variables size  I-map ANB) True structure)
100 3 2.31 x 1072
500 2 1.24 x 107¢
1000 2 7.63 x 1072
ASTA 8 5000 1 3.67 x 1073
10000 0 9.26 x 1074
50000 0 6.28 x 1074
100000 0 3.59 x 107
100 1 8.79 x 1072
500 1 2.43 x 1073
1000 0 0.00
CANCER 5 2000 0 0.00
10000 0 0.00
50000 0 0.00
100000 0 0.00




4.4 Learning Markov Blanket

Theorem 3 assumes all feature variables are included in the Markov blanket of the
class variable. However, this assumption does not necessarily hold. To solve this
problem, we must know the Markov blanket of the class variable before learning the
ANB. Under Assumption 3, the Markov blanket of the class variable is equivalent to
a set of parents and children of the class variable (PC set). It is known that the ex-
act learning of a PC set of a variable is computationally infeasible when the number
of variables increases (Tsamardinos et al. 2006). To reduce the computational cost
of learning a PC set, Niinimédki and Parviainen (2012) proposed a score-based local
learning algorithm (SLL), which has two learning steps. In the step 1, the algorithm
sequentially learns the PC set by repeatedly using the exact learning structure al-
gorithm on a set of variables containing the class variable, the current PC set, and
one new query variable. In the step 2, SLL enforces the symmetry constraint: if
X, is a child of X;, then X; is a parent of X;. This allows us to try removing
extra variables from the PC set, proving that the SLL algorithm always finds the
correct PC of the class variable when the sample size is sufficiently large. Moreover,
Gao and Ji (2017) proposed the S?TMB algorithm, which improved the efficiency
over the SLL by removing the symmetric constraints in PC search steps. However,
S2TMB is computationally infeasible when the size of the PC set exceeds 30.

As an alternative approach for learning large PC sets, previous studies proposed
constraint-based PC search algorithms, such as MMPC (Tsamardinos et al. 2006),
HITON-PC (Aliferis et al. 2003), and PCMB (Pena et al. 2007). These methods
produce an undirected graph structure by cutting edges using conditional indepen-
dence (CI) tests such as statistical hypothesis tests or information theory tests. As
statistical hypothesis tests, the G? and y2-tests were used for these constraint-based
methods. In these tests, the independence of two variables was set as a null hy-
pothesis. A p-value signifies the probability that the null hypothesis is correct at
a user-determined significance level. If the p-value exceeds the significance level,

the null hypothesis is accepted. However, Sullivan and Feinn (2012) reported that
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statistical hypothesis tests have a significant shortcoming: the p-value sometimes
becomes much smaller than the significance level as the sample size increases. There-
fore, statistical hypothesis tests suffer from Type I errors (detecting dependence for
an independent conditional relation in the true DAG). Conditional mutual informa-
tion (CMI) is often used as a CI test (Cover and Thomas 1991). The CMI strongly
depends on a hand-tuned threshold value. Therefore, it is not guaranteed to estimate
the true CI structure. Consequently, CI tests have no asymptotic consistency.

For a CI test with asymptotic consistency, Steck and Jaakkola (2002a) proposed
a Bayes factor with BDeu (the “BF method,” below), where the Bayes factor is the
ratio of marginal likelihoods between two hypotheses (Kass and Raftery 1995). For
two variables X,Y € V and a set of conditional variables Z C V \ {X,Y}, the BF
method log BFp(X,Y | Z) is defined as

log BFp(X,Y | Z) = LocalScore(CFTp(X,Z)) — LocalScore(CFTp(X,ZU{Y})),

where LocalScore(CFTp(X,Z)) and LocalScore(CFTp(X,Z U{Y})) can be ob-
tained using Equation (2.6). The BF method detects Ip«(X,Y | Z) if BFp(X,Y | Z)
is larger than the threshold §, and detects —Ip«(X,Y | Z) otherwise. From an
asymptotic local consistency of BDeu (Definition 6) (Chickering 2002), we can prove
easily that the BF method also has the following asymptotic consistency.

