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　論文の和文概要
　
論文題目: Exact Learning of Augmented Naive Bayes Classifiers
　
氏名: 菅原　聖太

本論では，目的変数が親変数を持たないAugmented Naive Bayes(ANB)
構造を制約とした，生成モデルとしてのBNCの厳密学習手法を提案す
る．また，全説明変数が分類に影響を及ぼし，全説明変数が目的変数
と隣接しているという仮定のもとで，厳密学習したANBは漸近的に
真の構造と全く同じ分類確率を表現することを証明する．さらに，本
論では制約ベースアプローチの一つであるRecursive Autonomy Iden-
tification(RAI)アルゴリズムを用い，CIテストとしてBayes factorを
組み込むことで大規模なANBを学習できる手法を提案する．提案手
法学習されたANBがパラメータ数を最小にして真の同時確率分布を
推定できることを示す．実験により，提案手法の優位性を示す．



Abstract

Earlier studies have shown that classification accuracies of Bayesian networks (BNs)

obtained by maximizing the conditional log likelihood (CLL) of a class variable, given

the feature variables, were higher than those obtained by maximizing the marginal

likelihood (ML). However, differences between the performances of the two scores in

the earlier studies may be attributed to the fact that they used approximate learning

algorithms, not exact ones. This paper compares the classification accuracies of BNs

with approximate learning using CLL to those with exact learning using ML. The

results demonstrate that the classification accuracies of BNs obtained by maximizing

the ML are higher than those obtained by maximizing the CLL for large data. How-

ever, the results also demonstrate that the classification accuracies of exact learning

of BNs using the ML are much worse than those of other methods when the sample

size is small and the class variable has numerous parents. To resolve the problem,

we propose an exact learning of an augmented naive Bayes classifier (ANB), which

ensures a class variable with no parents. The proposed method is guaranteed to

asymptotically estimate the identical class posterior to that of the exactly learned

BN. Comparison experiments demonstrated the superior performance of the pro-

posed method. Nevertheless, exact learning of large ANBs is difficult because it

entails an associated NP-hard problem that becomes more difficult as the number

of variables increases. Recent reports have described that constraint-based learn-

ing methods with Bayes factor achieve larger network structures than the structure

achieved using traditional methods. This study proposes an efficient learning algo-

rithm of ANBs using recursive autonomy identification (RAI) with Bayes factor. A
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unique benefit of the proposed method is that is guaranteed to accelerate execution

of the RAI algorithm when the data follow an ANB model. Numerical experiments

were conducted to demonstrate the effectiveness of the proposed method.
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Chapter 1

Introduction

Classification contributes to solving real-world problems. The naive Bayes classifier,

in which the feature variables are conditionally independent given a class variable,

is a popular classifier (Minsky 1961). Initially, the naive Bayes was not expected to

provide highly accurate classification because actual data were generated from more

complex systems. Therefore, the general Bayesian network (GBN) with learning

by marginal likelihood (ML) as a generative model was expected to outperform the

naive Bayes, because the GBN is more expressive than the naive Bayes. However,

Friedman et al. (1997) demonstrated that the naive Bayes sometimes outperformed

the GBN using a greedy search to find the smallest minimum description length

(MDL) score, which was originally intended to approximate ML. They explained

the inferior performance of the MDL by decomposing the MDL into the log likeli-

hood (LL) term, which reflects the model fitting to training data, and the penalty

term, which reflects the model complexity. Moreover, they decomposed the LL

term into a conditional log likelihood (CLL) of the class variable given the feature

variables, which is directly related to the classification, and a joint LL of the fea-

ture variables, which is not directly related to the classification. Furthermore, they

proposed conditional MDL (CMDL), a modified MDL replacing the LL with the

CLL.

Consequently, Grossman and Domingos (2004) claimed that the Bayesian net-
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work (BN) minimizing CMDL as a discriminative model shows better accuracy than

that maximizing ML. Unfortunately, the CLL has no closed-form equation for esti-

mating the optimal parameters. This implies that optimizing CLL requires greedy

search algorithms for structure learning such as gradient descent algorithms (e.g.,

extended logistic regression algorithm (Greiner and Zhou 2002)). Nevertheless, the

optimization algorithm involves the reiteration of each structure candidate, which

renders the method computationally expensive. To avoid searching a structure which

minimizes CMDL, Friedman et al. (1997) proposed an augmented naive Bayes clas-

sifier (ANB) in which the class variable directly links to all feature variables, and

links among feature variables are allowed. ANB ensures that all feature variables

can contribute to classification. Later, various types of restricted ANBs were pro-

posed, such as tree-augmented naive Bayes classifiers (TANs) (Friedman et al. 1997)

and forest-augmented naive Bayes classifiers (FANs) (Lucas 2004).

Because maximization of CLL entails heavy computation, various approximation

methods have been proposed to maximize it. Carvalho et al. (2013) proposed approx-

imated CLL (aCLL), which is decomposable and computationally efficient. Gross-

man and Domingos (2004) proposed BNC2P, which is a greedy learning method

with at most two parents per variable using the hill-climbing search by maximizing

CLL while estimating parameters by maximizing LL. Mihaljević et al. (2018) pro-

posed MC-DAGGES, which reduces the space for the greedy search of BN Classifiers

(BNCs) using the CLL score. These reports described that the BNC maximizing the

approximated CLL performed better than that maximizing the approximated ML.

Nevertheless, they did not explain why CLL outperformed ML. For large data, the

classification accuracies presented by maximizing ML are expected to be comparable

to those presented by maximizing CLL because ML has asymptotic consistency. Dif-

ferences between the performances of the two scores in these studies might depend

on their respective learning algorithms; they were approximate learning algorithms,

not exact ones.

Recent studies have explored efficient algorithms for the exact learning of GBNs

to maximize ML (Koivisto and Sood 2004, Singth and Moore 2005, Silander and
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Myllymäki 2006, De Campos and Ji 2011, Malone et al. 2011, Yuan and Malone

2013, Cussens 2012, Barlett and Cussens 2013, Suzuki 2017).

This study compares the classification performances of the BNC with exact learn-

ing using ML as a generative model and those with approximate learning using CLL

as a discriminative model. The results show that maximizing ML shows better clas-

sification accuracy when compared with maximizing CLL for large data. However,

the results also show that classification accuracies obtained by exact learning of

BNCs using ML are much worse than those obtained by other methods when the

sample size is small, and the class variable has numerous parents in the exactly

learned networks. When a class variable has numerous parents, estimation of the

conditional probability parameters of the class variable becomes unstable because

the number of parent configurations becomes large and the sample size for learning

the parameters becomes small.

To improve the classification accuracies of BNCs learned by ML, this study

proposes an exact learning of ANBs which maximizes ML and ensures that the class

variable has no parents. In earlier studies, the ANB constraint was used to learn the

BNC as a discriminative model. In contrast, we use the ANB constraint to learn

the BNC as a generative model. The proposed method asymptotically learns the

optimal ANB, which asymptotically represents the true probability distribution with

the fewest parameters among all possible ANB structures. Moreover, the proposed

ANB is guaranteed to asymptotically estimate the identical conditional probability

of the class variable to that of the exactly learned GBN. Furthermore, learning ANBs

has lower computational costs than learning GBNs. Although the main theorem

assumes that all feature variables are included in the Markov blanket of the class

variable, this assumption does not necessarily hold. To address this problem, we

propose a feature selection method using Bayes factor for exact learning of the ANB

so as to avoid increasing the computational costs. Comparison experiments show

that our method outperforms the other methods.

However, the exact learning of ANBs cannot be applied to network structures

with more than 30 variables. In the field of causal models, a more computationally
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efficient structure learning method has been proposed, although it has no asymp-

totic matching of the true structure. This method, called the constraint-based ap-

proach, learns structure by orienting edges using orientation rules (Pearl 2000) on

an undirected graph that is learned by application of the Conditional Independence

test (CI test) between two variables to a fully undirected graph. In the study of

constraint-based approaches, the PC algorithm (Spirtes et al. 2000), the TPDA al-

gorithm (Cheng et al. 2002), the MMHC algorithm (Tsamardinos et al. 2006), and

the RAI algorithm (Yehezkel and Lerner 2009) have been reported. The RAI algo-

rithm is known as an extremely efficient method with this approach. The salient

benefit of the RAI algorithm is that it decreases the number of conditional vari-

ables of CI tests in the constraint-based approach because it decomposes the entire

structure into partial structures based on observed convergence connections. Steck

and Jaakkola (2002b) proposed a conditional independence test with an asymptotic

consistency, a Bayes factor with BDeu. Abellán et al. (2006) proposed a learning

method by application of the CI test with the BDeu score to the PC algorithm. Fur-

thermore, Natori et al. (2017) reported that the RAI algorithm based on the Bayes

factor yielded the largest and the most accurate learning results. More recently, re-

searchers challenged to employ constraint-based learning methods with Bayes factor

to increase the available learning Bayesian networks size (e.g. Rohekar et al. (2018),

Mokhtarian et al. (2021)).

We propose a constraint-based Learning of ANBs using RAI with Bayes factor

to learn large ANBs. The proposed method is expected to improve efficiency of the

original RAI algorithm without the ANB constraint because the proposed method

is guaranteed to accelerate the structure decompositions that occur during the RAI

algorithm execution when the data follow an ANB model.

Numerical experiments using benchmark datasets show that the proposed algo-

rithm can learn larger networks than the exact solution search approach can.
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Chapter 2

Background

In this chapter, we introduce the notation and background material required for our

discussion.

2.1 Bayesian Network

A BN is a graphical model that represents conditional independence among random

variables as a directed acyclic graph (DAG). For the discussions presented herein, we

call a DAG of BN a structure throughout. The BN provides a good approximation

of the joint probability distribution because it decomposes the distribution exactly

into a product of the conditional probabilities for each variable.

Let V = {X0, X1, . . . , Xn} be a set of discrete variables, where Xi, i = 0, . . . , n,

can take values in the set of states {1, . . . , ri}. One can say Xi = k when Xi takes the

state k. According to a structure G, the joint probability distribution is represented

as

P (X0, X1, . . . , Xn | G) =
n∏

i=0
P (Xi | PaG

Xi
, G),

where PaG
Xi

is a set of parent variables of Xi in G. When the structure G is obvious

from the context, we use PaXi
to denote the parents. In addition, qPaXi denotes the

number of possible patterns of states of variables in PaXi
, i.e., qPaXi = ∏

v:Xv∈PaXi
rv.

We assign numbers 1, . . . , qPaXi to the respective patterns of states of variables in
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Figure 2.1: Example of a Bayesian network.

PaXi
. When variables in PaXi

take the pattern j, we write PaXi
takes the state

j. Let θijk be a conditional probability parameter of Xi = k when PaXi
takes the

state j. Then, we define Θij = ∪ri
k=1{θijk}, Θ = ∪n

i=0
∪q

PaXi

j=1 {Θij}. A BN is a pair

B = (G, Θ). Figure 2.1 depicts an example of a Bayesian network.

