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自由エネルギー最小原理に基づくベイジアンネットワーク学習

磯崎 隆司

概要

ベイジアンネットワークは確率グラフィカルモデリングの一種であり，結合確率分布を条件付き確

率分布の積で表し，グラフ上では確率変数をノードとし依存関係を有向辺で表す．ベイジアンネッ

トワークの学習とは一般には条件付き確率分布の推定に相当するパラメータ学習と，依存関係を推

定する構造学習からなる．

標準的な学習法である最尤推定では過学習が問題であり，一般にベイズ推定が用いられるが，近

年ベイジアンネットワークの学習結果がベイズ推定における事前分布のハイパーパラメータに強く

依存することが明らかになっている．そのため事前知識がない場合にはハイパーパラメータを最適

化することが必要であるが，理論的にも実際的にも難しい問題となっている．

そこで本論文では，ベイジアンネットワークの学習において，ベイズ推定とは異なる枠組みを提

案する．それは熱力学において現れた概念である自由エネルギー最小原理に基づく．著者は尤度最

大とエントロピー最大とのトレードオフが，熱力学における内部エネルギー最小とエントロピー最

大とのトレードオフのメタファーとして捉えられることに着目した．しかしながら熱力学において

重要な物理量である温度をどのように扱うかは一見不定である．本研究では，上記のメタファーを

推し進めることで熱力学における温度と統計的学習の問題におけるデータ数との関係を仮定するこ

とによって，自由エネルギー最小原理を有効に利用できると考え，データ温度仮説を導入する．

本研究ではまず，このデータ温度仮説と自由エネルギー最小原理を用いてベイジアンネットワー

クのパラメータ学習を定式化する．この手法の効果を調べるために標準的なベンチマークデータを

用いて実験を行なったところ，理論的あるいは実験的に推奨されているハイパーパラメータを使っ

たベイズ推定と同等あるいはそれ以上という有効性を示し，さらには提案手法に現れたハイパーパ

ラメータの設定に関して，高い学習精度を維持できる共通の範囲があることを示した．その意味で

提案手法はロバストであることがわかり，このハイパーパラメータを固定化して利用できる可能性

を示した．



次に，パラメータ学習で提案した手法を基礎としてベイジアンネットワークの制約ベース・アプ

ローチと呼ばれる構造学習に対しても自由エネルギー最小原理を適用する．このアプローチでは統

計的仮説検定を用いて条件付き独立性を判定するステップを有するが，本論文では自由エネルギー

最小原理に基づく条件付き独立性を表す不等式を導く．また提案手法は漸近領域では古典的な G2

検定に近づくことを示し，古典的な検定方法の一つの拡張とみなせることになる．

構造学習においてもシミュレーションデータと標準的ベンチマークデータとを用いてサンプリン

グデータから元の構造を復元できるかを調べた．本手法を代表的な構造学習アルゴリズムに埋め

込み，標準的な G2 検定を用いた場合と比較した結果，シミュレーションデータでは有向辺の向き

について，ベンチマークデータではそれに加えて有向辺の有無についても，想定通り十分にはない

データ数において優位性を示した．さらに複雑なネットワーク構造に対しては，従来では少ないと

考えられていない程度のデータ数においても効果が大きいことを示した．
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ABSTRACT

Learning Bayesian Networks using

Minimum Free Energy Principle

by

Takashi Isozaki

Doctor of Philosophy in Engineering

The University of Electro-Communications

Chairperson: Associate Professor Maomi Ueno

Bayesian networks (BNs) are representative causal models and are expressed as di-

rected acyclic graphs (DAGs) in which random variables and their dependencies are

associated, respectively, with nodes and directed edges. Qualitative relations are ex-

pressed as their structures and quantitative relations are expressed as their parameters.

Therefore, learning BNs require two steps of parameters and structures. Learning BN

algorithms are anticipated as causal mining tools from data.

Although the maximum likelihood (ML) principle is widely used for learning, we

often suffer from shortages of the data size because BNs need many data for processes

that are used to deal with combined multivariate systems, and because ML estimation

often falls into overfitting to a small data size. The maximum entropy (ME) principle,

in contrast, states that probability distributions should be states of maximizing their

entropies for no information. In fact, the mixture states of these two principles should

be realized for the actual available data size. Bayesian methods, which involve prior

distributions, are effective for avoiding overfitting. This prior has hyperparameters that

can be interpreted as prior imaginary instances, which can easily realize the ML and

ME principles with corresponding data size. However, learning performances of BNs

are known to be highly sensitive to the values of hyperparameters, and it is difficult to

decide the optimal values.

We specifically examine Helmholtz free energies and the principle of minimizing them

as a metaphor of the tradeoff between the ML and the ME principles, for use in an al-

ternative approach to learning. The minimum free energy (MFE) principle originates

from thermodynamics, which maintains balances between minimum internal energies

and maximum entropies under a given temperature in thermodynamical systems. Con-

sequently, the author proposes an approach from a thermodynamical view for learning

BNs, which is especially effective even for insufficient data. The “Data Temperature”

assumption is important; it provides a meaning of temperature in use of free energies

for statistical sciences. Internal energies, entropies, and temperature are defined and
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applied for learning parameters and structures of BNs. This approach can treat the ML

and the ME principles in a unified manner of the MFE principle with varying data size.

In experiments of parameter learning with real-world datasets, our approach is supe-

rior to the Bayesian method with some values of hyperparameters recommended in recent

studies, and shows non-sensitivity to the selection of hyperparameters involved in our

method. In simulations and experiments using real-world datasets for structure learning,

the proposed method notably improves the performance of the PC algorithm, which is

a representative structure learning algorithm in terms of the direction and existence of

edges for insufficient data.
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3.3 Example of a generally augmented Näive Bayes classifier (GAN). . . . . . 40

3.4 MFE–EB (“linear-state”) estimation: differences in accuracy from ML [%]. 42

3.5 MFE–EB (“log-state”) estimation: differences in accuracy from ML [%]. . 43

4.1 Ratio of reversed edges in the resultant graphs with denser BNs from the

use of a standard PC and PC embedded with the MFE–CI method: (a)

Sample size = 500 and (b) 1000. . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Ratio of reversed edges in resultant graphs with denser BNs from the

use of a standard PC and PC embedded with the MFE–CI method: (c)

Sample size = 2500 and (d) 5000. . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Ratio of reversed edges in the resultant graphs with denser BNs from the

use of a standard PC and PC embedded with the MFE–CI method: (e)

Sample size = 10000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 True graph (a) represents Ind (X;Y |{U,W}) while a false graph (b) rep-

resents Ind (X;Y |U), which generates a wrong collider W . . . . . . . . . 61

4.5 Alarm network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



viii LIST OF FIGURES

4.6 Insurance network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Barley network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Mildew network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9 Hailfinder network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Reversed edge ratios in the Alarm network . . . . . . . . . . . . . . . . . 69

4.11 Reversed edge ratios in the Insurance network . . . . . . . . . . . . . . . . 70

4.12 Reversed edge ratios in the Hailfinder network . . . . . . . . . . . . . . . 70

4.13 Reversed edge ratios in the Barley network . . . . . . . . . . . . . . . . . 71

4.14 Reversed edge ratios in the Mildew network . . . . . . . . . . . . . . . . . 71

4.15 Number of add–remove errors in the Alarm network . . . . . . . . . . . . 72

4.16 Number of add–remove errors in the Insurance network . . . . . . . . . . 72

4.17 Number of add–remove errors in the Hailfinder network . . . . . . . . . . 73

4.18 Number of add–remove errors in the Barley network . . . . . . . . . . . . 73

4.19 Number of add–remove errors in the Mildew network . . . . . . . . . . . . 74

B.1 Example of Bayesian network with assignments of conditional probability

distribution unfaithful to the DAG. . . . . . . . . . . . . . . . . . . . . . . 86



List of Tables

3.1 Description of datasets used for experiments. . . . . . . . . . . . . . . . . 40

3.2 Accuracies [%] of respective methods. We denote that Bayes (α) means

that the value of a hyperparameter equals α in this table. . . . . . . . . . 41

3.3 Effective ranges of hyperparameters. . . . . . . . . . . . . . . . . . . . . . 42

4.1 Results for the simulation using data sizes of 500 and 1000 . . . . . . . . . 57

4.2 Results for simulations using data sizes of 2500 and 5000 . . . . . . . . . . 57

4.3 Results for simulations using data size of 10000 . . . . . . . . . . . . . . . 58

4.4 Real-world Bayesian networks used in the experiments. . . . . . . . . . . . 62

ix





Chapter 1

Introduction

Human beings often discover causality among observational events in daily life. Scientists

and engineers are often engaged in pursuing cause–effect relations to find a new law of

nature or a new trigger for improving industrial products and services. However, they

have not yet discovered many cause–effect relations that are hidden even among large

amounts of data. Several examples can be given readily, such as symptom–disease, gene

defect – disease, factory environment data-yield ratios, and abnormal changes in global

geoenvironmental data. Effective causal data mining techniques would yield meaningful

fruit from any of those pools of data if humans’ modes of causal discovery could be

represented in computer systems because such systems present too much data to manage

in the world without use of computers. There are many such data from which cause–

effect relations could be mined as bioinformatics, clinical, POS, geoenvironmental, survey

data on social sciences, and so on.

These cause–effect relations probably involve many events, which form network struc-

tures of the relations. In addition, because almost every event occurs under many compli-

cated conditions including undetectable elements, we cannot definitely describe relations

of cause–effect anymore. Therefore we have described those with the language of proba-

bility, and have used statistical analyses for estimation. Based on these contexts, we have

adopted probabilistic graphical models [Pearl, 1988, 2000; Spirtes et al., 2000; Koller and

Friedman, 2009], that have recently been hot research areas in artificial intelligence and

its sub-domains: machine learning and data mining.

Among these models, we chose to examine a class of models specifically: directed

acyclic graphical models, which are called Bayesian networks (BNs) [Pearl, 1988], rep-

resenting qualitative aspects of direct dependency as directed edges and quantitative

aspects of them as parameters (usually conditional probability distributions). The rea-

sons are as follows:

1



2 Introduction

• BNs have directed edges that can express the cause–effect relations.

• BNs are intuitively comprehensive for displaying the relations.

• BNs are based on the concrete probability theory for representing uncertainty.

• Regarding constructed BNs, probabilistic reasoning can be conducted using some

established algorithms [Kim and Pearl, 1983; Pearl, 1986; Lauritzen and Spiegel-

halter, 1988].

• Actually, BNs are important tools for estimating causal effects using interventions

and do-calculus [Pearl, 1995].

We can obtain a tool of constructing and mining causal models from observational

data if learning structures and parameters of BNs from those data are established. Many

studies have been conducted for learning cause–effect models from observational data

using BNs during the decades. The results show that learning causal models have re-

mained matters of research, partly because they deal appropriately with insufficient

training data. Consequently, we have addressed the issue of learning BNs that can use

insufficient data.