Theorem 4. The following two properties almost surely hold when the sample size

is sufficiently large.
1. If X and Y is conditionally independent given Z, then log BFp(X,Y | Z) > 0.

2. If X and Y is not conditionally independent given Z, then log BFp(X,Y |
Z)<0.

Proof. 1. From the asymptotic local consistency of BDeu, LocalScore(CFTp(X,Z)) >
LocalScore(CFTp (X, ZU{Y })) holds almost surely. Therefore, log BFp(X,Y |
Z) > 0.
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2. From the asymptotic local consistency of BDeu,
LocalScore(CFTp(X,Z)) < LocalScore(CFTp(X,Z U {Y})) holds almost
surely. Therefore, log BFp(X,Y | Z) < 0.
L

Natori et al. (2015) and Natori et al. (2017) applied the BF method to a constraint-
based approach, and showed that their method is more accurate than the other
methods with traditional CI tests.

We propose the constraint-based PC search algorithm using a BF method. The
proposed PC search algorithm finds the PC set of the class variable using a BF
method between the class variable and all feature variables because the Bayes fac-
tor has an asymptotic consistency for the CI tests (Natori et al. 2017). However,
missing a variable that significantly affects the classification is known to degrade the
classification accuracy (Friedman et al. 1997). Therefore, we redundantly learn the

PC set of the class variable with no missing variables as follows.

o The proposed PC search algorithm only conducts the CI tests at the zero order
(given no conditional variables) which is more reliable than those at the higher

order.
o We use a positive value as the threshold ¢ for the Bayes factor.

Furthermore, we compare the accuracy of the proposed PC search method with
those of MMPC, HITON-PC, PCMB, and S?*TMB. Learning Bayesian networks
is known to be highly sensitive to the chosen an equivalent sample size (ESS)
(Ueno 2010, 2011, Silander et al. 2007). Therefore, we determine the ESS N’ €
{1.0,2.0,5.0} and the threshold § € {3,20,150} in the Bayes factor using 2-fold
cross validation to obtain the highest classification accuracy. The three ESS-values
of N' are determined according to Ueno (2010, 2011). The three values of § are
determined according to Heckerman et al. (1995). All the compared methods are

implemented in Java.! This experiment uses six benchmark datasets from bnlearn:

1Source code is available at http://www.ai.lab.uec.ac.jp/software/
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ASTA, SACHS, CHILD, WATER, ALARM, and BARLEY. From each benchmark
network, we randomly generate sample data for sample size N = 10,000. Based on
the generated data, we learn the PC sets of all variables using each method. Ta-
ble 4.2 shows the average runtime of each method. We calculate missing variables,
representing the number of removed variables existing in the true PC set, and extra
variables, which indicate the number of remaining variables that do not exist in the
true PC set. Table 4.2 also shows the average missing and extra variables from the
learned PC sets of all the variables. We compare the classification accuracies of the
exact learning of ANBs with BDeu score (designated as ANB-BDeu) using each PC
search method as a feature selection method. Table 4.3 shows the average accuracies
of each method from the 43 UCI repository datasets listed in Table 3.3.

Table 4.2 shows that the runtimes of the proposed method are shorter than those
of the other methods. Moreover, the results show that the missing variables of the
proposed method are fewer than those of the other methods. On the other hand,
Table 4.2 also shows that the extra variables of the proposal are more than those
of the other methods in all datasets. From Table 4.3, the results show that the
ANB-BDeu using the proposed method provides a much higher average accuracy
than the other methods. This is because missing variables degrade classification

accuracy more significantly than extra variables (Friedman et al. 1997).

4.5 Experiments to Evaluate Exact Learning of

ANBs

This section presents numerical experiments conducted to evaluate the effectiveness
of the exact learning of ANBs. First, we compare the classification accuracies of
ANB-BDeu with those of the other methods in Chapter 3. We use the same ex-
perimental setup and evaluation method described in Chapter 3. The classification

accuracies of ANB-BDeu are presented in Table 3.3. To confirm the significant dif-
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Table 4.3: Average classification accuracy of each method.