A structure of BN represents conditional independence assertions in the proba-

bility distribution by d-separation. First, we define collider, for which we need to

define the d-separation. We designate a sequence of distinct variables, each one

adjacent to the next, a path. Then the collider is defined as shown below.

Definition 1. For any structure G consisting of a variable set V and for any path

ρ in G, a variable Z ∈ V on ρ is a collider if and only if Z has two parent variables

which are adjacent to Z on ρ.

We then define “d-separated” as explained below.

Definition 2. For any structure G consisting of a variable set V and for any X, Y ∈

V, Z ⊆ V\{X, Y }, the two variables X and Y are d-separated, given Z in G, if and

only if every path ρ between X and Y satisfies either of the following two conditions.

• Z includes a non-collider on ρ.

• There is a collider Z on ρ; Z does not include Z and its descendants.

We write DsepG(X, Y | Z) to denote that X and Y are d-separated given Z in G

(We designate DsepG(X, Y | Z) d-separation between X and Y given Z in G). We
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write ¬DsepG(X, Y | Z) to denote that X and Y are d-connected given Z in G (We

designate ¬DsepG(X, Y | Z) d-connection).

If we have X, Y, Z ∈ V and X and Y are not adjacent, then the following three

possible types of connections characterize the d-separations: serial connections such

as X → Z → Y , divergence connections such as X ← Z → Y , and convergence

connections such as X → Z ← Y . The following theorem of d-separations for these

connections holds.

Theorem 1. (Koller and Friedman (2009))

First, assume a structure G = (V, E), X, Y, Z ∈ V. If G has a convergence connec-

tion X → Z ← Y , then the following two propositions hold:

• ∀Z ⊆ V \ {X, Y, Z},¬DsepG(X, Y | Z, Z),

• ∃Z ⊆ V \ {X, Y, Z}, DsepG(X, Y | Z).

If G has a serial connection X → Z → Y or divergence connection X ← Z → Y ,

then negations of the above two propositions hold.

Two DAGs are Markov equivalent when they have the same d-separations.

Definition 3. Let G1 and G2 be two DAGs consisting of a variable set V; then G1

and G2 are called Markov equivalent if the following holds:

∀X, Y ∈ V,∀Z ⊆ V \ {X, Y }, (2.1)

DsepG1(X, Y | Z)⇔ DsepG2(X, Y | Z).

Verma and Pearl (1990) described the following theorem to identify Markov

equivalence.

Theorem 2. (Verma and Pearl (1990))

Two DAGs are Markov equivalent if and only if they have identical links (edges

without direction) and identical convergence connections.
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Let IP ∗(X, Y | Z) denote that X and Y are conditionally independent given Z in

the true joint probability distribution (the underlying distribution) P ∗. A structure

G is an independence map (I-map) if all the d-separations in G are entailed by

conditional independences in P ∗:

Definition 4. For any structure G consisting of a variable set V, G is an I-map if

the following proposition holds:

∀X, Y ∈ V,∀Z ⊆ V \ {X, Y }, DsepG(X, Y | Z)⇒ IP ∗(X, Y | Z).

We introduce the following notations required for our discussion on learning BNs.

Let D = {x1, . . . , xd, . . . , xN} be a complete dataset consisting of N i.i.d. instances,

where each instance xd is a data-vector (xd
0, xd

1, . . . , xd
n). For a variable set Z ⊆ V,

we define NZ
j as the number of samples when Z takes a state j in the dataset D,

and define NZ
ijk as the number of samples of Xi = k when Z takes a state j in D. In

addition, we define a joint frequency table JFTD(Z) as a list of NZ
j for j = 1, . . . , qZ.

For a variable X ∈ V, we define a conditional frequency table CFTD(X, Z). For

example, CFTD(Xi, Z) is a list of NZ
ijk for j = 1, . . . , qZ, and k = 1, . . . , ri.

The most popular parameter estimator of BNs is the expected a posteriori (EAP)

of Equation (2.2), which is the expectation of θijk with respect to the density p(Θij |

D, G) of Equation (2.3), assuming Dirichlet prior density p(Θij | G) of Equation

(2.4).

θ̂ijk = E(θijk | D, G) =
∫

θijk · p(Θij | D, G)dΘij =
N ′

ijk + N
PaXi
ijk

N ′
ij + N

PaXi
j

. (2.2)

p(Θij | D, G) =
Γ(∑ri

k=1(N ′
ijk + N

PaXi
ijk ))∏ri

k=1 Γ(N ′
ijk + N

PaXi
ijk )

ri∏
k=1

θ
N ′

ijk+N
PaXi
ijk

−1
ijk . (2.3)

p(Θij | G) =
Γ(∑ri

k=1 N ′
ijk)∏ri

k=1 Γ(N ′
ijk)

ri∏
k=1

θ
N ′

ijk−1
ijk . (2.4)

In Equations (2.2) through (2.4), N ′
ijk denotes the hyperparameters of the Dirichlet

prior distributions, with N ′
ij = ∑ri

k=1 N ′
ijk. In addition, for every positive real number

x, Γ(x) =
∫∞

0 tx−1e−tdt.
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The structure must be estimated from observed data because it is generally un-

known. This problem is called“structure learning.”A goal of the structure learning

is to obtain the I-map with the fewest parameters. The number of parameters of

a structure G consisting of a variable set V is represented as ∑n
i=0 qPaXi (ri − 1).

The most common learning approach is a score-based approach, which seeks the

best structure maximizing a score function Score(G, D). Seeking the best structure

among all the possible structures consisting of V is designated as “exact learning.”

To learn the I-map with the fewest parameters, we maximize the score with an

asymptotic consistency defined as shown below.

Definition 5. (Chickering (2002))

Let G1 and G2 be two structures consisting of a variable set V. A score function

Score has an asymptotic consistency if the following two properties almost surely

hold when the sample size of D is sufficiently large.

• If G1 is an I-map and G2 is not an I-map, then Score(G1, D) > Score(G2, D).

• If G1 and G2 both are I-maps, and if G1 has fewer parameters than G2, then

Score(G1, D) > Score(G2, D).

The marginal likelihood (ML), P (D | G), is known to have asymptotic consis-

tency (Chickering 2002). Moreover, the ML score has the following asymptotic local

consistency (Chickering 2002).

Definition 6. (Chickering (2002))

Let G1 be any structure consisting of a variable set V, and let G2 be the structure

that results from adding the edge Y → X to G1. A score function Score has an

asymptotic local consistency if the following two properties almost surely hold when

the sample size is sufficiently large.

• IP ∗(X, Y | PaG1
X )⇒ Score(G1) > Score(G2).

• ¬IP ∗(X, Y | PaG1
X )⇒ Score(G1) < Score(G2).
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When we assume the Dirichlet prior density of Equation (2.4), ML is represented as

P (D | G) =
n∏

i=0

q
PaXi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij + N

PaXi
j )

ri∏
k=1

Γ(N ′
ijk + N

PaXi
ijk )

Γ(N ′
ijk)

.

In particular, Heckerman et al. (1995) presented the following constraint related to

hyperparameters N ′
ijk for ML satisfying the score-equivalence assumption, where the

ML takes the same value for the Markov equivalent structures:

N ′
ijk = N ′P (Xi = k, PaXi

= j | Gh),

where N ′ is a equivalent sample size (ESS) determined by users, and Gh is a hy-

pothetical structure that reflects the prior knowledge of users. ML with the above

constraint of N ′
ijk is designated as the Bayesian Dirichlet equivalent (BDe) score. As

Buntine (1991) described, N ′
ijk = N ′/(riq

PaXi ) is regarded as a special case of the

BDe score. Heckerman et al. (1995) called this special case the Bayesian Dirichlet

equivalent uniform (BDeu), defined as

P (D | G) =
n∏

i=0

q
PaXi∏
j=1

Γ(N ′/qPaXi )
Γ(N ′/qPaXi + N

PaXi
j )

ri∏
k=1

Γ(N ′/(riq
PaXi ) + N

PaXi
ijk )

Γ(N ′/(riq
PaXi ))

.

In addition, the minimum description length (MDL) score presented in (5),

which approximates the negative logarithm of ML, is often used for learning BNs.

MDL(B | D) = log N

2

n∑
i=0

qPaXi (ri − 1)−
N∑

d=1
log P (xd

0, xd
1, . . . , xd

n | B). (2.5)

The first term of Equation (2.5) is the penalty term, which signifies the model

complexity. The second term, LL, is the fitting term that reflects the degree of

model fitting to the training data.

Both BDeu and MDL are decomposable, i.e., the scores can be expressed as a sum

of local scores depending only on the conditional frequency table for one variable

and its parents as follows.

Score(G, D) =
n∑

i=0
LocalScore(CFTD(Xi, PaXi

)),
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For example, the local score of log BDeu for CFTD(Xi, PaXi
) is

LocalScore(CFTD(Xi, PaXi
))

=
q

PaXi∑
j=1

log Γ(N ′/qPaXi )
Γ(N ′/qPaXi + N

PaXi
j )

ri∑
k=1

log
Γ(N ′/(riq

PaXi ) + N
PaXi
ijk )

Γ(N ′/(riq
PaXi ))

 .

(2.6)

The decomposable score enables an extremely efficient search for structures (Silander

and Myllymäki 2006, Barlett and Cussens 2013).

2.2 Bayesian Network Classifiers

A Bayesian network classifier (BNC) can be interpreted as a BN for which X0

is the class variable and X1, . . . , Xn are feature variables. Given an instance x =

(x1, . . . , xn) for feature variables X1, . . . , Xn, the BNC B infers class c by maximizing

the posterior probability of X0 as

ĉ ∈ argmax
c∈{1,...,r0}

P (c | x1, . . . , xn, B) (2.7)

= argmax
c∈{1,...,r0}

n∏
i=0

qPai∏
j=1

ri∏
k=1

(θijk)1ijk

= argmax
c∈{1,...,r0}

q
PaX0∏
j=1

r0∏
k=1

(θ0jk)10jk ×
∏

i:Xi∈C

q
PaX0∏
j=1

ri∏
k=1

(θijk)1ijk ,

where 1ijk = 1 if Xi = k and PaXi
takes a state j in x, and 1ijk = 0 otherwise.

Furthermore, C is the set of children of the class variable X0. From Equation (2.7),

we can infer class c given only the values of the parents of X0, the children of X0,

and the parents of the children of X0. A set of these feature variables is called a

Markov blanket of X0.

However, Friedman et al. (1997) reported that BNC minimizing MDL cannot

optimize classification performance. They proposed the sole use of the following

CLL of the class variable given feature variables, instead of the LL for learning BNC
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structures.

CLL(B | D) =
N∑

d=1
log P (xd

0 | xd
1, . . . , xd

n, B)

=
N∑

d=1
log P (xd

0, xd
1, . . . , xd

n | B)−
N∑

d=1
log

r0∑
c=1

P (c, xd
1, . . . , xd

n | B). (2.8)

Furthermore, they proposed conditional MDL (CMDL), which is a modified MDL

replacing LL with CLL, as shown below.