The maximum likelihood (ML) principle is the main principle of estimation in sta-

tistical science, which states that we should estimate parameters that regenerate the

obtained data. However, the estimation based on the ML is likely to fall into overfit-

ting of the finite data. The maximum entropy (ME) principle is often used for treating

sparse data such as in natural language processing, which states that one should esti-

mate parameters so that states of those take the values maximizing entropy if we have no

information. Bayesian methods have recently attracted much attention from researchers

not only because of their incorporation of a prior background knowledge but also because

they have a smoothing effect with prior distributions, which can avoid overfitting and

include ME principles with some conditions. These prior distributions have hyperparam-

eters that can be interpreted as prior imaginary instances (we designate it as α in this

dissertation). Some studies have used hyperparameters such as α = 1 (meaning uniform

prior distributions) or α = 0.5 when no prior knowledge exists. However, it remains

controversial to decide hyperparameters of prior distributions in theoretical perspectives

(meaning noninformative prior, also called Jeffrey’s prior) [Gelman et al., 2004; Robert,

2007]. Furthermore, recent studies of Bayesian approaches clarified as a critical issue to

decide hyperparameters because accuracy in learning BNs is heavily dependent on the

selection of hyperparameters [Silander et al., 2007], and it is difficult to find optimal

values.
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Another approach to avoid overfitting to data is using the principle of minimum free

energy (MFE), which has its roots in thermodynamics. The free energy consists of in-

ternal energy, entropy and temperature. In thermodynamics, MFE maintains balances

between minimizing internal energies and maximizing entropies at some constant tem-

perature. In recent years, the MFE principle and similar concepts have been used in

widely various areas of statistical science. Nevertheless, to our knowledge, the meaning

of temperature has not been established to date. Consequently, temperature is treated

as fixed parameters or free parameters decided in each dataset. We noticed that the

approach using MFE principle is attractive because of its intuitive comprehension of

the role described above. It also is inadequately investigated especially in the role of

temperature for use in statistical sciences. Then we addressed this approach in this

dissertation, where, differently from the other approaches, we define internal energy and

entropy, and then provide a meaning of temperature in statistical science. Learning BNs

has two steps of the structures and parameters, as described above. We hereby propose

a new unified framework of learning parameters and structures of BNs, which includes

the ML and the ME principles.

Thesis Overview

This thesis comprises the following chapters. Chapter 2 introduces Bayesian networks,

which are the basis of the thesis. Herein, the model properties are described in graph-

ical and probabilistic aspects in some detail; then we describe Reichenbach’s theory,

which connects statistical patterns with causal patterns, which is a foundation on which

Bayesian network models are used as causal network models. Subsequently, methods

of learning parameters and structures are described using standard approaches. These

descriptions are necessary in later chapters. In Chapter 3, the minimum free energy

(MFE) principle is introduced, which originates from thermodynamics and provides an

idea for utilizing MFE principle effectively in statistical science. The idea is the “Data

Temperature” assumption, which, although simple, provides a meaning or interpretation

of temperature in statistical sciences. Then we apply a combination of the MFE princi-

ple and the “Data Temperature” model to parameter learning of BNs for an alternative

of the Bayesian–Dirichlet methods. A comparative study using the Bayesian methods

is also conducted using repository datasets that are typically used in this research area.

In Chapter 4, which is a highlight of the thesis, it is applied, in turn, to structure

learning BNs. In the approach of structure learning, hypothesis testing of conditional

independencies is needed; its impracticality has been a disadvantage of the approach for

especially insufficient data size. We describe both null and opposite hypotheses using the

MFE and derive a new condition of the conditional independence: our method provides
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another framework for hypothesis testing. Additionally, it is shown theoretically to have

a preferable property in asymptotic region. A simulation study and experiments using

real-world datasets show its effectiveness through comparison with the classical tests, in

which two testing methods were embedded in a representative structural learning algo-

rithm. Finally, Chapter 5 gives final conclusions and presents future plans for additional

research. Throughout the dissertation, we assume that the following conditions are sat-

isfied: all random variables have discrete states, and there are no missing data, no latent

variable models, no selection bias, and no prior background knowledge.



Chapter 2

Bayesian Networks

This chapter presents our research basis—Bayesian networks— in some detail before

proceeding to our approach. The reader is assumed to be familiar with the basis of

probability theory (including joint probability, conditional probability and the Bayes’

theorem), and statistics (including the maximum likelihood principle, hypothesis tests,

χ2-tests). After describing an example of Bayesian networks, the preliminary concepts

are described along with notation related to the thesis, some graph theory, and con-

ditional independence and dependence in probability distributions. Next the Markov

condition, minimality condition and then Bayesian networks (BNs) are defined. Sub-

sequently, we provide some properties of BNs related to the thesis. Then parameter

learning methods are described—the maximum likelihood and Bayesian inference. The

structure learning methods are also explained— constraint-based approaches and score-

search approaches. For more details including some omitted proofs, please refer to the

references or some seminar texts [Pearl, 1988, 2000; Spirtes et al., 2000; Jensen and

Nielsen, 2007; Cowell et al., 1999; Neapolitan, 2004].

2.1 An Example

An instance of a Bayesian network can be described as Cooper [1999], as shown in

Fig. 2.1, which represents dependence–independence relations in some diseases and symp-

toms. Five binary random variables are given as {X1, X2, X3, X4, X5}, where X1 signifies

a history of smoking, X2 denotes chronic bronchitis, X3 stands for lung cancer, X4 repre-

sents fatigue, and X5 denotes a mass viewed on an X-ray image. The Bayesian network

in Fig. 2.1 has the joint probability as the following factorization form based on the

structure.

P (X1, X2, X3, X4, X5) = P (X1)P (X2 |X1)P (X3 |X1)P (X4 |X2, X3)P (X5 |X3).

5
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Figure 2.1: Bayesian network with five binary nodes with a conditional probability table.

The edges in the figure represent relative direct influences among variables. A condi-

tional probability table is attached with the graph; that is, a Bayesian network denotes

direct influences as the directed edges and their quantities as the conditional probability

distributions. It seems reasonable to represent these relations quantitatively as (condi-

tional) probability distributions because those relations such as in Fig. 2.1 cannot be

described in deterministic language because of the existence of latent conditions that are

too complicated to represent explicitly. In addition, the Bayesian network in Fig. 2.1 has

only 11 independent probabilities. If one deals with the joint probabilities of these vari-

ables, then one should estimate 25 − 1 (= 31) independent probabilities. Furthermore,

the parameters of such joint probability distributions become more numerous exponen-

tially with the number of variables. For that reason, this representation reduces the

parametric space that must be estimated. Furthermore, it can be readily understood

that the edges represent direct influences of a variable on other variables in the Bayesian

network.

2.2 Preliminaries

We explain the symbols used throughout the thesis. General variables are denoted

with upper-case letters (e.g., X, Y , Z), whereas the states or values of the variables

are denoted with lower-case letters (e.g., x, y, z). Variable sets are denoted as upper-

case bold-faced letters (e.g., Z, V ), and an assignment of the states or values to each

variable in the given set by lower-case bold-faced letters (e.g., z, π). However, we present
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exceptional notations for some symbols. In this thesis, we deal with only complete

datasets and discrete random variables. We use the terms node, vertex, and variable

interchangedly along with the terms edge and arc.

We first review some graph theory [Neapolitan, 2004]. A directed graph is a pair

(V ,E), where V is a finite, nonempty set whose elements are called nodes or vertices,

and where E is a set of ordered pairs of distinct elements of V . Elements of E are called

edges or arcs; if (X,Y ) ∈ E, then it is said that an edge exists from X to Y or from Y

to X, and that X and Y are adjacent. Presuming a set of nodes {X1, X2, . . . Xk}, where
k ≥ 2, such (Xi−1, Xi) ∈ E for 2 ≤ i ≤ k. The set of edges connecting the k nodes is

called a path from X1 to Xk (k > 1). We denote an undirected path in a graph as a

sequence of nodes that are adjacent in the graph. Here the directed cycle indicates a

path from a node to itself. A directed graph G is called a directed acyclic graph (DAG)

if it contains no directed cycles. Given a DAG G = (V ,E) and nodes X and Y in V , Y

is a parent of X if there is an edge from Y to X, Y is called a descendent of X and X is

called an ancestor of Y if there is a path from X to Y , and Y is called a nondescendent

of X if Y is not a descendent of X.

Next, we define conditionally independent and dependent for probability distribu-

tions:

Definition 2.1 Presuming a probability distribution P of the random variables in some

set V , two variables X ∈ V and Y ∈ V are conditionally independent given Z ⊂ V ,

which we designate as

Ind (X;Y |Z), (2.1)

or

X ⊥⊥ Y |Z, (2.2)

if ∀x, y, z where P (z) > 0,

P (x, y | z) = P (x | z)P (y | z), (2.3)

or we designate it for short as

P (X,Y |Z) = P (X|Z)P (Y |Z). (2.4)

We define and denote dependence as

Dep (X;Y |Z) := ¬ Ind (X;Y |Z), (2.5)

or

X /⊥⊥ Y |Z. (2.6)
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We define and denote (marginal) independence when Ind (X;Y |Z) for Z: Z = ∅, as

Ind (X;Y ) and P (X,Y ) = P (X)P (Y ). Then Dep(X;Y ) := ¬ Ind (X;Y ). In addition,

for some sets X,Y and Z, we designate

Ind (X,Y |Z), (2.7)

if ∀x,y,z where P (z) > 0, P (x,y |z) = P (x |z)P (y |z).

2.3 Bayesian Networks

2.3.1 Bayesian Networks

First, we state the following definition, called the Markov condition:

Definition 2.2 (Markov Condition) Presuming a joint probability distribution P of

the random variables in some set V and a DAG G = (V ,E ). We say that (G, P ) satisfies

the Markov condition if, for each variable X ∈ V , {X} is conditionally independent of

the set of all its nondescendents given the set of all its parents. Therefore, if we designate

the sets of parents and nondescendents of X as Pa(X) and NDX respectively, then

Ind (X;NDX \ Pa(X) |Pa(X)).

We then introduce and define the minimality condition as follows.

Definition 2.3 (Minimality Condition) Presuming a joint probability distribution P

of the random variables in some set V and a DAG G = (V ,E ), it is said that (G, P )

satisfies the minimality condition if the following two conditions hold:

1. (G, P ) satisfies the Markov condition.

2. The resultant DAG no longer satisfies the Markov condition with P if we remove

any edge from G.

The following definition of Bayesian networks can be stated validly:

Definition 2.4 (Bayesian networks) Let P be a joint probability distribution of the

random variables in a set V and G be a DAG. We define (G, P ) as a Bayesian network

(BN) if (G, P ) satisfies the Markov and the minimality condition.

It is readily proven that a joint probability distribution of the BN (G, P ) that has n

variables {X1, . . . , Xn} ∈ V can be factorized as the following products of the conditional

probability distributions, as

P (X1, . . . , Xn) =

n∏
i=1

P (Xi |Pa(Xi)). (2.8)
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A term Bayesian networks was named in Pearl [1985] to emphasize some aspects

such as the subjective nature of input information, the dependence on the Bayes’ the-

orem of updating information, and distinction between causal and evidential modes of

reasoning [Pearl, 2000].

2.3.2 d-Separation

Next we describe an important DAG property called “d-separation” (Pearl [1988]; the

d denotes directional), which plays a major role in the domain of Bayesian networks.

First, we define a term collider:

Definition 2.5 Presuming that we have a DAG G = (V ,E ), then a node Z ∈ V on an

undirected path ρ is a collider if and only if two distinct incoming edges exist into Z.

If we have {X,Y, Z} ∈ V and Z is a collider and X and Y are not adjacent, then we

designate the graph as X → Z ← Y , the structure of which is called a v-structure and

Z is called an unshielded collider.

The following definition is given [Pearl, 1988]:

Definition 2.6 Letting G = (V ,E ) be a DAG, with variables {X,Y } ∈ V , and Z ⊂ V ,

an undirected path ρ between two distinct nodes X and Y is blocked using a set of nodes

Z if there is a node W on ρ for which one of the following two conditions hold:

• W is not a collider and W ∈ Z, or

• W is a collider and neither W and its descendents are in Z

We then define “d-separation”:

Definition 2.7 (d-Separation) Presuming a DAG G = (V ,E ), {X,Y } ∈ V , and

Z ⊂ V , then two nodes X and Y are d-separated by Z in G if and only if every undirected

path between two distinct nodes X and Y is blocked by Z. That is denoted by DsepG.

Two nodes are d-connected if they are not d-separated. We denote the d-separation as

DsepG(X;Y |Z). We write DsepG(X;Y ) if Z = ∅.