MMPC HITON-PC PCMB S?TMB Proposal
Average| 0.6185  0.6219  0.6302 0.7980 0.8164

ferences of ANB-BDeu from the other methods, we apply Hommel’s tests (Hommel
1988), which are used as a standard in machine learning studies (Demsar 2006).
The p-values are presented at the bottom of Table 3.3. In addition, “MB size” in
Table 3.4 denotes the average of the Markov blanket size of the class variable in the
structures learned by GBN-BDeu.

The results show that ANB-BDeu outperforms Naive Bayes, GBN-CMDL, BNC2P,
TAN-aCLL, gGBN-BDeu, and MC-DAGGES at the p < 0.1 significance level. More-
over, the results show that ANB-BDeu improves the accuracy of GBN-BDeu when
the class variable has numerous parents such as No. 3, No. 9, and No. 31 datasets,
as shown in Table 3.4. Furthermore, ANB-BDeu provides higher accuracies than
GBN-BDeu, even for large data such as datasets 13, 22, 29, and 33 although the
difference between ANB-BDeu and GBN-BDeu is not statistically significant. These
actual datasets do not necessarily satisfy Assumptions 1 through 3 in Theorem 3.
These results imply that the accuracies of ANB-BDeu without satisfying Assump-
tions 1 through 3 might be comparable to those of GBN-BDeu for large data. It
is worth noting that the accuracies of ANB-BDeu are much worse than those pro-
vided by GBN-BDeu for datasets No. 5 and No. 12. “MB size” in these datasets are
much smaller than the number of all feature variables, as shown in Table 3.4. The
results show that feature selection by the Markov blanket is expected to improve
the classification accuracies of the exact learning of ANBs, as described in Chapter
4.4.

We compare the classification accuracies of ANB-BDeu using the PC search
method proposed in Chapter 4.4 (referred to as “fsANB-BDeu”) with the other
methods in Table 3.3. Table 3.3 shows the classification accuracies of fsANB-BDeu

and the p-values of Hommel’s tests for differences in fsANB-BDeu from the other
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methods. The results show that fsA NB-BDeu outperforms all the compared methods
at the p < 0.05 significance level.

“Max parents” in Table 3.4 presents the average maximum number of parents
learned by fsANB-BDeu. The value of “Max parents” represents the complexity
of the structure learned by fsANB-BDeu. The results show that the accuracies of
Naive Bayes are better than those of fsANB-BDeu when the sample size is small,
such as No. 36 and No. 38 datasets. In these datasets, the values of “Max parents”
are large. The estimation of the variable parameters tends to become unstable
when a variable has numerous parents, as described in Chapter 3. Naive Bayes can
avoid this phenomenon because the maximum number of parents in Naive Bayes is
one. However, Naive Bayes cannot learn relationships between the feature variables.
Therefore, for large samples such as No. 8 and No. 29 datasets, Naive Bayes shows
much worse accuracy than those provided by other methods.

Similar to Naive Bayes, BNC2P and TAN-aCLL show better accuracies than
fsANB-BDeu for small samples such as No. 38 dataset because the upper bound of
the maximum number of parents is two in the two methods. However, the small
upper bound of the maximum number of parents tends to lead to a poor represen-
tational power of the structure (Ling and Zhang 2003). As a result, the accuracies
of both methods tend to be worse than those of fsANB-BDeu of which the value of
“Max parents” is greater than two, such as No. 29 dataset.

For large samples such as dataset Nos. 29 and 33, GBN-CMDL, gGBN-BDeu, and
MC-DAGGES show worse accuracies than fsANB-BDeu because the exact learning
methods estimate the network structure more precisely than the greedy learned
structure.