CMDL(B | D) = log N

2

n∑
i=0

qPaXi (ri − 1)− CLL(B | D).

Consequently, they claimed that the BN minimizing CMDL as a discriminative

model showed better accuracy than that maximizing ML as a generative model.

Unfortunately, CLL is not decomposable because we cannot describe the second

term of Equation (2.8) as a sum of the log parameters in Θ. This finding implies that

no closed-form equation exists for the maximum CLL estimator for Θ. Therefore,

learning the network structure that minimizes the CMDL requires a search method

such as gradient descent over the space of parameters for each structure candidate.

Therefore, exact learning of structures by minimizing CMDL is computationally

infeasible.

As a simple way of resolving that difficulty, Friedman et al. (1997) proposed an

augmented naive Bayes classifier (ANB) that ensures an edge from the class variable

to each feature variable and allows edges among feature variables. Furthermore, they

proposed a tree-augmented naive Bayes classifier (TAN) in which the class variable

has no parents and each feature variable has a class variable and at most one other

feature variable as parent variables.

Various approximate methods to maximize CLL have been proposed. Carvalho

et al. (2013) proposed an aCLL score, which is decomposable and computationally

efficient. Let GANB be an ANB structure. In addition, let Nijck be the number of

samples of Xi = k when X0 = c and PaXi
\{X0} takes the state j, (i = 1, . . . , n; j =

1, . . . , qPaXi
\{X0}; c = 1, . . . , r0; k = 1, . . . , ri). In addition, let N ′′ > 0 represent

12



hyperparameters. Under several assumptions, aCLL can be represented as

aCLL(GANB | D) ∝
n∑

i=1

q
PaXi

\{X0}∑
j=1

ri∑
k=1

r0∑
c=1

(
Nijck + β

r0∑
c′=1

Nijc′k

)
log Nij+ck

Nij+c

,

where

Nij+ck =


Nijck + β

∑r0
c′=1 Nijc′k if Nijck + β

∑r0
c′=1 Nijc′k ≥ N ′′

N ′′ otherwise,

Nij+c =
ri∑

k=1
Nij+ck.

The value of β is found by using the Monte Carlo method to approximate CLL.

There exists a value of β such that aCLL becomes a minimum-variance unbiased

approximation of the CLL.

Moreover, Grossman and Domingos (2004) proposed a learning structure method

using a greedy hill-climbing algorithm (Heckerman et al. 1995) by maximizing the

CLL while estimating the parameters by maximizing the LL. Recently, Mihalje-

vić et al. (2018) identified the smallest subspace of DAGs that covered all possible

class-posterior distributions when the data were complete. All the DAGs in this

space, which they call minimal class-focused DAGs (MC-DAGs), are such that ev-

ery edge is directed toward a child of the class variable. In addition, they proposed

a greedy search algorithm in the space of Markov equivalent classes of MC-DAGs

using the CLL score. These reports described that the BNC maximizing the approx-

imated CLL provides better performance than that maximizing the approximated

ML. However, they did not explain why CLL outperformed ML. For large data, the

classification accuracies obtained by maximizing ML are expected to be comparable

to those obtained by maximizing CLL because ML has asymptotic consistency. Dif-

ferences between the performances of the two scores in these earlier studies might

depend on their learning algorithms to maximize ML; they were approximate learn-

ing algorithms, not exact ones.

13



Chapter 3

Classification Accuracies of Exact

Learning of GBNs

This chapter presents experiments comparing the classification accuracies of the

exactly learned GBN by maximizing BDeu as a generative model with those of

the approximately learned BNC by maximizing CLL as a discriminative model.

Although determining the hyperparameter N ′ of BDeu is difficult (Silander et al.

2007, Steck 2008, Ueno 2008, Suzuki 2017), we use N ′ = 1.0 that allows the data to

reflect the estimated parameters to the greatest degree possible (Ueno 2010, 2011).

The experiment compares the respective classification accuracies of seven meth-

ods in Table 3.1. All the methods are implemented in Java. The source code is

available at http://www.ai.lab.uec.ac.jp/software/. Throughout this paper,

our experiments are conducted on a computational environment in Table 3.2. This

experiment uses 43 classification benchmark datasets from the UCI repository (Lich-

man 2013). Continuous variables are discretized into two bins using the median value

as the cut-off, as in (De Campos et al. 2014). In addition, data with missing values

are removed from the datasets. We use EAP estimators as conditional probability

parameters of the respective classifiers. Hyperparameters N ′
ijk of EAP are found to

be 1/(riq
PaXi ). Through our experiments, we define “small datasets” as the datasets

14
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Table 3.2: Computational environment.

CPU 2.2 GHz XEON 10-core processor

System Memory 128 GB

OS Windows 10

Software Java

with less than 200 samples, and define “large datasets” as the datasets with 10,000

or more samples.

Table 3.3 presents the classification accuracies of the respective classifiers. We

will discuss the results of ANB-BDeu and fsANB-BDeu in a later chapter. The

values shown in bold in Table 3.3 represent the best classification accuracies for

each dataset. Here, the classification accuracies represent the average percentage of

correct classifications from a ten-fold cross-validation. Moreover, to investigate the

relation between the classification accuracies and GBN-BDeu, Table 3.4 presents

the details of the achieved structures using GBN-BDeu. “Parents” in Table 3.4

represents the average number of parents of the class variable in the structures

learned by GBN-BDeu. “Children” denotes the average number of children of the

class variable in the structures learned by GBN-BDeu. “Sparse data” denotes the

average number of value patterns j of the parents of X0 with null data, N
PaX0
j =

0 (j = 1, . . . , qPaX0 ) in the structures learned by GBN-BDeu.

From Table 3.3, GBN-BDeu shows the best classification accuracies among the

methods for large data, such as dataset Nos 22, 29, and 33. From the asymp-

totic consistency of BDeu, GBN-BDeu almost surely converges to an I-map with

the fewest parameters. The joint probability distribution represented by an I-map

approaches the true distribution as the sample size increases. However, it is worth

noting that GBN-BDeu provides much worse accuracy than the other methods in

datasets No. 3 and No. 9. In these datasets, the learned class variables by GBN-

BDeu have no children. Numerous parents are shown in “Parents” and “Children”

in Table 3.4. When a class variable has numerous parents, the estimation of the
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Table 3.3: Classification accuracies of GBN-BDeu, ANB-BDeu, fsANB-BDeu, and

traditional methods (bold text signifies the highest accuracy).

No. Dataset Variables Classes
Sample

size
Naive-
Bayes

GBN-
CMDL BNC2P

TAN-
aCLL

gGBN-
BDeu

MC-DAG
GES

GBN-
BDeu

ANB-
BDeu

fsANB-
BDeu

1 Balance Scale 5 3 625 0.9152 0.3333 0.8560 0.8656 0.9152 0.7432 0.9152 0.9152 0.9152

2 banknote authentication 5 2 1372 0.8433 0.8819 0.8797 0.8761 0.8819 0.8768 0.8812 0.8812 0.8812

3 Hayes–Roth 5 3 132 0.8182 0.6136 0.6894 0.6742 0.7525 0.6970 0.6136 0.8182 0.8333

4 iris 5 3 150 0.7133 0.7800 0.8200 0.8200 0.8133 0.7800 0.8267 0.8200 0.8200

5 lenses 5 3 24 0.7500 0.8333 0.6667 0.7083 0.8333 0.8333 0.8333 0.7500 0.8750

6 Car Evaluation 7 4 1728 0.8571 0.9497 0.9416 0.9433 0.9416 0.9126 0.9416 0.9427 0.9416

7 liver 7 2 345 0.6319 0.6145 0.6290 0.6609 0.6029 0.6435 0.6087 0.6348 0.6377

8 MONK’s Problems 7 2 432 0.7500 1.0000 1.0000 1.0000 0.8449 1.0000 1.0000 1.0000 1.0000

9 mux6 7 2 64 0.5469 0.3750 0.5625 0.4688 0.4063 0.7656 0.4531 0.5469 0.5547

10 LED7 8 10 3200 0.7294 0.7366 0.7375 0.7350 0.7297 0.7331 0.7294 0.7294 0.7294

11 HTRU2 9 2 17898 0.7031 0.7096 0.7070 0.7018 0.7188 0.7214 0.7305 0.7188 0.7161

12 Nursery 9 5 12960 0.6782 0.7126 0.6092 0.5862 0.7126 0.6322 0.7126 0.6782 0.7126

13 pima 9 2 768 0.8966 0.9086 0.9118 0.9130 0.9092 0.9093 0.9112 0.9141 0.9141

14 post 9 3 87 0.9033 0.5823 0.9442 0.9177 0.9291 0.9046 0.9340 0.9181 0.9177

15 Breast Cancer 10 2 277 0.9751 0.8917 0.9473 0.9488 0.7058 0.6354 0.9751 0.9751 0.9751

16 Breast Cancer Wisconsin 10 2 683 0.7401 0.6209 0.6823 0.7184 0.7094 0.9780 0.7184 0.7040 0.7473

17 Contraceptive Method Choice 10 3 1473 0.4671 0.4501 0.4745 0.4705 0.4440 0.4576 0.4542 0.4650 0.4725

18 glass 10 6 214 0.5561 0.5654 0.5794 0.6308 0.4626 0.5888 0.5701 0.6449 0.5888

19 shuttle-small 10 6 5800 0.9384 0.9660 0.9703 0.9583 0.9683 0.9586 0.9693 0.9716 0.9695

20 threeOf9 10 2 512 0.8164 0.9434 0.8691 0.8828 0.8652 0.8750 0.8887 0.8730 0.8633

21 Tic-Tac-Toe 10 2 958 0.6921 0.8841 0.7338 0.7203 0.6754 0.7557 0.8340 0.8497 0.8570

22 MAGIC Gamma Telescope 11 2 19020 0.7482 0.7849 0.7806 0.7631 0.7844 0.7781 0.7873 0.7874 0.7865

23 Solar Flare 11 9 1389 0.7811 0.8265 0.8315 0.8229 0.8431 0.8013 0.8431 0.8229 0.8373

24 heart 14 2 270 0.8259 0.8185 0.8037 0.8148 0.8222 0.8333 0.8259 0.8185 0.8296

25 wine 14 3 178 0.9270 0.9438 0.9157 0.9326 0.9045 0.9438 0.9270 0.9270 0.9270

26 cleve 14 2 296 0.8412 0.8209 0.8007 0.8378 0.7973 0.8041 0.7973 0.8277 0.8243

27 Australian 15 2 690 0.8290 0.8312 0.8348 0.8464 0.8420 0.8406 0.8536 0.8246 0.8522

28 crx 15 2 653 0.8377 0.8346 0.8208 0.8560 0.8622 0.8576 0.8591 0.8515 0.8591

29 EEG 15 2 14980 0.5778 0.6787 0.6374 0.6125 0.6732 0.6182 0.6814 0.6864 0.6864

30 Congressional Voting Records 17 2 232 0.9095 0.9698 0.9612 0.9181 0.9741 0.9009 0.9655 0.9483 0.9397

31 zoo 17 5 101 0.9802 0.9109 0.9505 1.0000 0.9505 0.9802 0.9307 0.9505 0.9604

32 pendigits 17 10 10992 0.8032 0.9062 0.8719 0.8700 0.9253 0.8359 0.9290 0.9279 0.9279