Furthermore, we define d-separation for subsets in nodes as follows.

Definition 2.8 Presuming that we have a DAG G = (V ,E ), and X, Y , and Z are

mutually disjoint subsets of V , it can be said X and Y are d-separated by Z in G if for

every X ∈ X and Y ∈ Y are d-separated by Z. We write DsepG(X;Y |Z). If Z = ∅,

then we write DsepG(X;Y ).
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Using the three lemmas provided in Appendix A, the following theorem can be proven,

which states that d-separation identifies all and only the conditional independences that

are necessary for G by the Markov condition.

Definition 2.9 Presuming V as a set of random variables, and X1,Y1,Z1,X2,Y2, and

Z2 ⊂ V , then if and only if Ind (X2;Y2|Z2) hold for all probability distributions P in V

and Ind (X1;Y1|Z1) also does, can we we say that Ind (X1;Y1|Z1) and Ind (X2;Y2|Z2)

are equivalent.

The following definition is necessary before stating the main theorem.

Definition 2.10 We say conditional independency Ind (X;Y |Z) is identified by d-separation

in G if one of the following holds:

• DsepG(X;Y |Z).

• X, Y , and Z are mutually disjoint, X′, Y ′, and Z′ are mutually disjoint, Ind (X;Y |Z)

and Ind (X′;Y ′|Z ′) are equivalent, and we have DsepG(X′;Y ′|Z′).

Theorem 2.1 (Verma and Pearl [1988]; Geiger et al. [1990]) Based on the Markov

condition, a DAG G entails all and only those conditional independencies that are iden-

tified by d-separation in G.

It is necessary to be careful to interpret Theorem 2.1 correctly. A particular distribution

P might exist that satisfies the Markov condition with G, and which has conditional

independencies that are not identified by d-separation. Such distributions have particular

conditional probability distributions to cancel their mutual dependencies.

According to the Theorem 2.1, if X and Y are d-separated by Z in G, the Markov

condition entails Ind (X,Y |Z). Therefore, it is said that, if (G, P ) satisfies the Markov

condition, then G is an independence map of P , also called an I-map of P . Then Bayesian

networks are also defined as minimal I-maps [Pearl, 1988].

2.3.3 Markov Equivalence

Many DAGs are equivalent in the sense that they have the same d-separations: they

cannot be distinguished by d-separation.

Definition 2.11 Letting G1 = (V ,E1 ) and G2 = (V ,E2 ) be two DAGs containing the

same set of nodes V , then G1 and G2 are called Markov equivalent if, for every three

mutually disjoint subsets X,Y ,Z ⊆ V , X and Y are d-separated by Z in G1 if and

only if X and Y are d-separated by Z in G2. That is

DsepG1(X;Y |Z)⇐⇒ DsepG2(X;Y |Z).
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(a) a serial connection. (b) a serial connection.
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(c) a divergence connection. (d) a v-structure.

Figure 2.2: Simple examples of Markov equivalence. The three graphs shown in panels

(a), (b), and (c) are Markov equivalent, although (d) is not equivalent.

For example, Fig. 2.2 shows simple graphs, with three panels (a), (b), and (c) showing

Markov equivalence. However, (d) is not equivalent to the preceding three graphs. The

types of Figs. 2.2 (a) and 2.2 (b) are called serial connections and Fig. 2.2 (c) is divergence

connections, whereas the type of graph in Fig. 2.2 (d) is called convergence connections

or also called v-structures. We denote the Markov equivalence class as an undirected

graph. For example, Fig. 2.3 represents the Markov equivalence class in Figs. 2.2 (a)–2.2

(c). We designate this as a DAG pattern. In fact, Chickering [1995] provides an efficient

method for testing whether two structures are in the same Markov equivalence class.

The previous definition is related to graph properties only. However, it is applied in

probability distributions because of the following theorem:

Theorem 2.2 Two DAGs are Markov equivalent if and only if they entail the same

conditional independencies based on the Markov condition.
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YX

Z

Figure 2.3: The DAG pattern represents the Markov equivalence class in Figs. 2.2 (a)–2.2

(c).

The proof follows immediately from Theorem 2.1. We describe a theorem that shows how

to identify Markov equivalence. Three lemmas described in Appendix A.2 are necessary

for its proof.

Theorem 2.3 (Pearl et al. [1989]; Verma and Pearl [1990]) Two DAGs G1 and

G2 are Markov equivalent if and only if they have the same links (edges without direction)

and the same set of v-structures.

Theorem 2.3 provides a simple means to represent a Markov equivalent class with a

single graph: a Markov equivalent class can be represented by a graph that has the

same links and the same v-structures as the DAGs in the class. Any direction can be

assigned to the undirected edges in this graph, which does not create a new v-structure

or a directed cycle, yields a member of the equivalent class. Therefore we define a DAG

pattern for a Markov equivalent class to be the graph that has the same links as the

DAGs in the equivalent class and has oriented all and only the edges common to all the

DAGs in the equivalent class. All DAGs in the same Markov equivalence class have the

same d-separations. Therefore, d-separation can be defined for DAG patterns:

Definition 2.12 Let Gp be a DAG pattern whose nodes are the elements of V , and let

X, Y , and Z be mutually disjoint subsets of V . We say that X and Y are d-separated

by Z in Gp if X and Y are d-separated by Z in any (and therefore every) DAG G in

the Markov equivalence class represented by Gp.

2.3.4 Faithfulness Condition

The Markov condition implies only independencies; it does not entail any dependencies.

In general, it is desirable that an edge means that a direct dependency exists. The

Faithfulness Condition entails this.
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Definition 2.13 Presuming that we have a joint probability distribution P of the random

variables in some set V and a DAG G = (V ,E ), it can be said that (G, P ) satisfies the

faithfulness condition if, based on the Markov condition, G entails all and only conditional

independencies in P . That is, the following two conditions hold:

• (G, P ) satisfies the Markov condition (This means G entails only conditional inde-

pendencies in P .)

• All conditional independencies in P are entailed by G, based on the Markov con-

dition.

When (G, P ) satisfies the faithfulness condition, it is said that P and G are mutually

faithful, and that G is a perfect map of P . The following theorems establish a criterion

for recognizing faithfulness. In addition, those theorems are bases of the constraint-based

structure learning algorithms, the type of which is an important key of this dissertation.

Theorem 2.4 (Geiger and Pearl [1988a]; Verma and Pearl [1990]) Presuming a

joint probability distribution P of the random variables in some set V and a DAG

G = (V ,E ), then (G, P ) satisfies the faithfulness condition if and only if all and only

conditional independencies in P are identified by d-separation in G.

The proof follows immediately from Theorem 2.1.

We can make a very specific distribution as an example that is unfaithful to the

DAG [Neapolitan, 2004]. See Appendix B. However, Spirtes et al. [2000] shows that

almost all assignments of conditional probabilities generate distributions that are faithful

to the DAG. Meek [1995b] extends this theorem to the case of discrete variables.

The following theorem yields the result if P is faithful to some DAG; then P is

faithful to an equivalence class of DAGs:

Theorem 2.5 If (G, P ) satisfies the faithfulness condition, then P satisfies this condi-

tion with all and only those DAGs that are Markov equivalent to G. Furthermore, if Gp is

the DAG pattern corresponding to this Markov equivalence class, then the d-separations

in Gp identify all and only conditional independencies in P . It can be said that Gp and

P are faithful to each other, and that Gp is a perfect map of P .

The proof follows immediately from Theorem 2.4.

We say that a distribution P admits a faithful DAG representation if P is faithful

to some DAG and DAG pattern. A unique DAG pattern exists with which P is faithful

because of the previous theorem if P admits a faithful DAG representation. Therefore, in

principle, a DAG pattern can be found whenever P admits a faithful DAG representation.

Methods for finding such patterns are explained in section 2.5.
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We stated that, under faithfulness condition, an edge between two nodes means that

a direct dependency exists between the nodes. The following theorem includes this result

and more [Pearl, 1988].

Theorem 2.6 (Verma and Pearl [1990]) Presuming a joint probability distribution

P of the random variables in some set of V and a DAG G = (V ,E ), then if P admits

a faithful DAG representation, Gp is the DAG pattern faithful to P if and only if the

following two conditions hold:

1. X and Y are adjacent in Gp if and only if there is no subset Z ⊆ V such that

Ind (X;Y |Z). That is, X and Y are adjacent if and only if a direct dependency

exists between X and Y .

2. X − U − Y is a v-structure in Gp if and only if U ∈ Z implies ¬Ind (X;Y |Z).

That proof is presented in Appendix A.3.

A DAG cannot be faithful to a distribution without satisfying the minimality condi-

tion with the distribution. However, a DAG can satisfy the minimality condition with

the distribution without satisfying the faithfulness condition [Neapolitan, 2004].

A serial connection and a divergence connection, which are shown in Figs. 2.2 (a)–

2.2 (c) have the same conditional independence relations Ind (X;Y |Z) if each probability

distributions is faithful to each corresponding DAG. In addition, a v-structure depicted

in Fig. 2.2 (d) has a marginal independence relation Ind (X;Y ) if the probability distri-

bution is faithful to the DAG.

2.3.5 Causal Bayesian Networks

The BNs represent probability distributions, which do not seem to represent causation.

In fact, the existence of the Markov equivalence class tells us that statistically indistin-

guishable models of DAGs exist, as shown in Figs. 2.2 (a)–2.2 (c). However, according

to discussions developed by Reichenbach [1956], the following can be said [Pearl, 2000].

In general, time ordering is considered to be the necessary condition for defining causal-

ity, which should be an important clue for distinguishing causal relations and others.

Temporal information alone, however, cannot distinguish causal patterns from spurious

correlations caused by unknown factors. Reichenbach, a philosopher, analyzed statistical

associational patterns that represent causal organizations, which can be given meaning-

ful interpretation only in terms of causal directionality: three events A,B, and C are

assumd, with the presumption that A and B are dependent, B and C are dependent,

and A and C are independent. These relations are usually interpreted as A and C as two

independent causes and B as their common effect, that is, A → B ← C. This problem
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says that there exist dependent patterns with causal directions despite a lack of temporal

information.

Reichenbach [1956] also derived the relations between probability distributions and

statistical cause–effect relations using directed edges representing the direction of time

from older to newer events, and causal networks he called1 from discussions of sta-

tistical patterns of events: Two variables X and Y , and their common cause Z have

the same graph depicted in Fig. 2.2(c) and have the same conditional independence

relation: P (X,Y |Z) = P (X|Z)P (Y |Z), which indicates Ind (X;Y |Z). A causal path

X → Z → Y is an equivalent to a serial connection shown in Figs. 2.2(a) and 2.2(b),

and also has the same conditional independence relation as the divergence connection:

P (Y |X,Z) = P (Y |Z), which is equivalent to P (X,Y |Z) = P (X|Z)P (Y |Z) (see Ap-

pendix B for the proof). Two variables X and Y , and their common effect Z have

the same graph shown in Fig. 2.2(d) and have the same marginal independence rela-

tion: P (X,Y ) = P (X)P (Y ), which indicates Ind (X;Y ). Therefore, causal patterns are

associated with conditional independencies.

Based on this theory, Rebane and Pearl [1987] were acutely aware that finding these

statistical patterns can engender the causal discovery from observational data, and they

explored causal discovery research domains. This philosophical foundation is followed

for causal discovery throughout this dissertation.

When trying to associate the statistical patterns with causal relations as discussed in

this section, we might wonder about some possible contradiction between the temporal

information implied by the directed edges and the actual ones. See Pearl [2000] for the

discussion.

2.4 Parameter Learning

In the research domain of machine learning, numerous approaches are often classified into

two categories. Probabilistic graphical models, which include Bayesian network models,

are in generative models. Generative models are those that describe how the observed

data can be generated via its structures and parameters. Therefore, in BNs, we want

to estimate parameters that represent the underlying probability distributions in limited

observational data.