We compare fsANB-BDeu and ANB-BDeu. The difference between the two
methods is whether the proposed PC search method is used. “Removed variables”
in Table 3.4 represents the average number of variables removed from the Markov
blanket of the class variable by our proposed PC search method. The results demon-
strate that the accuracies of fsANB-BDeu tend to be much higher than those of
ANB-BDeu when the value of “Removed variables” is large, such as Nos. 5, 12, 16,
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34, and 38. Consequently, discarding numerous irrelevant variables in the features
improves the classification accuracy.

Finally, we compare the runtimes of fsANB-BDeu and GBN-BDeu to demon-
strate the efficiency of the ANB constraint. Table 4.4 presents the runtimes of
GBN-BDeu, fsANB-BDeu, and the proposed PC search method. The results show
that the runtimes of fsANB-BDeu are shorter than those of GBN-BDeu in all the
datasets because the execution of the exact learning of ANBs is almost twice as
fast as that of the exact learning of GBNs, as described in Chapter 4.1. Moreover,
the runtimes of fsANB-BDeu are much shorter than those of GBN-BDeu when our
PC search method removes many variables, such as No. 34 and No. 39 datasets.
This is because the runtimes of GBN-BDeu decrease exponentially with the removal
of variables, whereas our PC search method itself has a negligibly small runtime
compared to those of the exact learning as shown in Table 4.4. As a result, the
proposed method fsANB-BDeu provides the best classification performances in all
the methods with a lower computational cost than that of the GBN-BDeu.
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Table 4.4: Runtimes (ms) of GBN-BDeu, fsANB-BDeu, and the proposed PC search

method.
Sample GBN- fsANB- The proposed

No. Variables size Classes BDeu BDeu PC search method
1 5 625 3 169.4 23.0 6.3
2 5 1372 2 19.3 10.3 2.0
3 5 132 3 15.6 3.0 0.2
4 5 150 3 16.7 5.0 0.2
5 5 24 3 15.3 1.0 0.1
6 7 1728 4 90.8 22.9 1.7
7 7 345 2 21.1 15.6 0.3
8 7 432 2 31.0 20.7 0.5
9 7 64 2 18.9 9.1 0.1
10 8 3200 10 114.6 55.1 3.1
11 9 17898 2 300.5 251.3 10.2
12 9 12960 3 707.4 525.8 5.8
13 9 768 9 66.8 27.6 0.6
14 9 87 5 39.6 0.3 0.1
15 10 277 2 162.6 6.9 0.3
16 10 683 2 453.1 258.9 0.4
17 10 1473 3 161.1 121.4 0.8
18 10 214 6 63.0 22.3 0.2
19 10 5800 6 159.6 67.2 2.8
20 10 512 2 102.7 58.2 0.4
21 10 958 2 212.2 193.0 0.5
22 11 19020 2 979.8 277.2 5.3
23 11 1389 9 379.4 17.2 0.9
24 14 270 2 1988.6 299.8 0.1
25 14 178 3 1233.7 585.0 0.1
26 14 296 2 2034.5 115.2 0.2
27 15 690 2 10700.3 927.6 0.3
28 15 653 2 23069.5 2774.3 0.2
29 15 14980 2 12407.6 8248.8 4.1
30 17 232 2 11682.6 1623.6 0.2
31 17 101 5 7326.5 1985.1 0.1
32 17 10992 10 84967.1  48636.9 3.4
33 17 20000 26 339910.2 30224.8 6.3
34 19 540 2 217457.0 12.0 0.3
35 19 2310 7 190895.9 103447.5 1.0
36 19 148 4 107641.8 11714 0.2
37 19 846 4 144669.5 62663.0 0.4
38 20 80 2 98841.9 821.6 0.1
39 21 1000 2 2706616.6  8885.1 0.5
40 21 30488 2 15626734.5 130491.6 11.8
41 22 5000 3 10022030.7 757611.7 2.1
42 22 5644 2 4640293.5 2382657.7 2.3
43 23 263 2 2553290.4 1386088.2 0.2

Geometric average 2361.0 362.4 0.6
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Chapter 5