33 letter 17 26 20000 0.4466 0.5796 0.5132 0.5093 0.5761 0.4664 0.5761 0.5935 0.5881

34 ClimateModel 19 2 540 0.9222 0.9407 0.9241 0.9333 0.9370 0.9296 0.9000 0.8426 0.9278

35 Image Segmentation 19 7 2310 0.7290 0.7918 0.7991 0.7407 0.8026 0.7476 0.8156 0.8225 0.8225

36 lymphography 19 4 148 0.8446 0.7939 0.7973 0.8311 0.7905 0.8041 0.7500 0.7770 0.7838

37 vehicle 19 4 846 0.4350 0.5910 0.5910 0.5816 0.5461 0.5414 0.5768 0.6253 0.6217

38 hepatitis 20 2 80 0.8500 0.7375 0.8875 0.8750 0.8500 0.8875 0.5875 0.6250 0.8375

39 German 21 2 1000 0.7430 0.6110 0.7340 0.7470 0.7140 0.7180 0.7210 0.7380 0.7410

40 bank 21 2 30488 0.8544 0.8618 0.8928 0.8618 0.8952 0.8708 0.8956 0.8950 0.8953

41 waveform-21 22 3 5000 0.7886 0.7862 0.7754 0.7896 0.7698 0.7926 0.7846 0.7966 0.7972

42 Mushroom 22 2 5644 0.9957 1.0000 1.0000 0.9995 1.0000 0.9986 0.9949 1.0000 1.0000

43 spect 23 2 263 0.7940 0.7940 0.7903 0.8090 0.7603 0.8052 0.7378 0.8240 0.8240

Arithmetic average 0.7764 0.7721 0.7936 0.7943 0.7867 0.7944 0.7963 0.8061 0.8184

p-value (ANB-BDeu vs. the other methods) 0.00308 0.04136 0.00672 0.05614 0.06876 0.06010 0.22628 - -

p-value (fsANB-BDeu vs. the other methods) 0.00001 0.00014 0.00013 0.00280 0.00015 0.00212 0.00064 0.01101 -
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Table 3.4: Statistical summary of GBN-BDeu and fsANB-BDeu.

No. Variables Classes
Sample

size Parents Children
Sparse
data MB size

Max
parents

Removed
variables

1 5 3 625 0.4 3.6 0.0 4.0 1.0 0.0
2 5 2 1372 0.0 2.0 0.0 4.0 4.0 0.0
3 5 3 132 3.0 0.0 17.2 3.0 1.0 1.0
4 5 3 150 1.8 1.2 0.0 3.0 2.0 0.0
5 5 3 24 1.1 1.0 0.0 2.1 1.1 2.0
6 7 4 1728 2.0 3.0 0.0 5.0 2.0 1.0
7 7 2 345 0.0 1.9 0.0 3.4 2.0 0.1
8 7 2 432 3.0 0.0 0.0 3.0 3.0 0.0
9 7 2 64 5.8 0.0 5.2 5.8 1.0 2.1
10 8 10 3200 0.9 6.1 0.0 7.0 1.0 0.0
11 9 2 17898 1.8 4.2 0.0 4.2 2.0 0.9
12 9 5 12960 4.0 3.0 0.0 0.0 0.0 8.0
13 9 2 768 1.4 1.7 0.0 7.0 4.0 0.0
14 9 3 87 0.0 0.0 0.0 7.0 3.0 0.1
15 10 2 277 0.9 8.0 0.0 1.0 1.0 0.0
16 10 2 683 0.7 0.3 0.0 8.9 2.0 5.0
17 10 3 1473 0.7 0.8 0.0 1.7 2.5 0.6
18 10 6 214 0.6 3.1 0.0 4.3 2.7 2.0
19 10 6 5800 2.0 4.0 0.0 7.0 5.0 1.9
20 10 2 512 5.0 2.1 0.0 7.6 2.7 0.2
21 10 2 958 1.2 2.2 0.0 5.3 3.0 0.3
22 11 2 19020 0.0 6.1 0.0 8.0 4.0 1.7
23 11 9 1389 0.8 0.2 0.0 1.0 2.0 5.3
24 14 2 270 1.8 4.2 0.0 6.3 2.0 1.8
25 14 3 178 1.7 5.3 0.0 8.1 2.1 0.0
26 14 2 296 1.8 4.5 0.0 6.6 2.0 3.1
27 15 2 690 1.4 2.8 0.0 4.5 2.8 3.3
28 15 2 653 1.3 2.8 0.0 4.2 2.2 2.7
29 15 2 14980 0.4 8.2 0.0 12.8 5.0 0.0
30 17 2 232 1.3 2.6 0.1 6.2 3.8 1.8
31 17 5 101 4.3 1.6 20.3 7.4 5.1 1.2
32 17 10 10992 2.6 13.4 0.1 16.0 5.6 0.0
33 17 26 20000 2.9 9.1 0.0 13.0 5.0 2.0
34 19 2 540 1.8 4.4 0.0 16.6 1.0 12.9
35 19 7 2310 0.7 10.4 0.0 13.2 4.0 0.0
36 19 4 148 1.6 5.9 0.2 13.1 2.2 5.3
37 19 4 846 1.1 5.1 0.1 10.1 4.1 0.5
38 20 2 80 1.3 6.1 0.4 16.0 6.9 5.4
39 21 2 1000 1.1 2.8 0.0 4.1 2.1 7.4
40 21 2 30488 4.1 2.0 32.5 9.9 6.0 4.0
41 22 3 5000 3.8 10.1 0.0 14.5 4.0 2.0
42 22 2 5644 1.3 3.3 9.0 6.4 6.4 0.0
43 23 2 263 2.0 3.4 0.0 7.7 3.0 0.0
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conditional probability parameters of the class variable becomes unstable because

the configurations of parents of the class variable become numerous. Then, the sam-

ple size for learning the parameters becomes small, as presented in “Sparse data”

in Table 3.4. Therefore, numerous parents of the class variable might be unable to

reflect the feature data for classification when the sample is not sufficiently large.
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Chapter 4

Exact Learning of ANBs

The preceding chapter suggested that exact learning of GBNs by maximizing BDeu

to have no parents of the class variable might improve the accuracy of GBN-BDeu.

In this chapter, we propose an exact learning of ANBs, which maximizes BDeu

and ensures that the class variable has no parents. In earlier reports, the ANB

constraint was used to learn the BNC as a discriminative model. In contrast, we

use the ANB constraint to learn the BNC as a generative model. The space of all

possible ANB structures includes at least one I-map because it includes a complete

graph, which is an I-map. From the asymptotic consistency of BDeu (Definition 5),

the proposed method is guaranteed to achieve the I-map with the fewest parameters

among all possible ANB structures when the sample size becomes sufficiently large.

Our empirical analysis in Chapter 3 suggests that the proposed method can improve

the classification accuracy for small data. We employ the dynamic programming

(DP) algorithm learning GBN (Silander and Myllymäki 2006) for the exact learning

of ANBs. The DP algorithm for the exact learning of ANBs is almost twice as

fast as that for the exact learning of GBNs. We prove that the proposed ANB

asymptotically estimates the identical conditional probability of the class variable

to that of the exactly learned GBN.

20



4.1 Learning Procedure

Our method is intended to seek the optimal structure that maximizes the BDeu score

among all possible ANB structures. Our algorithm employs dynamic programming

(DP) based on the decomposability of BDeu. The local score of the class variable

in ANB structures is constant because the class variable has no parents in the ANB

structure. Therefore, we can ascertain the optimal ANB structure by maximizing

ScoreANB(G, D) = Score(G, D)− LocalScore(CFTD(X0, ∅)).

Before we describe the procedure of our method, we introduce the following

notations. Let G∗(Z) denote the optimal ANB structure composed of a variable set

Z, (X0 ∈ Z). When a variable has no child in a structure, we say it is a sink in

the structure. We use X∗
s (Z) to denote a sink in G∗(Z). Additionally, letting Π(Z)

denote the set of all subsets of Z that include X0, we define the best parents of Xi

in a candidate set Π(Z) as the parent set that maximizes the local score in Π(Z):

g∗
i (Π(Z)) = argmax

W∈Π(Z)
LocalScore(CFTD(Xi, W)).

Our algorithm has four logical steps. The following process improves the DP

algorithm proposed by (Silander and Myllymäki 2006) to learn the optimal ANB

structure.

1. For all possible pairs of a variable Xi ∈ V \ {X0} and a variable set Z ⊆ V \

{Xi}, (X0 ∈ Z), calculate the local score LocalScore(CFTD(Xi, Z)) (Equation

(2.6)).

2. For all possible pairs of a variable Xi ∈ V \ {X0} and a variable set Z ⊆

V \ {Xi}, (X0 ∈ Z), calculate the best parents g∗(Π(Z)).

3. For all Z ⊆ V, (X0 ∈ Z), calculate the sink X∗
s (Z).

4. Calculate G∗(V) using Steps 3 and 4.

Steps 3 and 4 of the algorithm are based on the observation that the best net-

work G∗(Z) necessarily has a sink X∗
s (Z) with incoming edges from its best parents
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g∗
s(Π(Z \ {X∗

s (Z)})). The remaining variables and edges in G∗(Z) necessarily con-

struct the best network G∗(Z \ {X∗
s (Z)}). More formally,

X∗
s (Z) = argmax

Xi∈Z\{X0}
{LocalScore(CFT (Xi, g∗

i (Π(Z \ {Xi})))) + ScoreANB(G∗(Z \ {Xi}), D)} .

(4.1)

From Equation (4.1), we can decompose G∗(Z) into G∗(Z \ {X∗
s (Z)}) and X∗

s (Z)

with incoming edges from g∗
s(Π(Z \ {X∗

s (Z)}). Moreover, this decomposition can be

done recursively. At the end of the recursive decomposition, we obtain n pairs of

the sink and its best parents, which comprise G∗(V).

The number of iterations to calculate all the local scores, best parents, and best

sinks for our algorithm are (n − 1)2n−2, (n − 1)2n−2, and 2n−1, respectively, and

those for GBN are n2n−1, n2n−1, and 2n, respectively. Therefore, the DP algorithm

for ANB is expected to be almost twice as fast as that for GBN.