Presuming that we are provided a finite training dataset D = {d1, . . . ,dN} compris-

ing i.i.d. (independent and identically distributed) samples from a distribution P , then

the sample size can be represented as |D| = N . We might not need to capture the whole

limited data D exactly because of of the goal of avoiding overfitting to samples.

1Reichenbach derived those relations for binary random variables.
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In this section, we present the essences of learning the parameters of BNs, where

we assume that the data are complete, i.e., have no missing values, and that variables

are all discrete throughout the thesis. We assume also that the structure of BNs has

been provided or learned, which is denoted as G. For learning parameters of BNs, two

methods are often used: the maximum likelihood (ML) approach and Bayesian methods.

First, we describe the ML approach and then, the more robust Bayesian approach.

2.4.1 Maximum Likelihood Estimation

The maximum likelihood (ML) estimation method is widely used in machine learning,

which is based on the maximum likelihood principle. This principle states that we should

select the model that generates the most observed data.

Definition 2.14 The likelihood function L(D |θ) is the probability of the i.i.d. instances

of D given the parameter set θ:

L(D |θ) = P (D |θ) =
N∏

m=1

P (dm |θ) (2.9)

where P (dm |θ) is the probability of the m-th instance under the parameter set. The

log-likelihood function is

LL(D |θ) =
N∑

m=1

logP (dm |θ). (2.10)

Based on the ML approach, we should choose the parameters θ̂ that maximize the log-

likelihood function of D:
θ̂ = argmax

θ
LL(D |θ). (2.11)

For a BN, presuming a set of parameters θ : θijk, 1 ≤ i ≤ n, 1 ≤ j ≤ qi, 1 ≤ k ≤ ri

where i is an index of X, j is an index of parent nodes’ configurations (j ≤ qi), ri signifies

the number of states of the Xi, and k stands for Xi’s state (k ≤ ri). Then the likelihood

can be expressed as [Cooper and Herskovits, 1992]

P (D |θ) =
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
Nijk

ijk (2.12)

where Nijk represents the number of cases in the dataset in which Xi = xki , given the

condition that Pa(Xi) = πj
i [Heckerman, 1995, revised June 1996].

Applying Lagrangian multipliers to the log likelihood function with multipliers to

constrain the parameters to a normalized probability distribution, the constraints are as
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follows:

0 ≤ θijk ≤ 1, k = 1, 2, . . . , ri (2.13)
ri∑

k=1

θijk = 1 (2.14)

for any 1 ≤ i ≤ n, 1 ≤ j ≤ qi. We drop off the indices i and j because of global and

local independencies of the parameters on BNs [Spiegelhalter and Lauritzen, 1990]. Let

Lagrangian L as

L =
r∏

k=1

θNk
k + λ

(
1−

r∑
k=1

θk

)
. (2.15)

Using partial derivative ∂L/∂θk and letting it equal zero yields

Nk

r∏
k=1

θk = λθk (2.16)

for any 1 ≤ k ≤ r. Summing both sides with respect to k and applying the constraint

eq. (2.14) to it,

λ =

r∏
k=1

θk

r∑
k=1

Nk. (2.17)

Therefore, the ML estimator is obtained as

θk =
Nk∑r

k′=1Nk′
. (2.18)

The parameters of BNs with ML estimation are obtained by restoring the indices i and

j and denoting θ̂ijk as

θ̂ijk := P (xki |π
j
i ) =

Nijk∑ri
k′=1Nijk′

. (2.19)

The parameter tables are designated with respect to the indices i, j, and k as the

conditional probability tables (CPTs).

2.4.2 Bayesian Estimation

Next, we describe the Bayesian estimation approach. When using Bayesian statistics on

discrete random variables, the estimators are often obtained using a posterior mean or

by maximizing a posterior, where the Dirichlet distributions and their hyperparameters

(smoothing parameters) set α are usually used. According to Bayesian statistics [Gelman

et al., 2004], a posterior probability density function ρ(θ|d) given data d is expressed

as follows from Bayes’ theorem: ρ(θ|d) ∝ ρ(θ)f(d|θ), where f(d|θ) is the likelihood

function and ρ(θ) is a prior distribution. In discrete variables, the likelihood function is
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the multinomial distribution function. Prior and posterior functions are both written as

Dirichlet distributions when ρ(θ) and ρ(θ|d) are both represented as natural conjugate

family distributions of the likelihood function. The Dirichlet distribution function with

parameters α1, α2, . . . , αr, where α1, α2, . . . , αr > 0, is

ρ(θ1, θ2, . . . , θr) =
Γ(
∑r

k=1 αk)∏r
k=1 Γ(αk)

r∏
k=1

θαk−1
k , (2.20)

where 0 ≤ θk ≤ 1,
∑r

k=1 θk = 1, and Γ(x) is the Gamma function, which is defined as

Γ(x) =

∫ ∞

0
tx−1e−tdt. (2.21)

The posterior is also the Dirichlet density, which is

ρ(θ1, θ2, . . . , θr | d) ∝
r∏

k=1

θαk+Nk−1
k , (2.22)

where Nk is the total number of occurrences in a state k. In the description provided

above, α are the Dirichlet hyperparameters. For instance, we demonstrate the Beta

distribution function, which is the special cases of the Dirichlet distribution function for

a binary variable, as following:

ρ(θ) =
Γ(α)

Γ(α1)Γ(α2)
θα1−1(1− θ)α2−1, (2.23)

where 0 ≤ θ ≤ 1, α1 > 0, α2 > 0, α = α1 + α2. We refer to the beta density function

as Beta(θ;α1, α2). Figure 2.4 presents some examples of the Beta distribution functions

with various parameters, where Beta(θ; 1, 1) represents the uniform density function,

In fact, Beta(θ; 0.5, 0.5) is equivalent to the Jeffrey’s prior distributions for binomial

distributions. It is noteworthy that the Beta distribution functions with α1 < 1 and

α2 < 1 are not probability density functions because those diverge at both ends and

then do not satisfy the integral condition as seen in Fig. 2.4. In general, the Dirichlet

distributions with αk < 1 for all k in eq. (2.20) are also not probability density functions.

Those functions are applied to conditional probabilities for expression in BNs. Then

the BN parameters are obtained by taking the posterior mean of the Dirichlet distribu-

tions as (for details, see Neapolitan [2004]):

θijk := P (xki |π
j
i ) =

αijk +Nijk∑ri
k′=1(αijk′ +Nijk′)

. (2.24)

As expressed in eq. (2.24), it is clear that the hyperparameters α play a role in avoid-

ing overfitting because α can contribute to some extent when the data size is not
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Figure 2.4: Some Beta distribution functions, which are special cases of the Dirichlet

distribution functions for a binary variable

large. However, because of the lack of intelligible meaning of α in a case without prior

knowledge about the data, α is often assigned manually to various values including

αijk = α = 1, which represents uniform prior distributions [Cooper and Herskovits,

1992] and αijk = α = 0.5 [Clarke and Barron, 1994; Suzuki, 1996].

For learning BNs, Silander et al. [2007] reported that the optimal values of hyper-

parameters are highly sensitive to each dataset. It has not been found within Bayesian

framework how to decide the optimal values using principled methods. For that reason,

it has persisted as a critical issue.

This dissertation provides an alternative learning approach to the Bayesian approach,

which has the similar effect of avoiding overfitting and which is not sensitive for selecting

entailed hyperparameters.
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2.5 Structure Learning

In this section, we describe the structure learning methods for BNs, where two main

approaches exist: constraint-based and score & search based, and their hybrid approach

also exists.

Learning BN structures means searching the best encoding for some criterion. If

we search it for whole space of structures, then it has been shown that the size of the

space f(n) grows more than exponentially with the number of nodes [Jensen and Nielsen,

2007]:

f(n) =

n∑
i=1

(−1)i+1 n!

(n− i)!n!
2 i(n−i)f(n− 1). (2.25)

Therefore, to find the best BN (or DAG pattern) by considering all DAG patterns as

computationally infeasible when the number of nodes is not small. In fact, Chickering

et al. [2004] shows that learning BNs is an NP-hard problem for widely acceptable

conditions. In addition, the consumed time grows in general with training samples

because the dataset is scanned for each calling to calculate a score or a statistic.

2.5.1 Constraint-Based Structure Learning

Herein, we state a basic concept of the constraint-based structure learning methods using

the notation presented above. The approach uses concepts and properties such as con-

ditional independencies, d-separations and faithfulness conditions, which are described

in the preceding sections.

Reportedly, Wermuth and Lauritzen [1983] began the use of conditional indepen-

dence tests for constructing graphical models. The constraint-based structure learning

approaches are often related to causal discovery because the important procedure of the

approaches is finding v-structures with marginal independencies, which can be consid-

ered as causal patterns of the common effects based on the theory of Reichenbach [1956]

described in 2.3.5. In fact, Rebane and Pearl [1987] specifically devoted attention to the

adjacent triplets of three possible types, that is, serial, divergent, and convergent triplets,

which Reichenbach [1956] suggested that those are important causal patterns. Addition-

ally, they took particular note of the fact that the only convergent v-structures are

distinguishable from other types by statistical tests. Then they developed a causal net-

work recovery algorithm that uses this property and orients edges within the constraints

of DAG as far as possible. From this work, the causal discovery tasks are launched.

However, their algorithm assumed that the DAGs representing causation are limited to

poly tree networks, which cannot allow any loop in the associated undirected graphs.

Then Verma and Pearl [1990] and Spirtes et al. [1990] developed basic algorithms for
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recovering general DAG patterns in the context of causal inference, which is called the

Inductive Causation (IC) algorithm and the SGS algorithm for each2.

We describe the basic algorithm following Pearl [2000] as follows. For a BN that

satisfies the faithfulness condition, the basic concepts are the following:

• Search for a set Z for each pair of variables X and Y in V such that Ind (X;Y |Z)

holds in P . Therefore, X and Y are conditionally independent given a set Z in P .

Construct an undirected graph such that nodes X and Y are connected with an

undirected edge if and only if no set Z can be found.

• For each pair of nonadjacent variables X and Y with a common neighbor W , check

if W ∈ Z. If not, then add arrowheads pointing at W (i.e. X → W ← Y ), the

type of which is called a v-structure.

• Orient as many of the undirected edges as possible subject to two conditions: (i)

the orientation should not create a new v-structure; and (ii) the orientation should

not create a directed cycle graph.

Orientation Rules

In the last step of the basic algorithm presented above, Verma and Pearl [1992] provided

the orientation rules after recognizing v-structures, as shown in Fig. 2.5 as follows:

Theorem 2.7 (Verma and Pearl [1992]) Presuming that we have a hidden DAG struc-

ture and we have a partially oriented DAG G that is assumed to have Markov and faith-

fulness conditions and is oriented by recognizing v-structures. The following three rules

can also facilitate edge orientation:

• Rule1: In G for three nodes X, Y and Z, if a directed edge exists from X to Y ,

if an undirected edge links Y and Z, and if neither a directed or undirected edge

exists between X and Z, then orient the edge from Y to Z.

• Rule2: In G for three nodes X, Y and Z, if two directed edges link X to Y and

link Y to Z, and if an undirected edge exists between X and Z, then orient the

edge from X to Z.

• Rule3: In G for four nodes X, Y , Z and W , if directed edges exist from Y and W

to Z and if X are adjacent to Y , Z and W with undirected edges, then orient the

edge from X to Z.

2In another context, Fung and Crawford [1990] also developed an algorithm for constructing an

undirected network structure based on conditional independences.
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The proof is presented in Appendix A. The completeness of the rules was proved by

Meek [1995a].
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Y Z

(a) Rule 1.