Learning ANB for Large Networks

5.1 Constraint-Based Learning Bayesian Networks
using a Bayes factor

The most popular structure learning approach is score-based learning, which seeks a
best structure with the score function. However, score-based learning is an NP-hard
problem (Chickering 1996), entailing heavy computational costs as the number of
variables increases. As exact learning methods, dynamic programming Silander and
Myllymaki (2006), A*search(Yuan et al. 2011), branch and bound search (Malone
et al. 2011), and integer programming (Cussens 2012) have been proposed. However,
no state-of-the-art exact learning method can learn structures with more than 60
variables (Cussens 2012).

Alternatively, a constraint-based approach relaxes computational costs and learns
huge networks. Methods using such an approach learn structures by conditional
independence (CI) tests and by direction using orientation rules. Among these ap-
proaches, the Peter and Clark (PC) algorithm (Spirtes et al. 2000), max-min hill
climb (MMHC) algorithm (Tsamardinos et al. 2006), and recursive autonomy iden-
tification (RAI) algorithm (Yehezkel and Lerner 2009) are well known. Of those,
the RAT algorithm is the state-of-the-art algorithm. The salient benefit of the RAI

algorithm is that it decreases the number of conditional variables of CI tests in the
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constraint-based approach because it decomposes the entire structure into partial
structures based on observed convergence connections. However, this approach re-
lies on CI tests conducted between each pair of variables using statistical tests or
information theory tests. The statistical test necessarily has type I error (detect-
ing incorrect dependences) even for large data. The information theory test also
depends on the user-determined threshold. Therefore, earlier methods using this
approach have no asymptotic consistency.

However, Steck and Jaakkola (2002b) proposed a conditional independence test
with an asymptotic consistency: a Bayes factor with BDeu. Moreover, Abellan et al.
(2006) and Natori et al. (2017) proposed constraint-based learning methods using
the RAI with a Bayes factor, which can learn large networks. We will apply the
constraint-based learning methods using a Bayes factor to our proposed method to

accommodate much greater numbers of variables in our method.

5.2 Learning ANB using the RAI Algorithm with
the Bayes Factor

This section presents the algorithm of the constraint-based learning method of ANB
with RAI algorithm. Let NDA be a set of variables that are adjacent to X via an

undirected edge in GG. Our algorithm has six logical steps as follows.

(1) Input data D, initial order of CI tests n, = 1, and initial graph G4 and Gy,
which are complete undirected graphs consisting of all the feature variables.

Let V, be a set of variables in G4 and let E; be a set of edges in Gi.

(2) For all X € V,,Y € Pa$" UNDAS", Z C Pa$" UNDAS", (|Z] = n.),
when X and Y given ZU{ X} are determined to be conditionally independent
by CI tests using Bayes factor, the edges between X and Y in G, and G are

removed.

(3) Apply the orientation rule to the graph obtained in (2).
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(4) If there exists a variable set A such that any pair of variables in A can reach
each other in G,y and VX € V\ (A U {X,}), (Pa§" UNDAS") N A = 0,
then decompose G into a subgraph G4 consisting of A and a subgraph G, a
consisting of V' \ (A U{Xo}).

(5) n, =n, + 1. For each subgraph G, recursively invoke RAI with G5 = G.

(6) Add X, and the edges from X to all the feature variables to Gy.

In Step (1), the initial graph G,.r does not include the class variable and the edges
from the class variable to all the feature variables. The proposed method starting
without X is more efficient than that with Xy because the former has smaller
number of edges than the latter does although they achieve the same results.

The proposed method is expected to improve the efficiency of the original RAI
algorithm without the ANB constraint for the following reasons. First, the proposed
method performs CI tests only among feature variables whereas the original RAI
performs CI tests among all variables. Second, the proposed method is guaranteed
to accelerate decomposition of the structure in the RAI algorithm when the true
Bayesian network has an ANB structure. The CI tests given the class variable in Step
(2) earlier detect the conditional independence than those without the class variable
do. As the number of removed edges is larger, the number of the decomposition in
the RAT algorithm increases. Consequently, it is expected to decrease the number
of conditional variables of CI tests in the RAI algorithm.