4.2 Asymptotic Properties of the Proposed Method

Under some assumptions, the proposed ANB is proven to asymptotically estimate

the identical conditional probability of the class variable, given the feature vari-

ables of the exactly learned GBN. When the sample size becomes sufficiently large,

the structure learned by the proposed method and the exactly learned GBN are

classification-equivalent defined as follows:

Definition 7. (Acid et al. (2005))

Let G be the set of all structures consisting of a variable set V. Also, let D be any

finite dataset. For all G1, G2 ∈ G, we say that G1 and G2 are classification-equivalent

if P (X0 | x, G1, D) = P (X0 | x, G2, D) for any value x of the feature variables.

To derive the main theorem, we introduce five lemmas as below.

Lemma 1. (Mihaljević et al. (2018))

For any structure G consisting of a variable set V, G is classification-equivalent to

G′, which is a modified G by the following operations.
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1. For all X, Y ∈ PaG
X0 , add an edge between X and Y in G.

2. For all X ∈ PaG
X0 , reverse an edge from X to X0 in G.

Next, we use the following lemma from Chickering (2002) to derive the main

theorem:

Lemma 2. (Chickering (2002))

Let GImap be the set of all I-maps consisting of a variable set V. When the sample

size becomes sufficiently large, then the following proposition holds.

∀G1, G2 ∈ GImap, (4.2)

((∀X, Y ∈ V,∀Z ⊆ V \ {X, Y }, DsepG1(X, Y | Z)⇒ DsepG2(X, Y | Z))

⇒ Score(G1, D) ≤ Score(G2, D)).

Moreover, we provide Lemma 3 under the following assumption.

Assumption 1. There exists a structure G∗ consisting of a variable set V which

satisfies the following property:

∀X, Y ∈ V,∀Z ⊆ V \ {X, Y }, DsepG∗(X, Y | Z)⇔ IP ∗(X, Y | Z).

For the discussion presented herein, we call G∗ a true structure throughout.

Lemma 3. Let GImap
ANB be the set of all I-map ANBs consisting of a variable set

V. For all GImap
ANB ∈ G

Imap
ANB , and all X, Y ∈ V, if G∗ has a convergence connection

X → X0 ← Y , then GImap
ANB has an edge between X and Y .

Proof. We prove Lemma 3 by contradiction. We assume that GImap
ANB has no edge

between X and Y . Because GImap
ANB has a divergence connection X ← X0 → Y , we

obtain

∃Z ⊆ V \ {X, Y, X0}, DsepGImap
ANB

(X, Y | X0, Z). (4.3)

Because G∗ has a convergence connection X → X0 ← Y , the following proposition

holds from Theorem 1:

∀Z ⊆ V \ {X, Y, X0},¬DsepGImap
ANB

(X, Y | X0, Z). (4.4)
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This result contradicts (4.3). Consequently, GImap
ANB has an edge between X and

Y .

Furthermore, under Assumption 1 and the following assumptions, we derive

Lemma 4.

Assumption 2. All feature variables are included in the Markov blanket M of the

class variable in the true structure G∗.

Assumption 3. For all X ∈M , X and X0 are adjacent in G∗.

Lemma 4. We assume Assumptions 1 through 3. Let G∗
1 be the modified G∗ by the

operation 1 in Lemma 1. In addition, let G∗
12 be the modified G∗

1 by the operation

2 in Lemma 1. G∗
1 is Markov equivalent to G∗

12.

Proof. From Theorem 2, we prove Lemma 4 by showing the following two proposi-

tions: (I) G∗
1 and G∗

12 have the same links (edges without direction) and (II) they

have the same set of convergence connections. Proposition (I) can be proved imme-

diately because the difference between G∗
1 and G∗

12 is only the direction of the edges

between X0 and the variables in PaG∗

X0 . For the same reason, G∗
1 and G∗

12 have the

same set of convergence connections as colliders in V \ (PaG∗

X0 ∪ {X0}). Moreover,

there are convergence connections with colliders in PaG∗

X0 ∪ {X0} in neither G∗
1 nor

G∗
12 because all the variables in PaG∗

X0 ∪ {X0} are adjacent in the two structures.

Consequently, they have the same set of convergence connections; i.e., Proposition

(II) holds. This completes the proof.

Finally, under Assumptions 1 through 3, we derive the following lemma.

Lemma 5. We assume Assumptions 1 through 3. Let G∗
1 be the modified G∗ by the

operation 1 in Lemma 1. In addition, let G∗
12 be the modified G∗

1 by the operation

2 in Lemma 1. G∗
12 is an I-map.

Proof. From Assumption 1 and Definition 4, G∗ is an I-map. The DAG G∗
1 results

from adding the edges between the variables in PaG∗

X0 to G∗. Because adding edges

does not create a new d-separation, G∗
1 remains an I-map. Lemma 5 holds because

G∗
1 is a Markov equivalent to G∗

12 from Lemma 4.
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Under Assumptions 1 through 3, we prove the following main theorem using

Lemmas 1 through 5.

Theorem 3. Under Assumptions 1 through 3, when the sample becomes sufficiently

large, the proposal (learning ANB using BDeu) achieves the classification-equivalent

structure to G∗.

Proof. Let G∗
12 be the modified G∗ by the operations 1 and 2 in Lemma 1. Because

G∗
12 is classification-equivalent to G∗ from Lemma 1, we prove Theorem 3 by showing

that the proposed method asymptotically learns a Markov-equivalent structure to

G∗
12. That is, we show that G∗

12 asymptotically has the maximum BDeu score among

all the ANB structures:

∀GANB ∈ GANB, Score(GANB, D) ≤ Score(G∗
12, D). (4.5)

From Definition 5, the BDeu scores of the I-maps are higher than those of any non-

I-maps when the sample size becomes sufficiently large. Therefore, it is sufficient to

show that the following proposition holds asymptotically to prove that Proposition

(4.5) asymptotically holds:

∀GImap
ANB ∈ G

Imap
ANB , Score(GImap

ANB, D) ≤ Score(G∗
12, D). (4.6)

From Lemma 5, G∗
12 is an I-map. Therefore, from Lemma 2, a sufficient condition

of (4.6) is as follows:

∀GImap
ANB ∈ G

Imap
ANB ,∀X, Y ∈M ∪ {X0},

∀Z ⊆M ∪ {X0} \ {X, Y }, DsepGImap
ANB

(X, Y | Z)⇒ DsepG∗
12

(X, Y | Z). (4.7)

We prove (4.7) by dividing it into two cases: X ∈ PaG∗

X0 ∧ Y ∈ PaG∗

X0 and X /∈

PaG∗

X0 ∨ Y /∈ PaG∗

X0 .

Case I: X ∈ PaG∗

X0 ∧ Y ∈ PaG∗

X0

From Lemma 3, all variables in PaG∗

X0 are adjacent in GImap
ANB. Moreover, all

variables in PaG∗

X0 are adjacent in G∗
12. From Definition 2, we obtain

∀Z ⊆M ∪ {X0} \ {X, Y },

¬DsepGImap
ANB

(X, Y | Z) ∧ ¬DsepG∗
12

(X, Y | Z). (4.8)
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For two Boolean propositions p and q, the following holds:

(¬p ∧ ¬q)⇒ (p⇒ q). (4.9)

From (4.8) and (4.9), we obtain

∀Z ⊆M ∪ {X0} \ {X, Y },

DsepGImap
ANB

(X, Y | Z)⇒ DsepG∗
12

(X, Y | Z).

This completes the proof of (4.7) in Case I.

Case II: X /∈ PaG∗

X0 ∨ Y /∈ PaG∗

X0

From Definition 4 and Assumption 1, we obtain

∀Z ⊆M ∪ {X0} \ {X, Y },

DsepGImap
ANB

(X, Y | Z)⇒ DsepG∗(X, Y | Z).

Thus, we can prove (4.7) by showing that the following proposition holds:

∀Z ⊆M ∪ {X0} \ {X, Y },

DsepG∗(X, Y | Z)⇔ DsepG∗
12

(X, Y | Z). (4.10)

For the remainder of the proof, we prove (4.10) by dividing it into two cases:

X0 ∈ Z and X0 /∈ Z.

Case i: X0 ∈ Z

All pairs of variables in PaG∗

X0 in G∗ comprise a convergence connec-

tion with collider X0. From Theorem 1, these pairs are necessarily d-

connected, given X0 in G∗. Therefore, G∗ and G∗
1 represent identical

d-separations given Z because X0 ∈ Z. Because G∗
1 is Markov equivalent

to G∗
12 from Lemma 4, G∗ and G∗

12 represent identical d-separations given

Z; i.e., Proposition (4.10) holds.

Case ii: X0 /∈ Z

We divide (4.10) into two cases: X = X0∨Y = X0 and X ̸= X0∧Y ̸= X0.
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Case 1: X = X0 ∨ Y = X0

Because all the variables in the X0’s Markov blanket M are ad-

jacent to X0 in both G∗
12 and G∗ from Assumption 2, we obtain

¬DsepG∗
12

(X, Y | Z) ∧ ¬DsepG∗(X, Y | Z). From (4.9), Proposition

(4.10) holds.

Case 2: X ̸= X0 ∧ Y ̸= X0

If both G∗
12 and G∗ have no edge between X and Y , they have a

serial or divergence connection: X → X0 → Y or X ← X0 → Y .

When X0 /∈ Z, the serial and divergence connections represent d-

connections between X and Y given Z from Theorem 1. Therefore,

we obtain ¬DsepG∗
12

(X, Y | Z) ∧ ¬DsepG∗(X, Y | Z). From (4.9),

Proposition (4.10) holds.

Thus, we complete the proof of (4.7) in Case II.

Consequently, Proposition (4.7) is true, which completes the proof of Theorem 3.

We proved that the proposed ANB asymptotically estimates the identical con-

ditional probability of the class variable to that of the exactly learned GBN.

4.3 Numerical Examples

This section presents numerical experiments conducted to demonstrate the asymp-

totic properties of the proposed method. To demonstrate that the proposed method

asymptotically achieves the I-map with the fewest parameters among all the possible

ANB structures, we evaluate the structural Hamming distance (SHD) (Tsamardi-

nos et al. 2006), which measures the distance between the structure learned by the

proposed method and the I-map with the fewest parameters among all the possible

ANB structures. The SHD is the total number of three types of errors: extra edges,

which exist in the learned structure but which do not exist in the true structure;

missing edges, which exist in the true structure but which do not exist in the learned

structure; and incorrect edges, which are edges oriented incorrectly in the learned
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Figure 4.1: A network which satisfies Assumptions 2 and 3 (CANCER network

(Scutari 2010)).

Figure 4.2: A network which violates Assumptions 2 and 3 (ASIA network (Scutari

2010)).
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structure. To demonstrate Theorem 3, we evaluate the Kullback-Leibler divergence

(KLD) between the learned class variable posterior using the proposed method and

that by the true structure. For discrete probability distributions P and Q for the

same sample space Ω, the KLD between P and Q is defined as

KLD(P || Q) =
∑
x∈Ω

P (x) log
(

P (x)
Q(x)

)
.