X

Y Z
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Y Z

(b) Rule 2.
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Y
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(c) Rule 3.

Figure 2.5: Orientation rules for DAG patterns.

PC Algorithm

After developing the basic algorithm (SGS), Spirtes and Glymour [1991] provided more

sophisticated and efficient algorithm, called the PC algorithm, in which the conditional

independence tests are conducted in order of the size of conditioning sets |Z|, starting
from the empty set. It has been a representative constraint-based algorithm because

the order makes the tests finish in polynomial time. The algorithm is also used later.

The PC, which constructs partial DAGs (PDAGs) that represent the Markov equivalent
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models, efficiently finds the conditional independences; that is the following algorithm:

1. Assume a non-negative integer m = 0.

2. Let G be a complete undirected graph.

3. Repeat:

(a) For all pairs of variables (X,Y ), check Ind (X,Y |Z) for all subsets Z

such that |Z| = m and Z ⊂ Adj(X) or Z ⊂ Adj(Y ).

If there exists a Z such as Ind (X,Y |Z),

then remove the edge X − Y from G, and add Z to SepSet(XY ).

(b) Set m = m+ 1.

Until no variable has more than m adjacencies,

or a stopping condition is satisfied.

4. Orientation rules are performed.

5. Return the partially directed acyclic graph G.

Therein, |X| denotes the size of members in X; Adj(X) is a set of adjacent nodes to X.

The orientation rules [Verma and Pearl, 1992], described in step 4 of the algorithm, are

as follows:

4-1. If U /∈ SepSet(XY ), orient X − U − Y as X → U ← Y (v-structure)

for each uncoupled set of X and Y such as X − U − Y .

4-2. Repeat this step while more edges can be oriented.

4-2-1. Orient U − Y as U → Y for each uncoupled set of X and Y such as

X → U − Y .

4-2-2. Orient X − Y as X → Y for each set of X and Y such that a path exists

from X to Y .

4-2-3. Orient U −W as U →W for each uncoupled set of X and Y such as

X − U − Y , X →W , Y →W , and U −W .

The computational complexity of the algorithm is provided, which we express as W (n)

for the number of conditional independence tests required in the algorithm. Let n be the

number of nodes in V and let k be the maximum size of adjacent nodes in the produced

DAG pattern Gp. Then n choices exist for the value of X in the first for loop. Once

X is chosen, then n − 1 choices exist for Y . For given values of X,Y , and i, we must

check at most n−2Ci subsets for d-separating X and Y , where we designate combination

number taking m from n as nCm. The value of i, which are considered, are at most 0–k.
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Therefore, we have the bound as follows:

W (n) ≤ n(n− 1)
k∑

i=0

n−2Ci ≤
n2(k + 1)(n− 2)k

k!
. (2.26)

The algorithm is reasonably efficient if the DAG pattern is sparse (i.e. no node is adjacent

to numerous other nodes).

Furthermore, the correctness of the SGS and the PC is proved.

Theorem 2.8 (Spirtes et al. [2000]) If the input data to the SGS or PC algorithm

is from a joint probability distribution P of the random variables in some set V and a

DAG G = (V ,E ) and (G, P ) satisfies the faithfulness condition, and if the conditional

independence relations are correctly detected, then each output is a pattern that represents

the faithful Markov equivalent class of G.

The proof is presented in Appendix A.

Classical hypothesis testing such as χ2 and G2, for checking conditional indepen-

dence, has been used frequently within BN learning algorithm under a faithfulness as-

sumption [Spirtes et al., 2000; Tsamardinos et al., 2006]. It is also used herein later.

Statistics such as χ2 or G2 are expressed here as S2. If S2 can be approximated to a χ2

distribution with degrees of freedom df : χ2
df , and if S2 < χ2

α,df , where χ
2
α,df is a threshold

value such that P (χ2
df ≥ χ2

α,df ) = α, in which α is a fixed confidence level, then we do not

reject the null hypothesis of (conditional) independence between two selected variables

given selected conditional sets; otherwise we reject it. The validity of approximation of

statistics such as χ2 or G2 is proved in asymptotic regions [Kullback, 1968]. However, it

is not justified for a small sample size. Spirtes et al. [2000] used it in their PC algorithm,

as a criterion for the validity: the algorithm does not perform an independence test if

the sample size is less than 10 times the number of different possible joint patterns of

the two variables and conditional sets, which means that the variables are assumed to

be conditionally dependent. This impracticality is a weak point of the constraint-based

learning methods of BNs because learning BNs often must process insufficient data.

Although few studies were done after the PC, another representative constraint-based

algorithm is that called Three Phase Dependency Algorithm (TPDA) [Cheng et al., 1997,

2002], which is the algorithm that starts from constructing the Chow–Liu maximum

spanning tree [Chow and Liu, 1968] networks. The name came from the fact that the

algorithm has three phases (Chow–Liu, thickening, and thinning phases). Ramsey et al.

[2006] improved PC algorithm by introducing ambiguity in deciding orientation of edges,

which is related to our research because of their identical problem consciousness (see also

Chapter 4).
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This approach was soon developed by Verma and Pearl [1990] and Spirtes [1991]

for detecting latent common causal variables. A research group at Carnegie Mellon

University has developed latent variable models for over 10 years and then they extended

DAG models to Partial Ancestral Graph (PAG) and Markov Ancestral Graph or Mixed

Ancestral Graph (MAG) [Richardson and Spirtes, 2002; Ali et al., 2005; Zhang and

Spirtes, 2005]. Their descriptions are omitted because we do not deal with the latent

variable models in this thesis.

2.5.2 Score and Search Based Structure Learning

The other major approach is called the score and search approach. In general, this

approach searches the best score structure by adding, removing, and reversing edges.

One might say that the first trial in this approach was a Chow–Liu maximum spanning

tree algorithm, where the score used mutual information existed between variables X

and Y [Cover and Thomas, 2006]:

I(X;Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
. (2.27)

However, their algorithm generates undirected tree networks. Herskovits and Cooper

[1990] used the maximum entropy principle3 with Bayesian smoothing, which is appar-

ently resembles our method only in using entropy (see, Chapter 4). In 1991, Cooper and

Herskovits [1991] developed a greedy search algorithm called K2 and used the Bayesian

posterior function, which has dominated this approach to date. For discrete variables,

they obtained a posterior probability distribution using Dirichlet distributions as

P (D |G) =

n∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
, (2.28)

where they used uniform prior distributions (i.e. hyperparameter αijk = α = 1). It is

called the Dirichlet prior score metric (DPSM). Buntine [1991] also assumed the Dirichlet

prior and introduced a metric called BDeu, which is a special case of BDe (Bayesian

Dirichlet equivalence) metric Heckerman et al. [1995] proposed. Their proposal is based

on the likelihood equivalence assumption and they showed that the Dirichlet prior with

the constant sum of the hyperparameters for a variable is a sufficient condition to satisfy

the assumption. This hyperparameter is called the equivalent sample size (ESS).

Actually, Suzuki [1993] first applied the correct minimum description length (MDL) [Ris-

sanen, 1978] principle to learning BNs, and proved that it is approximated from the

3In fact, they used scores as minimum entorpies by mistake, such as maximum likelihood, see chapter

5
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DPSM with α = 0.5. Other score metrics such as the Bayesian information criterion

(BIC) [Schwarz, 1978] and Akaike information criterion (AIC) [Akaike, 1974] are also

often used in approaches. For example we described the MDL score for BNs as

Score[MDL] := logP (D |G)

=

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
− 1

2

n∑
i=1

qi(ri − 1) logN, (2.29)

where N :=
∑qi

j=1Nij and qi denotes the degree of freedom in the parent set of node i.

It is noteworthy that BIC is approximately the same formula as that shown in eq. (2.29)

and that AIC is the form of MDL replaced logN with 2.

One disadvantage in this approach is that it is not computationally efficient because it

must search a large number of combinations of nodes and their parent nodes to obtain the

best score structures. The K2 algorithm proposed by Cooper and Herskovits [1991] used

a greedy approach. Many studies since then have adopted the greedy search. Suzuki

[1996] first proposed a practical exact search algorithm using the branch and bound

algorithm. Tian [2000] improved Suzuki’s algorithm to be more computationally efficient.

During the decade, many other scores and search methods have been proposed. For

use with a few dozen nodes, some researchers proposed exact search methods [Koivisto

and Sood, 2004; Silander and Myllymaki, 2006]. Chickering [2002] proposed Greedy

Equivalent Search (GES) algorithm, for which he proved correctness in a large sample

limit. Friedman et al. [1999] and Moore and Wong [2003] proposed fast and accurate

search algorithms, respectively called Sparse Candidate (SC) and Optimal Reinsertion

(OR) algorithms. Ueno [2008] recently proposed an optimal method of ESS in Dirichlet

prior distributions using the empirical Bayesian approach. Furthermore, Tsamardinos

et al. [2006] showed that the score and search methods, which have been advancing

considerably as described above, are superior to constraint-based methods in their large

scale experiments using PC, TPDA, GES, SC, OR, and their algorithms.

One advantage of score and search method is the ability of treating missing data, for

which Friedman [1998] proposed a structural EM algorithm in which the golden standard

EM algorithm [Dempster et al., 1977] is applied for learning BNs.

One disadvantage of these methods is treating latent variable models, especially la-

tent common causes. However, Elidan et al. [2001] proposed a discovering latent variables

method from perspective of network cardinality, which can find a succinct model as more

statistical predictive models than causal models.

A current major interest in this approach is finding the optimal hyperparameters

(ESS) of the prior distributions [Steck, 2008] because high sensitivity for those was found

to be obvious in the optimal structure learning [Silander et al., 2007]. The result seems
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to explain the mystery of poor performance of learning BNs using MDL score, which

Allen and Greiner [2000] reported: As described above, Suzuki showed that the MDL

score for BNs is derived from the DPSM with a constant Dirichlet hyperparameter while

the result of Silander et al. [2007] showed that the optimal Dirichlet hyperparameter is

not a constant value, but is needed for each dataset. The author’s problem consciousness

is focused on the issue in this dissertation.

2.5.3 Hybrid Structure Learning

Singh and Valtorta [1993] first developed a hybrid algorithm both of constraint-based

(PC) and score-search (K2) methods. Subsequently, Spirtes and Meek [1995] combined

their PC algorithm and a greedy Bayesian pattern search (GBPS) algorithm for finding

the highest score, which accomplished good results. Recently Tsamardinos et al. [2006]

proposed an algorithm that they called the Max–Min Hill Climbing (MMHC) search

algorithm, which is well-balanced for speed and accuracy. These studies showed the

effective a strategy by which the constraint-based algorithms are used for obtaining

initial patterns rapidly, which reduces the search spaces for accurate and slow score and

search algorithms. They are used last.

2.5.4 Differences between the approaches

Next, differences between the constraint-based and score-search-based structure learning

are considered. Constraint-based approaches have emphasized the graphical properties

of independencies based on d-separations, while the score-search-based approaches on

statistical properties based on the Bayesian estimations. The DPSM score in eq. (2.28)

can be decomposed into the local score of a variable and its parent variables as

score(D, Xi, PA(Xi)) =

qi∏
j=1

Γ(αij)

Γ(αij +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
, (2.30)

which means that the score-search approaches, in general, are intended to find the best

combinations of a node and its parent nodes in view of statistical models. Because of

its relativity, it seems difficult to have clues for finding latent common causal variables.

However, the constraint-based approaches attend to find absolutely conditional inde-

pendence relations between variables, which can find v-structures that have important

roles of causality. Therefore, the two approaches should probably be used in different

purposes: the score-search approach is suitable for finding statistical predictive mod-

els, and the constraint-based approach is suitable for finding causal models because

of Reichenbach’s philosophical foundation that associates causality with statistical pat-

terns [Reichenbach, 1956; Pearl, 2000], although the difference vanishes when sufficient
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data are available under the assumption of no latent variables. In that sense, it does not

seem suitable to use score–search methods or hybrid methods for finding gene regulatory

networks, where the main purpose should be finding causal networks.