If we assume ANB, then the number of parameters necessarily increases com-
pared to GBN because it forces addition of edges from class variables to feature
variables. In this case, almost sure convergence to the true value of the joint proba-
bility distribution represented by the estimation structure is expected theoretically
to be slower than that of GBN. However, as described in Chapter 3, because the
number of the prior distribution parameter of the class variable increases exponen-
tially, GBNs are known to have unstable estimation accuracy when the number of

parent variables of a class variable is large (Sugahara et al. 2018, Sugahara and Ueno
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2021). Although the number of parameters is greater with the ANB structure, no

parent of class variables is expected to improve the classification accuracy.

5.3 Asymptotic Consistency to an I-map ANB
with the Fewest Parameters

This section presents the theorem which says that the proposed RAI algorithm
asymptotically learns an I-map ANB with the fewest parameters. Let Gayp be
an ANB structure learned by the proposed RAI algorithm. Then, we provide the

following theorem.

Theorem 5. When the sample size N becomes sufficiently large, G onp converges

almost surely to an I-map ANB with the fewest parameters.

Proof. Step (2) of the proposed RAI algorithm does not remove edges which exist
in G* and removes extra edges for an I-map ANB because CI tests using Bayes
factor asymptotically detect the true conditional independences from Theorem 4.
Moreover, the orientation rule in Step (3) makes only the true conditional indepen-
dences. Therefore, G 4yp almost surely converges to an I-map ANB with the fewest

parameters. O

It is notifiable that the proposed algorithm might not necessarily orient all the
edges. If orienting the undirected edges causes a new convergence connection, G ong
does not necessarily become an I-map. In this case, we should not orient the undi-
rected edges but directly calculate the joint distribution over the variables with the

undirected edges.
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5.4 Experiments to Evaluate the Proposed RAI
Algorithm

This section presents evaluation experiments conducted to underscore the effective-
ness of the proposed RAI algorithm. First, we use the following nine methods to

compare classification accuracies for small networks.
» Naive Bayes
o TAN: Learn a TAN that optimizes the log likelihood (Friedman et al. 1997).

o« GBN-CMDL: Greedy learning GBN method using the hill-climbing search by
minimizing CMDL while estimating parameters by maximizing LL (Grossman

and Domingos 2004).

o« BNC2P: Greedy learning method with at most two parents per variable using
the hill-climbing search by maximizing CLL while estimating parameters by

maximizing LL (Grossman and Domingos 2004).

o TAN-aCLL: Exact learning of TANs by maximizing aCLL (Carvalho et al.
2013).

o GBN-BDeu: Exact learning of GBNs with BDeu score (Silander and Myl-
lyméki 2006).

o ANB-BDeu: Exact learning of ANBs with BDeu score.
o RAI-GBN: Constraint-based learning GBN using Bayes factor.
o« RAI-ANB: Learning ANB using proposed method.

The value of the pseudo-sample (hyperparameter) for the BDeu score and Bayes
factor was set as 1.0 to maximize the posterior variance, as suggested by Ueno
(2010). For all methods, the conditional probability parameters of the BNCs after

structure learning were estimated using expected a posteriori (EAP).
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This experiment used 43 classification benchmark datasets with 5-23 variables
from the UCI repository (Lichman 2013). The continuous quantities in each dataset
were discretized into binary values around a median. For each method and dataset,
we obtain the average classification accuracy using ten-fold cross validation. To
demonstrate the importance of the proposed method, the p-value is obtained us-
ing multiple comparison using the Hommel method (Hommel 1988), which is used
as a standard in machine learning studies (Demsar 2006). In “Classification accu-
racy” shown at the bottom of Table 5.1, “Arithmetic average” denotes the average
classification accuracy of each method for all datasets. Also, “p-value” denotes the
p-value obtained by multiple comparison. For “Runtime”, “Arithmetic average” and
“Geometric average” respectively denote the arithmetic average runtime and the ge-
ometric average runtime for structure learning of each method for all datasets. Table
5.2 presents the average maximum number of parents (MNP) for each method and
the average number of edges in the Markov blanket (MNB) of the class variable for
each method.