This experiment uses two benchmark datasets from bnlearn (Scutari 2010): CAN-

CER and ASIA, as depicted in Figures 4.1 and 4.2. We use the variables “Cancer”

and “either” as the class variables in CANCER and ASIA, respectively. In that case,

CANCER satisfies Assumptions 2 and 3, but ASIA satisfies neither Assumption 2

nor Assumption 3.

From the two networks, we randomly generate sample data for each sample size

N = 100, 500, 1, 000, 5, 000, 10, 000, 50, 000, and 100, 000. Based on the generated

data, we learn BNC structures using the proposed method and then evaluate the

SHDs and KLDs.

Table 4.1 presents results. The results show that the SHD converges to 0 when

the sample size increases in both CANCER and ASIA. Thus, the proposed method

asymptotically learns the I-map with the fewest parameters among all possible ANB

structures. Furthermore, in CANCER, the KLD between the learned class vari-

able posterior by the proposed method and that by the true structure becomes 0

when N ≥ 1, 000. The results demonstrate that the proposed method learns a

classification-equivalent structure of the true one when the sample size becomes suf-

ficiently large, as described in Theorem 3. In ASIA however, the KLD between

the learned class variable posterior by the proposed method and that by the true

structure does not reach 0 even when the sample size becomes large because ASIA

does not satisfy Assumptions 2 and 3.
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Table 4.1: The SHD between the structure learned by the proposed method and the

I-map with the fewest parameters among all the ANB structures, the KLD between

the learned class variable posterior by the proposed method and learned one using

the true structure.

Network Variables
Sample

size
SHD-(Proposal,

I-map ANB)
KLD-(Proposal,
True structure)

100 3 2.31× 10−2

500 2 1.24× 10−1

1000 2 7.63× 10−2

ASIA 8 5000 1 3.67× 10−3

10000 0 9.26× 10−4

50000 0 6.28× 10−4

100000 0 3.59× 10−5

100 1 8.79× 10−2

500 1 2.43× 10−3

1000 0 0.00
CANCER 5 5000 0 0.00

10000 0 0.00
50000 0 0.00
100000 0 0.00
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4.4 Learning Markov Blanket

Theorem 3 assumes all feature variables are included in the Markov blanket of the

class variable. However, this assumption does not necessarily hold. To solve this

problem, we must know the Markov blanket of the class variable before learning the

ANB. Under Assumption 3, the Markov blanket of the class variable is equivalent to

a set of parents and children of the class variable (PC set). It is known that the ex-

act learning of a PC set of a variable is computationally infeasible when the number

of variables increases (Tsamardinos et al. 2006). To reduce the computational cost

of learning a PC set, Niinimäki and Parviainen (2012) proposed a score-based local

learning algorithm (SLL), which has two learning steps. In the step 1, the algorithm

sequentially learns the PC set by repeatedly using the exact learning structure al-

gorithm on a set of variables containing the class variable, the current PC set, and

one new query variable. In the step 2, SLL enforces the symmetry constraint: if

Xi is a child of Xj, then Xj is a parent of Xi. This allows us to try removing

extra variables from the PC set, proving that the SLL algorithm always finds the

correct PC of the class variable when the sample size is sufficiently large. Moreover,

Gao and Ji (2017) proposed the S2TMB algorithm, which improved the efficiency

over the SLL by removing the symmetric constraints in PC search steps. However,

S2TMB is computationally infeasible when the size of the PC set exceeds 30.

As an alternative approach for learning large PC sets, previous studies proposed

constraint-based PC search algorithms, such as MMPC (Tsamardinos et al. 2006),

HITON-PC (Aliferis et al. 2003), and PCMB (Peña et al. 2007). These methods

produce an undirected graph structure by cutting edges using conditional indepen-

dence (CI) tests such as statistical hypothesis tests or information theory tests. As

statistical hypothesis tests, the G2 and χ2-tests were used for these constraint-based

methods. In these tests, the independence of two variables was set as a null hy-

pothesis. A p-value signifies the probability that the null hypothesis is correct at

a user-determined significance level. If the p-value exceeds the significance level,

the null hypothesis is accepted. However, Sullivan and Feinn (2012) reported that
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statistical hypothesis tests have a significant shortcoming: the p-value sometimes

becomes much smaller than the significance level as the sample size increases. There-

fore, statistical hypothesis tests suffer from Type I errors (detecting dependence for

an independent conditional relation in the true DAG). Conditional mutual informa-

tion (CMI) is often used as a CI test (Cover and Thomas 1991). The CMI strongly

depends on a hand-tuned threshold value. Therefore, it is not guaranteed to estimate

the true CI structure. Consequently, CI tests have no asymptotic consistency.

For a CI test with asymptotic consistency, Steck and Jaakkola (2002a) proposed

a Bayes factor with BDeu (the “BF method,” below), where the Bayes factor is the

ratio of marginal likelihoods between two hypotheses (Kass and Raftery 1995). For

two variables X, Y ∈ V and a set of conditional variables Z ⊆ V \ {X, Y }, the BF

method log BFD(X, Y | Z) is defined as

log BFD(X, Y | Z) = LocalScore(CFTD(X, Z))− LocalScore(CFTD(X, Z ∪ {Y })),

where LocalScore(CFTD(X, Z)) and LocalScore(CFTD(X, Z ∪ {Y })) can be ob-

tained using Equation (2.6). The BF method detects IP ∗(X, Y | Z) if BFD(X, Y | Z)

is larger than the threshold δ, and detects ¬IP ∗(X, Y | Z) otherwise. From an

asymptotic local consistency of BDeu (Definition 6) (Chickering 2002), we can prove

easily that the BF method also has the following asymptotic consistency.

Theorem 4. The following two properties almost surely hold when the sample size

is sufficiently large.

1. If X and Y is conditionally independent given Z, then log BFD(X, Y | Z) > 0.

2. If X and Y is not conditionally independent given Z, then log BFD(X, Y |

Z) < 0.

Proof. 1. From the asymptotic local consistency of BDeu, LocalScore(CFTD(X, Z)) >

LocalScore(CFTD(X, Z∪{Y })) holds almost surely. Therefore, log BFD(X, Y |

Z) > 0.
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2. From the asymptotic local consistency of BDeu,

LocalScore(CFTD(X, Z)) < LocalScore(CFTD(X, Z ∪ {Y })) holds almost

surely. Therefore, log BFD(X, Y | Z) < 0.

Natori et al. (2015) and Natori et al. (2017) applied the BF method to a constraint-

based approach, and showed that their method is more accurate than the other

methods with traditional CI tests.

We propose the constraint-based PC search algorithm using a BF method. The

proposed PC search algorithm finds the PC set of the class variable using a BF

method between the class variable and all feature variables because the Bayes fac-

tor has an asymptotic consistency for the CI tests (Natori et al. 2017). However,

missing a variable that significantly affects the classification is known to degrade the

classification accuracy (Friedman et al. 1997). Therefore, we redundantly learn the

PC set of the class variable with no missing variables as follows.

• The proposed PC search algorithm only conducts the CI tests at the zero order

(given no conditional variables) which is more reliable than those at the higher

order.

• We use a positive value as the threshold δ for the Bayes factor.

Furthermore, we compare the accuracy of the proposed PC search method with

those of MMPC, HITON-PC, PCMB, and S2TMB. Learning Bayesian networks

is known to be highly sensitive to the chosen an equivalent sample size (ESS)

(Ueno 2010, 2011, Silander et al. 2007). Therefore, we determine the ESS N ′ ∈

{1.0, 2.0, 5.0} and the threshold δ ∈ {3, 20, 150} in the Bayes factor using 2-fold

cross validation to obtain the highest classification accuracy. The three ESS-values

of N ′ are determined according to Ueno (2010, 2011). The three values of δ are

determined according to Heckerman et al. (1995). All the compared methods are

implemented in Java.1 This experiment uses six benchmark datasets from bnlearn:

1Source code is available at http://www.ai.lab.uec.ac.jp/software/
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ASIA, SACHS, CHILD, WATER, ALARM, and BARLEY. From each benchmark

network, we randomly generate sample data for sample size N = 10, 000. Based on

the generated data, we learn the PC sets of all variables using each method. Ta-

ble 4.2 shows the average runtime of each method. We calculate missing variables,

representing the number of removed variables existing in the true PC set, and extra

variables, which indicate the number of remaining variables that do not exist in the

true PC set. Table 4.2 also shows the average missing and extra variables from the

learned PC sets of all the variables. We compare the classification accuracies of the

exact learning of ANBs with BDeu score (designated as ANB-BDeu) using each PC

search method as a feature selection method. Table 4.3 shows the average accuracies

of each method from the 43 UCI repository datasets listed in Table 3.3.

Table 4.2 shows that the runtimes of the proposed method are shorter than those

of the other methods. Moreover, the results show that the missing variables of the

proposed method are fewer than those of the other methods. On the other hand,

Table 4.2 also shows that the extra variables of the proposal are more than those

of the other methods in all datasets. From Table 4.3, the results show that the

ANB-BDeu using the proposed method provides a much higher average accuracy

than the other methods. This is because missing variables degrade classification

accuracy more significantly than extra variables (Friedman et al. 1997).

4.5 Experiments to Evaluate Exact Learning of

ANBs

This section presents numerical experiments conducted to evaluate the effectiveness

of the exact learning of ANBs. First, we compare the classification accuracies of

ANB-BDeu with those of the other methods in Chapter 3. We use the same ex-

perimental setup and evaluation method described in Chapter 3. The classification

accuracies of ANB-BDeu are presented in Table 3.3. To confirm the significant dif-
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Table 4.3: Average classification accuracy of each method.

MMPC HITON-PC PCMB S2TMB Proposal

Average 0.6185 0.6219 0.6302 0.7980 0.8164

ferences of ANB-BDeu from the other methods, we apply Hommel’s tests (Hommel

1988), which are used as a standard in machine learning studies (Demšar 2006).

The p-values are presented at the bottom of Table 3.3. In addition, “MB size” in

Table 3.4 denotes the average of the Markov blanket size of the class variable in the

structures learned by GBN-BDeu.

The results show that ANB-BDeu outperforms Naive Bayes, GBN-CMDL, BNC2P,

TAN-aCLL, gGBN-BDeu, and MC-DAGGES at the p < 0.1 significance level. More-

over, the results show that ANB-BDeu improves the accuracy of GBN-BDeu when

the class variable has numerous parents such as No. 3, No. 9, and No. 31 datasets,

as shown in Table 3.4. Furthermore, ANB-BDeu provides higher accuracies than

GBN-BDeu, even for large data such as datasets 13, 22, 29, and 33 although the

difference between ANB-BDeu and GBN-BDeu is not statistically significant. These

actual datasets do not necessarily satisfy Assumptions 1 through 3 in Theorem 3.