Additionally, it would be quite different to estimate statistical amounts such as scores

or G2 (or χ2) statistics. The former is estimated using Bayesian method— the latter

by classical statistics. Therefore, the overfitting issue is expected to reduce the learning

ability of the constraint-based approaches, and should then be resolved to yield high

performance using constraint-based approaches. However, the Bayesian method entails

the difficulty of high sensitivity for the value of hyperparameters and of selecting their

optimal values. A new approach is proposed for this issue in Chapter 4 after some

preparations in Chapter 3.



Chapter 3

Parameter Learning using the

MFE Principle

The salient goal of this dissertation is providing a novel framework of learning Bayesian

networks for both parameters and structures that is effective for insufficient data. In this

chapter, we first propose a new learning methodology using the minimum free energy

(MFE) principle, which originates from thermodynamics and which has a relation to

the second law of thermodynamics. The concept “Data Temperature” is introduced for

using the MFE principle effectively, which is a key idea of the thesis. The framework

described in this chapter plays a significant role in the progress of structure learning

because parameter estimation is also needed for dealing with probability distributions,

even for learning structures. This research was presented earlier by the author [Isozaki

et al., 2008, 2009].

3.1 Introduction

As described in Chapter 2, maximum likelihood (ML) estimation is often used for esti-

mating parameters of BNs, which means conditional probabilities in this thesis. However,

when training data are few, the estimated parameters of BNs with ML are likely to fall

into overfitting of the data. Bayesian methods, which involve prior distributions, are ef-

fective to avoid this problem. For expressing the prior distributions of discrete variables,

the Dirichlet distribution function is usually used [Gelman et al., 2004]. This prior has

hyperparameters, which can be interpreted as prior imaginary instances (we designate

it as α for consistency in this dissertation). Some studies have used hyperparameters

such as α = 1 (meaning uniform prior distributions) [Cooper and Herskovits, 1992]

or α = 0.5 [Clarke and Barron, 1994; Suzuki, 1996]) when no prior knowledge exists.

29
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However, it remains controversial to decide hyperparameters of prior distributions in

theoretical perspectives, which are related to noninformative priors [Gelman et al., 2004;

Robert, 2007]. From a practical perspective, Yang and Chang [2002] evaluated various

hyperparameters in some simulation experiments for learning BNs and reported that

α = 10 is best. Therefore, it seems difficult to find optimal α consistently from both

theoretical and practical perspectives. Additionally, it has been clarified as a critical

issue to decide optimal hyperparameters because Silander et al. [2007] recently reported

that optimal hyperparameters are quite sensitive for each dataset.

Another approach to avoid overfitting to data is incorporation of proper entropy

into estimators of the parameters. One effective idea for treating entropy is using the

principle of minimum (Helmholtz) free energy (MFE), which has its roots in statistical

thermal physics [Kittel and Kroemer, 1980; Callen, 1985; Tazaki, in Japanese, 2000].

The free energy F , if described in the manner of physics, consists of (internal) energy

U , entropy H, and (inverted) temperature β. In fact, β balances the contributions of U

and H to the free energy.

In recent years, the MFE principle and similar concepts have been used in widely

various areas of machine learning and data mining. Nevertheless, to our knowledge, the

meaning of temperature has not been established yet. Consequently, β is treated in

various ways at this stage: annealing parameters [Pereira et al., 1993; Ueda and Nakano,

1995], fixed parameters [Basu et al., 1998; Watanabe, 2001; LeCun and Huang, 2005;

Yedidia et al., 2005], or optimizable parameters in each dataset [Hofmann, 1999]. The

pre-fixed method apparently has a poor foundation and the optimization method using

held-out data is not efficient in computational costs and is ineffective for very small data

size. Consequently, no universal or robust value of β has been reported to date.

Differently from the approach described above, we take model-based approaches for β.

For that purpose, a hyperparameter is introduced for β. Using this approach, we intend

to explore robust estimation methods against the hyperparameter for BNs. As described

in this dissertation, a meaning of β in the MFE principle is proposed by combining a

physical quantity with a statistical quantity, and an explicit model of β as a result of

our interpretation of the role of β. We assessed our method with respect to accuracies

and robustness in relation to classification tasks using real world data.

This chapter presents an alternative method for estimating the proper parameters

of BNs. The method uses the principle of minimum (Helmholtz) free energies (MFEs).

The free energies with finite temperature are minimized for estimating proper param-

eters of BNs instead of maximizing likelihood or taking the expectation values of the

Bayesian posterior distributions. For presenting the approach, entropy, energy, and tem-

perature must be properly defined. Temperature is particularly regarded as important:
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it determines the degree of contribution of entropy to the free energy.

3.2 Free energies

The (Helmholtz) free energies were introduced originally into the field of thermody-

namics. The energies are defined such that a maximum thermodynamical work is the

difference between values of free energies in two distinct states [Tazaki, in Japanese,

2000], where the maximum work is obtained by an isothermal quasistatic operation from

a closed system under the condition of a constant temperature. Therefore, the free

energy can be regarded as an amount, in a constant temperature, corresponding to a

potential energy in dynamics (e.g., gravitational and electro-magnetic potential energy).

In light of this meaning, the free energy is viewed as an amount that is extracted freely

from a thermodynamical system.

In thermodynamics, the (Helmholtz) free energy F of a system is defined using

internal energy U , entropy H, and the (inverted) temperature β0 (= 1/temperature) as

F := U − H

β0
, (3.1)

where (inverted) temperature β0, which is a parameter, balances contributions of U and

H to F . According to the principle of MFE, given some temperature β0, the stable state

of the system is realized to minimize F [Callen, 1985].

3.3 Minimum free energy principle on probability distri-

butions

The principle of MFE is used for parameter learning. We denote random variables as X,

which are assumed to be discrete variables, and internal states as x. For a definition of

entropy terms, Shannon entropy [Cover and Thomas, 2006] is adopted, using probability

distributions P (X) as

H(X) := −
∑
x

P (X = x) logP (X = x). (3.2)

The system variable is assumed as a probability distribution. We define U as the

Kullback–Leibler (KL) divergence [Cover and Thomas, 2006], which represents the simi-

larity or distortion between the hidden distribution and the distribution estimated using

the ML method because we will incorporate the ML principle under some conditions.



32 Parameter Learning using the MFE Principle

Consequently, the internal energy is defined as

U(X) := D(P (X) || P̂ (X))

=
∑
x

P (X = x) log
P (X = x)

P̂ (X = x)
, (3.3)

where P̂ (X) signifies the probability distribution estimated using the ML method and

P (X) stands for the hidden probability distribution. It is noteworthy that estimations

obtained by minimizing the KL divergence in eq. (3.3) are equivalent to ML estimations

because, for general distributions P and Q, D(P ||Q) ≥ 0 and D(P ||P ) = 0.

The hidden probability distribution parameterized by β0 is the solution of the min-

imizing F with a constraint as
∑

X=x P (X = x) = 1. Therefore, it is solved using

Lagrangian multipliers. The Lagrangian L is expressed as

L = F + λ(
∑
x

P (x)− 1)

=
1 + β0
β0

∑
x

P (x) logP (x)−
∑
x

P (x) log P̂ (x)

+λ(
∑
x

P (x)− 1)

=
1

β

∑
x

P (x) logP (x)−
∑
x

P (x) log P̂ (x)

+λ(
∑
x

P (x)− 1), (3.4)

where λ is the Lagrange multiplier and we define a parameter β for later convenience,

transformed from the β0, as

β :=
β0

β0 + 1
. (3.5)

In relation to that expression, if β0 → 0, then β → 0 (high temperature limit); if β0 →∞,

then β → 1 (low temperature limit). We designate the β temperature later. Then the

solution is derived from the partial derivative: ∂L/∂P (x) = 0. Therefore, the estimated

parameter Pβ(X) is expressed in the form of Boltzmann’s law [Kittel and Kroemer,

1980], which is well known in statistical physics as

Pβ(X = x) =
exp(−β(− log P̂ (X = x)))∑
x′ exp(−β(− log P̂ (X = x′)))

. (3.6)

Practically the equivalent form is used as

Pβ(X = x) =
P̂ β(X = x)∑
x′ P̂ β(X = x′)

, (3.7)
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where P̂ represents the relative frequency: the ML estimator.

It is straightforward to extend the method described above to cases of multivariate

systems by proper indexing for joint states. Therefore, Boltzmann’s law, corresponding

to eq. (3.6), becomes

Pβ(X = x) =
exp(−β(− log P̂ (X = x)))∑
x′ exp(−β(− log P̂ (X = x′)))

, (3.8)

where X is denoted as a multivariate set, and x is a joint state of X.

These formulas (as eq. (3.6) or (3.7)) have been reported elsewhere, in works of

Hofmann [1999] and Ueda and Nakano [1995]. However, the combination of the explicit

definitions of U such as eq. (3.3) and the transformation in eq. (3.5) have not been

reported in the literature. They can more easily lead to intuitive comprehension of the

role of minimizing the free energy and temperature β in information science. Therefore,

we can proceed to modeling β.

3.4 Introducing “Data Temperature”

From the definitions of U , H, and F provided above, it is apparent that parameter

estimators by MFE tend to be ML estimators at low temperature (large β) and tend to

be dominated by the entropy at high temperature (small β). On the other hand, from

the perspective of data science, we hope to realize ML-like estimators for large samples

and avoid overfitting for small samples. Therefore, temperature is related to the number

of samples as follows. Large sample size corresponds to low temperature. Small sample

size corresponds to high temperature. In other words, probabilistic fluctuation, which

is large for small data size, is regarded as thermal fluctuation, which is large for high

temperature, and vice versa in our approach. This concept is designated as the “Data

Temperature”. Then, we assume the following statement:

Assumption 3.1 (“Data Temperature”) “Data temperature” β is defined as 0 <

β < 1 and as a monotone increasing function of available data size.

Based on this assumption of the relation described between data size and β, we can

express β explicitly as some monotone function of the number of samples, which enables

us to leverage the “Data Temperature” concept effectively. Although the exact mode

of measuring β is left open, some clues for modeling β exist. First, β approaches 1

such that estimated probabilities approach those by ML when the data size is large,

whereas β approaches 0 such that estimators are uniform for internal states when the

data size is small. The larger the data size N is, the smaller the difference coefficient
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of β for N is. However, the smaller N is, the larger the difference coefficient. For that

reason, a reasonable model would be a convex monotone increasing function that fulfills

the boundary conditions described above. Next, the necessary data size is apparently

dependent on the degrees of freedom of the random variables X. In other words, the

more degrees of freedom the random variables have, the larger the data size would be

needed to regard the estimators as near-ML estimators. Then, γ and Nc are introduced

for separating effects of X’s degrees of freedom from the β. Furthermore, γ is a function

of the degrees of freedom, and Nc is a decoupling constant, which is introduced as a

hyperparameter for β, and which is expected to play some role other than that related

to γ.

Then, we create a model of β as a simple monotone function of data size N , Ñ , γ,

and Nc, as shown in the following:

β := 1− exp

(
− Ñ

Nc

)
, (3.9)

Ñ :=
N

γ
, (3.10)

where we adopt an exponential decay function that often appears in natural science.

Ñ denotes averaged sample size per (effective) degree of freedom (γ), and plays an

significant role in statistical science such as statistical model selection. Therefore, this

model is a very simple one under the assumption of the exponential function with a

parameter. Three examples of the proposed function are portrayed in Fig. 3.1, which

are the cases in which γ is assumed to be 1 for simplicity and Nc = 1, 2, 5, where we can

recognize that Nc denotes the decay rate of β.