Table 5.1 shows that the proposed method outperforms Naive Bayes, TAN, GBN-
CMDL, BNC2P, TAN-aCLL, and RAI-GBN at the p < 0.1 significance level. Be-
cause Naive Bayes, TAN, GBN-CMDL, BNC2P, and TAN-aCLL limit the number
of parent variables of feature variables, Max Parents are fixed at 1 and 2, as shown
in Table 5.2. However, the small upper bound of the maximum number of par-
ents tends to lead to poor representational power of the structure (Ling and Zhang
2003). As a result, the accuracies of Naive Bayes and TAN tend to be worse than
those obtained using the proposed method, such as No. 8 and No. 11 datasets. For
large samples such as datasets Nos 11 and 19, RAI-ANB provides higher accuracies
than GBN-CMDL does, because RAI-ANB guarantees to asymptotically estimate
the true conditional probability of the class variable although GBN-CMDL does not.
Because Naive Bayes requires no structural learning, the computation time is 0.00.
In addition, because TAN can be learned in polynomial time (Friedman et al. 1997,

Madden 2009). Its computation time is shorter than that of RAI-ANB.
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Table 5.1 also shows that the proposed method much improves the classification
accuracy of RAI-GBN, although RAI-GBN has the lowest classification accuracy
among the compared methods. The reason might be that RAI-GBN tends to learn
structures with small Markov blankets of class variables. In fact, Table 5.2 shows
that the edges in the Markov blanket of the class variable are fewer than those of
the other methods. In contrast, because the proposed method has all the feature
variables as children of the class variable, the Markov blanket size is always the
same as the number of feature variables. Moreover, because the proposed method
performs CI tests among feature variables only, it requires less computational time
than RAI-GBN, which performs CI tests among all variables.

The average classification accuracy of RAI-ANB is slightly worse than that of
either GBN-BDeu or ANB-BDeu. The exact learning methods are known to estimate
network structures more accurately than constraint-based approaches do when the
sample size is large (Scutari et al. 2019). However, the runtime of RAI-ANB is much
shorter than that of either GBN-BDeu or ANB-BDeu.

Next, we compare the classification accuracies of intractable large networks for
the exact learning methods. This experiment used 16 datasets with 37-1301 vari-
ables. Table 5.3 shows the average accuracies and p-values of Hommel’s tests. Table
5.4 presents the average number of edges in the Markov blanket of the class variable
for each method.

From Table 5.3, the average classification accuracy of the proposed method is the
highest among all the methods. The proposed method outperforms Naive Bayes,
TAN, and RAI-GBN at the p < 0.05 significance level. Similarly to the results for
small networks, the average runtime of the proposed method is shorter than that of
RAI-GBN by the reason described earlier.

The classification accuracies of Naive Bayes and TAN are lower than those of
the proposed method for all datasets except for No. 3 and No. 5. Table 5.4 shows
that the edges in the Markov blanket of the class variable in RAI-ANB for No. 3
and 5 are few. Therefore, the true structure of these datasets might resemble the

structure of Naive Bayes.
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Table 5.4: Number of edges in the Markov blanket of the class variable.