These results imply that the accuracies of ANB-BDeu without satisfying Assump-

tions 1 through 3 might be comparable to those of GBN-BDeu for large data. It

is worth noting that the accuracies of ANB-BDeu are much worse than those pro-

vided by GBN-BDeu for datasets No. 5 and No. 12. “MB size” in these datasets are

much smaller than the number of all feature variables, as shown in Table 3.4. The

results show that feature selection by the Markov blanket is expected to improve

the classification accuracies of the exact learning of ANBs, as described in Chapter

4.4.

We compare the classification accuracies of ANB-BDeu using the PC search

method proposed in Chapter 4.4 (referred to as “fsANB-BDeu”) with the other

methods in Table 3.3. Table 3.3 shows the classification accuracies of fsANB-BDeu

and the p-values of Hommel’s tests for differences in fsANB-BDeu from the other
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methods. The results show that fsANB-BDeu outperforms all the compared methods

at the p < 0.05 significance level.

“Max parents” in Table 3.4 presents the average maximum number of parents

learned by fsANB-BDeu. The value of “Max parents” represents the complexity

of the structure learned by fsANB-BDeu. The results show that the accuracies of

Naive Bayes are better than those of fsANB-BDeu when the sample size is small,

such as No. 36 and No. 38 datasets. In these datasets, the values of “Max parents”

are large. The estimation of the variable parameters tends to become unstable

when a variable has numerous parents, as described in Chapter 3. Naive Bayes can

avoid this phenomenon because the maximum number of parents in Naive Bayes is

one. However, Naive Bayes cannot learn relationships between the feature variables.

Therefore, for large samples such as No. 8 and No. 29 datasets, Naive Bayes shows

much worse accuracy than those provided by other methods.

Similar to Naive Bayes, BNC2P and TAN-aCLL show better accuracies than

fsANB-BDeu for small samples such as No. 38 dataset because the upper bound of

the maximum number of parents is two in the two methods. However, the small

upper bound of the maximum number of parents tends to lead to a poor represen-

tational power of the structure (Ling and Zhang 2003). As a result, the accuracies

of both methods tend to be worse than those of fsANB-BDeu of which the value of

“Max parents” is greater than two, such as No. 29 dataset.

For large samples such as dataset Nos. 29 and 33, GBN-CMDL, gGBN-BDeu, and

MC-DAGGES show worse accuracies than fsANB-BDeu because the exact learning

methods estimate the network structure more precisely than the greedy learned

structure.

We compare fsANB-BDeu and ANB-BDeu. The difference between the two

methods is whether the proposed PC search method is used. “Removed variables”

in Table 3.4 represents the average number of variables removed from the Markov

blanket of the class variable by our proposed PC search method. The results demon-

strate that the accuracies of fsANB-BDeu tend to be much higher than those of

ANB-BDeu when the value of “Removed variables” is large, such as Nos. 5, 12, 16,
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34, and 38. Consequently, discarding numerous irrelevant variables in the features

improves the classification accuracy.

Finally, we compare the runtimes of fsANB-BDeu and GBN-BDeu to demon-

strate the efficiency of the ANB constraint. Table 4.4 presents the runtimes of

GBN-BDeu, fsANB-BDeu, and the proposed PC search method. The results show

that the runtimes of fsANB-BDeu are shorter than those of GBN-BDeu in all the

datasets because the execution of the exact learning of ANBs is almost twice as

fast as that of the exact learning of GBNs, as described in Chapter 4.1. Moreover,

the runtimes of fsANB-BDeu are much shorter than those of GBN-BDeu when our

PC search method removes many variables, such as No. 34 and No. 39 datasets.

This is because the runtimes of GBN-BDeu decrease exponentially with the removal

of variables, whereas our PC search method itself has a negligibly small runtime

compared to those of the exact learning as shown in Table 4.4. As a result, the

proposed method fsANB-BDeu provides the best classification performances in all

the methods with a lower computational cost than that of the GBN-BDeu.
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Table 4.4: Runtimes (ms) of GBN-BDeu, fsANB-BDeu, and the proposed PC search

method.

No. Variables
Sample

size Classes
GBN-
BDeu

fsANB-
BDeu

The proposed
PC search method

1 5 625 3 169.4 23.0 6.3
2 5 1372 2 19.3 10.3 2.0
3 5 132 3 15.6 3.0 0.2
4 5 150 3 16.7 5.0 0.2
5 5 24 3 15.3 1.0 0.1
6 7 1728 4 90.8 22.9 1.7
7 7 345 2 21.1 15.6 0.3
8 7 432 2 31.0 20.7 0.5
9 7 64 2 18.9 9.1 0.1
10 8 3200 10 114.6 55.1 3.1
11 9 17898 2 300.5 251.3 10.2
12 9 12960 3 707.4 525.8 5.8
13 9 768 9 66.8 27.6 0.6
14 9 87 5 39.6 0.3 0.1
15 10 277 2 162.6 6.9 0.3
16 10 683 2 453.1 258.9 0.4
17 10 1473 3 161.1 121.4 0.8
18 10 214 6 63.0 22.3 0.2
19 10 5800 6 159.6 67.2 2.8
20 10 512 2 102.7 58.2 0.4
21 10 958 2 212.2 193.0 0.5
22 11 19020 2 979.8 277.2 5.3
23 11 1389 9 379.4 17.2 0.9
24 14 270 2 1988.6 299.8 0.1
25 14 178 3 1233.7 585.0 0.1
26 14 296 2 2034.5 115.2 0.2
27 15 690 2 10700.3 927.6 0.3
28 15 653 2 23069.5 2774.3 0.2
29 15 14980 2 12407.6 8248.8 4.1
30 17 232 2 11682.6 1623.6 0.2
31 17 101 5 7326.5 1985.1 0.1
32 17 10992 10 84967.1 48636.9 3.4
33 17 20000 26 339910.2 30224.8 6.3
34 19 540 2 217457.0 12.0 0.3
35 19 2310 7 190895.9 103447.5 1.0
36 19 148 4 107641.8 1171.4 0.2
37 19 846 4 144669.5 62663.0 0.4
38 20 80 2 98841.9 821.6 0.1
39 21 1000 2 2706616.6 8885.1 0.5
40 21 30488 2 15626734.5 130491.6 11.8
41 22 5000 3 10022030.7 757611.7 2.1
42 22 5644 2 4640293.5 2382657.7 2.3
43 23 263 2 2553290.4 1386088.2 0.2

Geometric average 2361.0 362.4 0.6
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Chapter 5

Learning ANB for Large Networks

5.1 Constraint-Based Learning Bayesian Networks

using a Bayes factor

The most popular structure learning approach is score-based learning, which seeks a

best structure with the score function. However, score-based learning is an NP-hard

problem (Chickering 1996), entailing heavy computational costs as the number of

variables increases. As exact learning methods, dynamic programming Silander and

Myllymäki (2006), A∗search(Yuan et al. 2011), branch and bound search (Malone

et al. 2011), and integer programming (Cussens 2012) have been proposed. However,

no state-of-the-art exact learning method can learn structures with more than 60

variables (Cussens 2012).

Alternatively, a constraint-based approach relaxes computational costs and learns

huge networks. Methods using such an approach learn structures by conditional

independence (CI) tests and by direction using orientation rules. Among these ap-

proaches, the Peter and Clark (PC) algorithm (Spirtes et al. 2000), max-min hill

climb (MMHC) algorithm (Tsamardinos et al. 2006), and recursive autonomy iden-

tification (RAI) algorithm (Yehezkel and Lerner 2009) are well known. Of those,

the RAI algorithm is the state-of-the-art algorithm. The salient benefit of the RAI

algorithm is that it decreases the number of conditional variables of CI tests in the
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constraint-based approach because it decomposes the entire structure into partial

structures based on observed convergence connections. However, this approach re-

lies on CI tests conducted between each pair of variables using statistical tests or

information theory tests. The statistical test necessarily has type I error (detect-

ing incorrect dependences) even for large data. The information theory test also

depends on the user-determined threshold. Therefore, earlier methods using this

approach have no asymptotic consistency.

However, Steck and Jaakkola (2002b) proposed a conditional independence test

with an asymptotic consistency: a Bayes factor with BDeu. Moreover, Abellán et al.

(2006) and Natori et al. (2017) proposed constraint-based learning methods using

the RAI with a Bayes factor, which can learn large networks. We will apply the

constraint-based learning methods using a Bayes factor to our proposed method to

accommodate much greater numbers of variables in our method.

5.2 Learning ANB using the RAI Algorithm with

the Bayes Factor

This section presents the algorithm of the constraint-based learning method of ANB

with RAI algorithm. Let NDAG
X be a set of variables that are adjacent to X via an

undirected edge in G. Our algorithm has six logical steps as follows.

(1) Input data D, initial order of CI tests nz = 1, and initial graph Gs and Gall,

which are complete undirected graphs consisting of all the feature variables.

Let Vs be a set of variables in Gs and let Es be a set of edges in Gs.

(2) For all X ∈ Vs, Y ∈ PaGall
X ∪ NDAGall

X , Z ⊆ PaGall
X ∪ NDAGall

X , (|Z| = nz),

when X and Y given Z∪{X0} are determined to be conditionally independent

by CI tests using Bayes factor, the edges between X and Y in Gs and Gall are

removed.

(3) Apply the orientation rule to the graph obtained in (2).
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(4) If there exists a variable set A such that any pair of variables in A can reach

each other in Gall and ∀X ∈ V \ (A ∪ {X0}), (PaGall
X ∪NDAGall

X ) ∩ A = ∅,

then decompose Gs into a subgraph GA consisting of A and a subgraph GnA

consisting of V \ (A ∪ {X0}).

(5) nz = nz + 1. For each subgraph G, recursively invoke RAI with Gs = G.

(6) Add X0 and the edges from X0 to all the feature variables to Gall.

In Step (1), the initial graph Gucf does not include the class variable and the edges

from the class variable to all the feature variables. The proposed method starting

without X0 is more efficient than that with X0 because the former has smaller

number of edges than the latter does although they achieve the same results.

The proposed method is expected to improve the efficiency of the original RAI

algorithm without the ANB constraint for the following reasons. First, the proposed

method performs CI tests only among feature variables whereas the original RAI

performs CI tests among all variables. Second, the proposed method is guaranteed

to accelerate decomposition of the structure in the RAI algorithm when the true

Bayesian network has an ANB structure. The CI tests given the class variable in Step

(2) earlier detect the conditional independence than those without the class variable

do. As the number of removed edges is larger, the number of the decomposition in

the RAI algorithm increases. Consequently, it is expected to decrease the number

of conditional variables of CI tests in the RAI algorithm.

If we assume ANB, then the number of parameters necessarily increases com-

pared to GBN because it forces addition of edges from class variables to feature

variables. In this case, almost sure convergence to the true value of the joint proba-

bility distribution represented by the estimation structure is expected theoretically

to be slower than that of GBN. However, as described in Chapter 3, because the

number of the prior distribution parameter of the class variable increases exponen-

tially, GBNs are known to have unstable estimation accuracy when the number of

parent variables of a class variable is large (Sugahara et al. 2018, Sugahara and Ueno
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2021). Although the number of parameters is greater with the ANB structure, no

parent of class variables is expected to improve the classification accuracy.