According to the description given above, the function γ must necessarily be decided.

The simplest form of γ is one’s own degrees of freedom,

γ := |X| − 1, (3.11)

where |X| is denoted as a number of states of a random variableX. It is designated as the

“linear-state model”. However, we consider that this model might be an approximate

model under the limit of uniform distributions over the internal states. In practice,

fewer data are necessary than in the uniform distributions because data distributions

have some bias. For that reason, we consider another model of γ that is denoted with

effective degrees of freedom, which can be expressed, in light of the explanation given

above, as the following:

γ := log(|X|). (3.12)

This form of γ is an approximate expression of the effective degrees of freedom. The

expression in eq. (3.12) is denoted as a “log-state model”. These parameter learning
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Figure 3.1: Examples of the proposed exponential function. γ = 1 and Nc = 1, 2, 5.

methods are called MFE with explicit β (MFE–EB) methods.

The relation between the temperature and data size can provide a perspective to

unify the maximum likelihood (ML) and the maximum entropy (ME) principles under

the MFE principle with varying data size because the eq. (3.6) has the same form of the

ME principle because β can be regarded as an associated constraint condition.

It is important to refer to the relation between KL divergence and the MFE principle.

The MFE principle can be regarded as an extension of minimizing KL divergences by

defining a tempered KL divergence denoted as Dβ(P ||Q), which is defined as

Dβ(P (X) ||Q(X)) :=
∑
x

P (x) log
P (x)1/β

Q(x)
. (3.13)

Therefore, a free energy F can be expressed as a distribution P (x), which should be

estimated, and a probability function estimated by ML, which is designated by P̂ (x) as

follows:

F = Dβ(P (X) || P̂ (X)) =
∑
x

P (x) log
P (x)1/β

P̂ (x)
. (3.14)

Consequently, adopting the MFE principle for statistical estimation, the preferred dis-

tributions have added extra entropies to the ML distributions according to “Data Tem-

perature” (available data size) under non-zero and finite temperature: 0 < β < 1, where,
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if β → 1, then the tempered KL divergence converges to the KL divergence.

In closing this subsection, we can comment on the meaning of using the MFE princi-

ple in information sciences. In analyzing data, the free energy can be regarded similarly

with the view used for thermodynamical systems: as an amount that is extracted freely

from a data system under a given data size (temperature). This property is apparently

very much preferred for inference, learning, and estimation of various kinds under a fi-

nite available data size because we wish to obtain maximum effective information from

limited exploitable data.

3.4.1 Estimating conditional probabilities

In a BN that has discrete variables, conditional probability tables are often assumed to

be independent in each conditioning event [Spiegelhalter and Lauritzen, 1990]. Using this

local independent assumption, we naturally extend the form of β to local forms, which

we attach to each node and configuration of its parent set. Consequently, in BNs, the

free energy is defined in each node and configuration. Therefore, more detailed control

of entropy is possible in conditional probabilities than in multivariate joint probabilities.

In fact, Nij is defined as Nij :=
∑

k′ Nijk′ if the same indices i, j, k and notation Nijk

described in Section 2 are used. Furthermore, βij is definable in an exponential function

as

βij = 1− exp

(
− Nij

γiNc

)
, (3.15)

where the “linear-state model” can be adopted as

γi := |Xi| − 1, (3.16)

or the “log-state model”, as

γi := log(|Xi|). (3.17)

Finally, the parameters of BNs, θijk, are expressed as the following.

θijk =
exp(−βij |MLLijk |)∑
k′ exp(−βij |MLLijk′ |)

=
θ̂βijk∑
k′ θ̂

β
ijk′

(3.18)

Therein, MLLijk is defined as an expression using ML estimators θ̂ijk: MLLijk =

log θ̂ijk ≤ 0.

3.5 Relation to Dirichlet hyperparameters

The MFE–EB method is an alternative to the Bayesian method. The two methods share

some mutual relations. Here, the Bayesian Dirichlet hyperparameters can be derived
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from the MFE principle given some temperature by using eq. (2.24) and eq. (3.7) as

follows.

αk +Nk∑r
k′=1(αk′ +Nk′)

=
Nβ

k∑r
k′=1N

β
k′

(3.19)

Therefrom, we omit the indices i, j for simplicity. Consequently, we obtain a transfor-

mation formula between Bayesian Dirichlet hyperparameters and a temperature as the

following compact representation of r-dimensional simultaneous equations:

αk =
Nβ

k (α+N)−NkN(β)

N(β)
, (3.20)

where we designate α :=
∑r

k=1 αk, N :=
∑r

k=1Nk, and N(β) :=
∑r

k=1N
β
k , and which

can be generally solved using numerical methods. Therefore, despite a lack of prior

knowledge, the obtained Dirichlet hyperparameters are dependent on the internal state,

which is denoted as k, when we adopt the estimator that is expressed in the Boltzmann

formula parameterized with temperature. This formula asserts that the MFE principle

gives Dirichlet hyperparameters that are dependent on the internal state and available

data under a given temperature. In other words, this formula indicates to us that

the MFE principle gives Dirichlet prior distributions that vary with available data if

some temperature is given. Additionally, Nc can be regarded in “Data Temperature”

model as a hyper-hyperparameter for estimating the parameters of BNs. Consequently, a

deeper hierarchical structure of parameters of BNs is assumed in the “Data Temperature”

assumption, although it has not been introduced into Dirichlet hyperparameters when

no prior knowledge is available.

3.6 Experiments

The experiments described in this section are undertaken to investigate whether the

MFE–EB method can avoid overfitting in practice to the same degree that the Bayesian

method can when the available data are few. Furthermore, the robustness of our method

is examined against values of hyperparameters because it is important in practical use,

especially when it is difficult to search optimal hyperparameters. For this purpose, UCI

repository data [Newman et al., 1998] and the classification accuracy of Bayesian network

classifiers (BNCs) are used along with a pre-trained network structure to evaluate the

parameter estimation accuracy because the classification accuracy depends on parameter

estimation accuracy in such situations.
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Figure 3.2: Example of a Näive Bayes classifier.

3.6.1 Bayesian network classifiers

In fact, BNCs are restricted models of BNs, which are often used for classification tasks.

The BNCs have one class variable in addition to other variables, and predict the class

label with given information related to the other attributes. The most famous models

among BNCs are Näive Bayes classifiers [Langley et al., 1992], which are assumed to be

conditionally independent of each attribute Xi and Xj given class label Xc, denoted as

Xi ⊥⊥ Xj |Xc. A sample of Näive Bayes classifiers is presented in Fig. 3.2, where Xc

denotes a class node and Xi (i = 1, 2, . . . , 10) are other attributes. Friedman et al. [1997]

observed that, in many benchmark datasets, unrestricted BNs underperform Näive Bayes

classifiers, Näive Bayes type models are used for evaluation of our method. This work

adopted generally augmented Näive Bayes classifiers (GANs), which have an unrestricted

network in attributes, except for class variables [Cheng and Greiner, 1999; Friedman

et al., 1997]. Networks of this type are useful because they reportedly achieve the highest

accuracies in many datasets among NBs, BNs, and GANs [Cheng and Greiner, 1999].

A network of this type is shown in Fig. 3.3 as an example, where Xc denotes a class

node and Xi (i = 1, 2, . . . , 10) are other attributes. Furthermore, an unrestricted DAG

structure is introduced among the attributes ({X1, X2, . . . , X10}).
For executing structural learning of GANs, the PC algorithm [Spirtes et al., 2000]

was used, which is described in Chapter 2 for structure learning of BNs, and which

usually uses hypothesis tests or mutual information tests for identifying conditional in-

dependence relations among variables (see Chapter 2). The PC algorithm was modified

for application to BNCs according to the methodologies of Cheng and Greiner [1999] as
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follows (we designate whole variables V , a set of variables Z and a variable X or Y ):

• replacing mutual information between attributes X,Y ∈ V : I(X;Y ) with a con-

ditional mutual information I(X;Y |Xc), where the mutual information is defined

as [Cover and Thomas, 2006]

I(X;Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
, (3.21)

and the conditional mutual information as [Cover and Thomas, 2006]:

I(X;Y |Z) =
∑
x,y,z

P (x, y, z) log
P (x, y | z)

P (x | z)P (y |z)
. (3.22)

• replacing every conditional mutual information test I(X;Y |Z) with I(X;Y |{Z, Xc}),
where Z ⊂ V \Xc,

• and adding the class node Xc as a parent of every other attribute,

where the conditional independence of X and Y given subsets Z is measured using the

conditional mutual information [Cheng et al., 2002] in our experiments. Actually, X and

Y are conditionally independent given that the condition set Z if I(X;Y |Z) is smaller

than a certain threshold value ϵ > 0, as Cheng and Greiner [1999] did for BNC. The

threshold values are decided respectively for each dataset by limiting each network to

a maximum of five parents per variable, which we consider is suitable for constructing

predictive models such as BNCs. In addition, the graphs produced by the PC algorithm

are partially directed acyclic graphs (PDAGs). Therefore, we oriented the undirected

edges to avoid cyclic graphs and to reduce the number of parameters.

3.6.2 Evaluation using UCI data

Seven datasets were selected from the UCI machine learning repository. These datasets

were formatted and discretized by Greiner1 using the Fayyad and Irani method [Fayyad

and Irani, 1993], except for the Car and Nursery datasets, which were pre-discretized.

Datasets with numerous cases were selected to train the structure of GANs as precisely

as possible because the effect of parameter estimation is expected to be separate from

that of the correctness of structural inference. The structures might be designed by

prior knowledge but the parameters are not pre-estimated in real applications such as

user modeling (e.g., [Isozaki et al., 2005]). A brief description of the datasets is presented

in Table 3.12.
1available from his site: http://www.cs.ualberta.ca/ greiner/ELR/
2Car dataset was split into 1000 training samples and 500 test samples using random selection.
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Figure 3.3: Example of a generally augmented Näive Bayes classifier (GAN).

Table 3.1: Description of datasets used for experiments.

Dataset Attributes Classes Instances

Train Test

1 Car 6 4 1000 500

2 Chess 36 2 2130 1066

3 Letter 16 26 15000 5000

4 Nursery 8 5 8640 4320

5 Satimage 36 6 4435 2000

6 Segment 19 7 1540 770

7 Shuttle-small 9 7 3866 1934

First, structure learning was conducted using the PC algorithm. Next, parameter

learning was conducted using the ML with eq. (2.19), Bayesian with eq. (2.24), and

MFE–EB with eq. (3.15), eq. (3.18) and eq. (3.16) or eq. (3.17) processes. In contrast

to structure learning, small samples that had been selected randomly from each dataset

were used. Those sample sizes are selected to present large deviations of accuracy in some

Bayesian hyperparameters from that in ML under the limit sample size of 100 (Letter,

1000; Chess/Nursery/Satimage, 250; Car/Segment/Shuttle-small, 100). The Dirichlet

hyperparameters are the same, αijk = α, because of the lack of prior knowledge about

datasets. Their accuracy was compared to that of ML to confirm the effectiveness of

the Bayes and the MFE–EB. To avoid zero probability, which generates a contradiction

when testing data have evidence that has not emerged in training data, a small positive
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Table 3.2: Accuracies [%] of respective methods. We denote that Bayes (α) means that

the value of a hyperparameter equals α in this table.

Dataset ML Bayes (0.5) Bayes (1.0) Bayes (10.0) MFE–EB (lin) MFE–EB (log)

Car 65.8 74.4 73.8 70.2 74.0 74.0

Chess 86.0 88.6 88.9 86.1 86.3 86.0

Letter 52.4 62.2 60.6 52.0 59.8 60.6

Nursery 66.2 75.3 76.5 77.5 76.7 76.7

Satimage 67.1 64.2 60.5 52.7 76.6 76.8

Segment 81.4 80.2 79.2 69.7 82.4 82.4

Shuttle-small 85.8 97.9 97.9 86.6 97.2 97.4

Ave.± σ 72.1±11.7 77.6±11.8 76.8±12.7 70.7±13.2 79.0±10.7 79.1±10.5

number (0.0001) was added to all conditional frequencies.