Naive RAI- RAI-

dataset Bayes TAN GBN ANB

1 | kr-vs-kp 36 71 5.1  136.5

2 | Connect-4 42 83 31.6 157
3 | Flowmeters D 43 85 4.0 91.9
4 | movement libras 90 179 2.1 210.2
5 | dota2 116 231 29 2158

6 | Muskl 166 331 2.0 553
7 | Musk2 166 331 6.1 1115.8

8 | Epileptic Seizure 178 355 0 367
9 | mfeat-fac 216 431 3.7 6004
10 | semeion 256 511 3.8 7714
11 | madelon 500 999 2.7 5377
12 | pd speech features 754 1507 2.1 2095.1
13 | pure-spectra-matrix 1300 2599 6.6  2399.9

The classification accuracies of the proposed method are higher than those of
RAI-GBN for all datasets except for No. 11, perhaps because RAI-GBN tends to
learn structures with small Markov blankets of class variables similarly to results of
small networks. Table 5.4 shows that the edges in the Markov blanket of the class
variable are fewer than those of the other methods. However, because the proposed
method assumes ANB structure, all the feature variables are used for class variable
estimation, which improves the classification accuracy.

Finally, we demonstrate that the proposed method accelerates the structure de-
compositions that occur during the RATI algorithm execution when the class variable
is the root in the true Bayesian network. Table 5.5 presents the numbers of edges
(NE), the numbers of decomposed structures (NDS) to subgraphs in the RAI algo-
rithm, and the runtimes for RAI-GBN and RAI-ANB.
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The numbers of edges (NEs) learned by RAI-ANB and RAI-GBN from the same
data theoretically become identical when the true Bayesian network has an ANB
structure. When the class variable is not the root in the true Bayesian network,
the NE of RAI-ANB becomes larger than that of RAI-GBN. From Table 5.5, the
NE of RAI-ANB for No. 13, which provides the largest difference of the accuracies
between RAI-ANB and RAI-GBN, is less than that of RAI-GBN. This result sug-
gests that No. 13 approximately follows an ANB. Therefore, the NDS of RAI-ANB
for No. 13 is much larger than that of RAI-GBN. This result means that the pro-
posed method accelerates the structure decompositions that occur during the RAI
algorithm execution. As a result, it reduces the runtime of the proposed method.
In contrast, the NE of RAI-ANB for No. 11, for which RAI-GBN provides better
accuracy than RAI-ANB does, is much larger than that of RAI-GBN. Therefore,
the NDS of RAI-ANB for No. 11 is much less than that of RAI-GBN because the
dense structure of RAI-GBN interrupts the structure decompositions in the RAI
algorithm execution. As a result, it increases the runtime of the proposed method.
Thus, it is important for the proposed method to select the class variable so as to

be the root variable.
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Chapter 6

Conclusions

First, this study compares the classification performances of the BNs exactly learned
by BDeu as a generative model and those learned approximately by CLL as a dis-
criminative model. Surprisingly, the results demonstrate that the performance of
BNs achieved by maximizing ML was better than that of BNs achieved by maxi-
mizing CLL for large data. However, the results also show that the classification
accuracies of the BNs that are learned exactly by BDeu are much worse than those
that are learned by the other methods when the class variable had numerous par-
ents. To solve this problem, this study proposes an exact learning ANB by max-
imizing BDeu as a generative model. The proposed method asymptotically learns
the optimal ANB, which is an I-map with the fewest parameters among all possible
ANB structures. In addition, the proposed ANB is guaranteed to asymptotically
estimate the identical conditional probability of the class variable to that of the
exactly learned GBN. Based on these properties, the proposed method is effective
for not only classification but also decision making, which requires a highly accurate
probability estimate of the class variable. Furthermore, learning ANBs has lower
computational costs than learning BNs does. The experimental results demonstrate
that the proposed method significantly outperforms the approximately learned struc-
ture by maximizing CLL. Moreover, we proposed an extension of constraint-based

learning method using Bayes factor applied to the learning ANB. Comparison ex-
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periments showed that our method outperforms the other methods. Isozaki et al.
(2008, 2009) proposed an effective learning Bayesian network method by adjusting
the hyperparameter for small data. As future work, we will employ their method
instead of the BDeu to improve the classification accuracy for small data. Sugahara
et al. (2020, 2022) also reported a Bayesian network model averaging classifier to
improve the classification accuracies. We expect to extend our proposed method to

the model averaging classifier using those methods described above.
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