5.3 Asymptotic Consistency to an I-map ANB

with the Fewest Parameters

This section presents the theorem which says that the proposed RAI algorithm

asymptotically learns an I-map ANB with the fewest parameters. Let GANB be

an ANB structure learned by the proposed RAI algorithm. Then, we provide the

following theorem.

Theorem 5. When the sample size N becomes sufficiently large, GANB converges

almost surely to an I-map ANB with the fewest parameters.

Proof. Step (2) of the proposed RAI algorithm does not remove edges which exist

in G∗ and removes extra edges for an I-map ANB because CI tests using Bayes

factor asymptotically detect the true conditional independences from Theorem 4.

Moreover, the orientation rule in Step (3) makes only the true conditional indepen-

dences. Therefore, GANB almost surely converges to an I-map ANB with the fewest

parameters.

It is notifiable that the proposed algorithm might not necessarily orient all the

edges. If orienting the undirected edges causes a new convergence connection, GANB

does not necessarily become an I-map. In this case, we should not orient the undi-

rected edges but directly calculate the joint distribution over the variables with the

undirected edges.
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5.4 Experiments to Evaluate the Proposed RAI

Algorithm

This section presents evaluation experiments conducted to underscore the effective-

ness of the proposed RAI algorithm. First, we use the following nine methods to

compare classification accuracies for small networks.

• Naive Bayes

• TAN: Learn a TAN that optimizes the log likelihood (Friedman et al. 1997).

• GBN-CMDL: Greedy learning GBN method using the hill-climbing search by

minimizing CMDL while estimating parameters by maximizing LL (Grossman

and Domingos 2004).

• BNC2P: Greedy learning method with at most two parents per variable using

the hill-climbing search by maximizing CLL while estimating parameters by

maximizing LL (Grossman and Domingos 2004).

• TAN-aCLL: Exact learning of TANs by maximizing aCLL (Carvalho et al.

2013).

• GBN-BDeu: Exact learning of GBNs with BDeu score (Silander and Myl-

lymäki 2006).

• ANB-BDeu: Exact learning of ANBs with BDeu score.

• RAI-GBN: Constraint-based learning GBN using Bayes factor.

• RAI-ANB: Learning ANB using proposed method.

The value of the pseudo-sample (hyperparameter) for the BDeu score and Bayes

factor was set as 1.0 to maximize the posterior variance, as suggested by Ueno

(2010). For all methods, the conditional probability parameters of the BNCs after

structure learning were estimated using expected a posteriori (EAP).
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This experiment used 43 classification benchmark datasets with 5–23 variables

from the UCI repository (Lichman 2013). The continuous quantities in each dataset

were discretized into binary values around a median. For each method and dataset,

we obtain the average classification accuracy using ten-fold cross validation. To

demonstrate the importance of the proposed method, the p-value is obtained us-

ing multiple comparison using the Hommel method (Hommel 1988), which is used

as a standard in machine learning studies (Demšar 2006). In “Classification accu-

racy” shown at the bottom of Table 5.1, “Arithmetic average” denotes the average

classification accuracy of each method for all datasets. Also, “p-value” denotes the

p-value obtained by multiple comparison. For “Runtime”, “Arithmetic average” and

“Geometric average” respectively denote the arithmetic average runtime and the ge-

ometric average runtime for structure learning of each method for all datasets. Table

5.2 presents the average maximum number of parents (MNP) for each method and

the average number of edges in the Markov blanket (MNB) of the class variable for

each method.

Table 5.1 shows that the proposed method outperforms Naive Bayes, TAN, GBN-

CMDL, BNC2P, TAN-aCLL, and RAI-GBN at the p < 0.1 significance level. Be-

cause Naive Bayes, TAN, GBN-CMDL, BNC2P, and TAN-aCLL limit the number

of parent variables of feature variables, Max Parents are fixed at 1 and 2, as shown

in Table 5.2. However, the small upper bound of the maximum number of par-

ents tends to lead to poor representational power of the structure (Ling and Zhang

2003). As a result, the accuracies of Naive Bayes and TAN tend to be worse than

those obtained using the proposed method, such as No. 8 and No. 11 datasets. For

large samples such as datasets Nos 11 and 19, RAI-ANB provides higher accuracies

than GBN-CMDL does, because RAI-ANB guarantees to asymptotically estimate

the true conditional probability of the class variable although GBN-CMDL does not.

Because Naive Bayes requires no structural learning, the computation time is 0.00.

In addition, because TAN can be learned in polynomial time (Friedman et al. 1997,

Madden 2009). Its computation time is shorter than that of RAI-ANB.
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Table 5.1 also shows that the proposed method much improves the classification

accuracy of RAI-GBN, although RAI-GBN has the lowest classification accuracy

among the compared methods. The reason might be that RAI-GBN tends to learn

structures with small Markov blankets of class variables. In fact, Table 5.2 shows

that the edges in the Markov blanket of the class variable are fewer than those of

the other methods. In contrast, because the proposed method has all the feature

variables as children of the class variable, the Markov blanket size is always the

same as the number of feature variables. Moreover, because the proposed method

performs CI tests among feature variables only, it requires less computational time

than RAI-GBN, which performs CI tests among all variables.

The average classification accuracy of RAI-ANB is slightly worse than that of

either GBN-BDeu or ANB-BDeu. The exact learning methods are known to estimate

network structures more accurately than constraint-based approaches do when the

sample size is large (Scutari et al. 2019). However, the runtime of RAI-ANB is much

shorter than that of either GBN-BDeu or ANB-BDeu.

Next, we compare the classification accuracies of intractable large networks for

the exact learning methods. This experiment used 16 datasets with 37–1301 vari-

ables. Table 5.3 shows the average accuracies and p-values of Hommel’s tests. Table

5.4 presents the average number of edges in the Markov blanket of the class variable

for each method.

From Table 5.3, the average classification accuracy of the proposed method is the

highest among all the methods. The proposed method outperforms Naive Bayes,

TAN, and RAI-GBN at the p < 0.05 significance level. Similarly to the results for

small networks, the average runtime of the proposed method is shorter than that of

RAI-GBN by the reason described earlier.

The classification accuracies of Naive Bayes and TAN are lower than those of

the proposed method for all datasets except for No. 3 and No. 5. Table 5.4 shows

that the edges in the Markov blanket of the class variable in RAI-ANB for No. 3

and 5 are few. Therefore, the true structure of these datasets might resemble the

structure of Naive Bayes.
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Table 5.4: Number of edges in the Markov blanket of the class variable.

dataset
Naive
Bayes TAN

RAI-
GBN

RAI-
ANB

1 kr-vs-kp 36 71 5.1 136.5

2 Connect-4 42 83 31.6 157

3 Flowmeters D 43 85 4.0 91.9

4 movement libras 90 179 2.1 210.2

5 dota2 116 231 2.9 215.8

6 Musk1 166 331 2.0 553

7 Musk2 166 331 6.1 1115.8

8 Epileptic Seizure 178 355 0 367

9 mfeat-fac 216 431 3.7 600.4

10 semeion 256 511 3.8 771.4

11 madelon 500 999 2.7 537.7

12 pd speech features 754 1507 2.1 2095.1

13 pure-spectra-matrix 1300 2599 6.6 2399.9

The classification accuracies of the proposed method are higher than those of

RAI-GBN for all datasets except for No. 11, perhaps because RAI-GBN tends to

learn structures with small Markov blankets of class variables similarly to results of

small networks. Table 5.4 shows that the edges in the Markov blanket of the class

variable are fewer than those of the other methods. However, because the proposed

method assumes ANB structure, all the feature variables are used for class variable

estimation, which improves the classification accuracy.

Finally, we demonstrate that the proposed method accelerates the structure de-

compositions that occur during the RAI algorithm execution when the class variable

is the root in the true Bayesian network. Table 5.5 presents the numbers of edges

(NE), the numbers of decomposed structures (NDS) to subgraphs in the RAI algo-

rithm, and the runtimes for RAI-GBN and RAI-ANB.
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The numbers of edges (NEs) learned by RAI-ANB and RAI-GBN from the same

data theoretically become identical when the true Bayesian network has an ANB

structure. When the class variable is not the root in the true Bayesian network,

the NE of RAI-ANB becomes larger than that of RAI-GBN. From Table 5.5, the

NE of RAI-ANB for No. 13, which provides the largest difference of the accuracies

between RAI-ANB and RAI-GBN, is less than that of RAI-GBN. This result sug-

gests that No. 13 approximately follows an ANB. Therefore, the NDS of RAI-ANB

for No. 13 is much larger than that of RAI-GBN. This result means that the pro-

posed method accelerates the structure decompositions that occur during the RAI

algorithm execution. As a result, it reduces the runtime of the proposed method.

In contrast, the NE of RAI-ANB for No. 11, for which RAI-GBN provides better

accuracy than RAI-ANB does, is much larger than that of RAI-GBN. Therefore,

the NDS of RAI-ANB for No. 11 is much less than that of RAI-GBN because the

dense structure of RAI-GBN interrupts the structure decompositions in the RAI

algorithm execution. As a result, it increases the runtime of the proposed method.

Thus, it is important for the proposed method to select the class variable so as to

be the root variable.
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Chapter 6

Conclusions

First, this study compares the classification performances of the BNs exactly learned

by BDeu as a generative model and those learned approximately by CLL as a dis-

criminative model. Surprisingly, the results demonstrate that the performance of

BNs achieved by maximizing ML was better than that of BNs achieved by maxi-

mizing CLL for large data. However, the results also show that the classification

accuracies of the BNs that are learned exactly by BDeu are much worse than those

that are learned by the other methods when the class variable had numerous par-

ents. To solve this problem, this study proposes an exact learning ANB by max-

imizing BDeu as a generative model. The proposed method asymptotically learns

the optimal ANB, which is an I-map with the fewest parameters among all possible

ANB structures. In addition, the proposed ANB is guaranteed to asymptotically

estimate the identical conditional probability of the class variable to that of the

exactly learned GBN. Based on these properties, the proposed method is effective

for not only classification but also decision making, which requires a highly accurate

probability estimate of the class variable. Furthermore, learning ANBs has lower

computational costs than learning BNs does. The experimental results demonstrate

that the proposed method significantly outperforms the approximately learned struc-

ture by maximizing CLL. Moreover, we proposed an extension of constraint-based

learning method using Bayes factor applied to the learning ANB. Comparison ex-
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periments showed that our method outperforms the other methods. Isozaki et al.

(2008, 2009) proposed an effective learning Bayesian network method by adjusting

the hyperparameter for small data. As future work, we will employ their method

instead of the BDeu to improve the classification accuracy for small data. Sugahara

et al. (2020, 2022) also reported a Bayesian network model averaging classifier to

improve the classification accuracies. We expect to extend our proposed method to

the model averaging classifier using those methods described above.
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