For this study, we adopted α = 0.5, 1, 10 because α = 1 is the famous Laplace method;

it means a uniform distribution [Cooper and Herskovits, 1992], and α = 0.5 and α = 10

are recommended from theoretical [Suzuki, 1996] and practical [Yang and Chang, 2002]

perspectives. On the other hand, we examined some values for Nc because no knowledge

exists for them. Accuracies of BNCs are presented with parameters estimated using ML,

the Bayesian, and maximum values of the MFE–EB (“linear-state” and “log-state”),

as portrayed in Table 3.2. The MFE–EB methods have effects of avoiding overfitting

to small data size as the Bayesian does, because of the control of entropy according

to the available data size. Moreover, regarding comparison with the Bayesian with

recommended hyperparameters and with MFE–EB, the latter is superior with respect to

maximum values of accuracy and variances. It seems to leverage likelihood and entropy

more effectively than the Bayesian–Dirichlet method.

Next, we evaluate the robustness of the MFE–EB against various values of the hy-

perparameter Nc. Figs. 3.4 and 3.5 show the accuracies against the various values of Nc,

which are both shown in differences of accuracies from that by ML. Actually, MFE–EB

apparently shows good performance in common Nc ∼ 1 for a linear model, and in com-

mon Nc ∼ 2 for a log model in every dataset. For a more precise description, Table 3.3

presents the effective range over which the classification accuracy is greater than 95% of

the maximum accuracy for respective datasets, where “*” signifies minimum or maxi-

mum values of hyperparameters in the range of the experiments. In both the linear-state

and log-state models, the range in which good performance is shown has some overlap

among all datasets. It can be said that the hyperparameter Nc has good common ranges

of (1 ≤ Nc ≤ 1.5) in the linear-state MFE–EB, and ranges of (2 ≤ Nc ≤ 4) in the

log-state MFE–EB. Therefore, it can be said that MFE–EB is not sensitive for selecting

values of the entailed hyperparameter. These results are expected to result from the

adopted functional form of β, where β approaches 1 rapidly with an increase in the
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Figure 3.4: MFE–EB (“linear-state”) estimation: differences in accuracy from ML [%].

Table 3.3: Effective ranges of hyperparameters.

Dataset Linear-MFE (Nc) Log-MFE (Nc)

min max min max

Car 1.0 10* 2.0 10*

Chess 0.1* 10* 0.5* 10*

Letter 0.1* 10* 0.5* 10*

Nursery 1.0 10* 2.0 10*

Satimage 0.5 1.5 2.0 5.0

Segment 0.1* 10* 0.5* 10*

Shuttle-small 0.1* 2.0 0.5* 4.0

number of samples. Furthermore, the MFE–EB might be expected to have universal

ranges of hyperparameters. Moreover, our MFE–EB method is apparently attractive in

the sense that there is room for improvement of the function of β.

3.7 Discussion

The ML, the Bayesian, and the MFE–EB are all called generative methods, although

discriminative methods have recently received significant attention in parameter learn-

ing of BNCs [Greiner and Zhou, 2002; Shen et al., 2003; Grossman and Domingos, 2004;

Jing et al., 2005]. Their approaches are aimed at improving the classification accuracies
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Figure 3.5: MFE–EB (“log-state”) estimation: differences in accuracy from ML [%].

of BNCs given some restricted structures. They are not intended to estimate hidden

true probability distributions correctly. However, their studies suggest some insights

about both the structure and parameter-learning of BNCs. Jing et al. [2005] found that,

when the structure is incorrect, their discriminative methods outperform their gener-

ative counterparts. Shen et al. [2003] showed that, the better the structures are, the

smaller the advantage of their discriminative method over the ML in classification tasks.

Their results imply that the parameters are trained to compensate incompleteness of

structure in BNs (BNCs) in discriminative methods. Therefore, we consider that the

hyperparameters in the generative methods can have equivalent effects. Table 3.2 shows

that the accuracies trained using the Bayesian method, are apparently slightly superior

to those using the MFE–EB methods for some datasets. As might be expected, the

opposite is true for some other datasets. We consider that the results are attributable to

the incompleteness of structure in BNCs. In such situations, the Bayes estimators can

compensate for incompleteness because α contributes to the parameters to some degree,

even in situations with not a few data. However, the MFE–EB estimators less compen-

sate because they are closer to ML estimators than the Bayes because of the functional

form of β, which we assumed. Therefore, the MFE–EB method might be less effective

in multivariate systems that are not properly inferred for their structures between vari-

ables, although the method is shown in this chapter to be extended theoretically to the

case of discrete joint probability estimations.

It is worthwhile to discuss the possibility of improving the MFE–EB method. The

change of accuracy over the hyperparameters presents similar behaviors derived using the
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two models of γ as shown in Fig. 3.4 and 3.5. In the Nursery dataset for example, values

of Nc in both models, for which the accuracies are high, are larger than those in the

other datasets. In contrast, in the Satimage dataset, both are smaller than those in the

other datasets. These results imply that the optimal ranges of values in hyperparameters

depend on the dataset properties. Therefore, it is apparently possible to improve MFE–

EB by incorporating those properties of each dataset into the function of β.

3.8 Summary

A new parameter learning method of BNs is explored because Bayesian–Dirichlet meth-

ods, which are broadly accepted methods, have high sensitivity for selecting their hy-

perparameters and difficulty in deciding the optimal values. We propose an alternative

method based on the principle of minimum free energy (MFE), which is well known in

thermodynamics and statistical dynamics.

Our main conceptual contribution is the proposition of a “Data Temperature” as-

sumption, which is generated by combining thermal fluctuation with probabilistic fluc-

tuation. Our explicit model of the “Data Temperature” is assumed to have monotonic

functions according to the available data size. The approach enables treatment of the

two major principles of maximum likelihood and maximum entropy in a unified manner

in the MFE principle with varying data size. In addition, this approach is an attempt

at extracting maximum information under given finite samples by translating the con-

cepts in thermodynamics of extracting maximum works under given finite temperature,

using the MFE principle. This consciousness is preferable for inference, learning, esti-

mation, and mining of various kinds because researchers in those domains wish to obtain

maximum effective information from limited exploitable data.

Our method is superior to Bayesian–Dirichlet methods with recommended Dirich-

let hyperparameters, although our explicit model of temperature is not sophisticated.

Furthermore, it is not sensitive in classification accuracy for a choice of hyperparame-

ters, unlike Bayesian–Dirichlet, which is attractive for practical use. Consequently, our

method provides an effective tool for use as a parameter estimation method, especially

for a small data size or for sparse data.



Chapter 4

Constraint-Based Structure

Learning using MFE Principle

The main results on the dissertation in this chapter are presented here. As described in

Chapter 1, we attempted to investigate the causal discovery methods effective in prac-

tical view. Constraint-based approaches for causal discovery were adopted because the

approaches need not attach partial order in nodes because of high computational effi-

ciency and having Reichenbach’s theoretical foundation that associates causal patterns

with conditional independencies, as described in Chapter 2. However, for improving

the accuracy in practical sense, we can no more assume the validity of statistical test-

ing, which other studies for constraint-based learning often assume [Spirtes et al., 2000;

Cooper, 1997; Tsamardinos et al., 2006]. In fact, this learning approach often suffers

from overfitting because of insufficient samples: the tests are based on an ML estima-

tion approach, which is based on the frequentism. We consider that to be one reason

why the approaches are inferior to score and search methods [Tsamardinos et al., 2006].

Therefore, in this chapter, we propose a new conditional independence testing method

that is designed to be especially effective for small data size, and which is designed to

be connected asymptotically with classical hypothesis testing. We use our methodol-

ogy developed in the previous chapter, and unify learning methods of parameters and

structures in a manner of MFE principle under a “Data Temperature” assumption. The

outcomes are partially presented in an earlier paper [Isozaki and Ueno, 2009].

45
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4.1 Introduction

4.1.1 Why is the MFE Principle Needed?

Many studies of learning BNs have often used mutual information (e.g., [Friedman et al.,

1997]) for measuring dependence, which often means minimizing entropy, as described

below. For asymptotic regions, in which sufficiently large samples are available, the

guiding principle in statistics is the maximum likelihood (ML) principle [Lehmann, 1986].

Friedman et al. [1997] derived that, for a BN G, given a dataset D with N data size for n

random variables, maximizing the log likelihood LL(D |G) is equivalent to maximizing

empirical mutual information between a node and its parent nodes (represented as Πi

for a node Xi):

LL(D |G) = N(
n∑

i=1

Î(Xi; Πi)−
n∑

i=1

Ĥ(Xi)),

where Î and Ĥ denotes empirical mutual information and Shannon entropy [Cover and

Thomas, 2006], and the second term of the right-hand-side of the equation has nothing

to do with the learning structure. Therefore, from the definition of mutual information,

it is readily derived that

LL(D |G) = −N
n∑

i=1

Ĥ(Xi |Πi) = −N Ĥ(X1, . . . , Xn) . (4.1)

The last equation is derived from the definition of BNs described in eq. (2.8). This equa-

tion shows that maximizing the log likelihood is equivalent to minimizing the entropy

of BNs. This equation also implies that maximizing the log likelihood for construct-

ing the DAG structures engenders complete DAG because the following inequality is

justified [Cover and Thomas, 2006]:

−N
∑
i

Ĥ(Xi |Πi) ≥ −N
∑
i

Ĥ(Xi), (4.2)

because

0 ≤ H(X |Y ) ≤ H(X). (4.3)

In contrast, when we obtain insufficient data, it is reasonable to use the maximum

entropy (ME) principle [Cover and Thomas, 2006], which states that the most preferred

probabilistic model should maximize its entropies under some constraint related to avail-

able data. Consequently, with no constraint, maximizing entropies of BNs engenders the

DAG with no edges, which means that a BN is a collection of complete independent

distributions: P (X) =
∏

i P (Xi).
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A tradeoff exists between maximum likelihood and maximum entropy for obtaining

the valid structures, which is similar to the case of parameter learning as described in

Chapter 3. In the asymptotic region, the ML principle is expected to be dominant; in

an insufficient sample region, the ME principle is expected to be dominant. Therefore,

setting of a problem of how to decide the tradeoff between the ML and ME principles can

be done according to an arbitrarily given sample size. The situation is seen as a metaphor

of thermodynamics even here. The tradeoff between minimizing internal energy and

maximizing entropy in thermodynamics apparently corresponds to the tradeoff between

maximizing likelihood and entropy in statistics; and temperature can be regarded as a

parameter that brings harmony of the two amounts. We can deal with these amounts in

a free energy, and their tradeoff in the minimum free energy (MFE) principle.

4.1.2 Bayesian Approaches and MFE Principle

During recent decades, many researchers investigated Bayesian methods, which can avoid

overfitting derived from using the ML with insufficient data, and which can be regarded

as the same problem setting described in this dissertation. For example, Dash and

Druzdzel [2003] proposed a robust conditional independence testing procedure using

pseudo-Bayesian–Dirichlet smoothing. However, the Bayesian method presents the dif-

ficulty of deciding optimal hyperparameters simultaneously in both theoretical (related

to noninformative priors) [Gelman et al., 2004; Robert, 2007] and practical [Yang and

Chang, 2002] perspectives, when no prior knowledge exists, which is also described in

Chapter 3. Furthermore, learned structures are highly sensitive to selection of the hy-

perparameters [Silander et al., 2007]. Although Steck [2008] proposed a solution of their

optimal values in BDeu score metric, the method is applicable for data that are not small,

and has inconsistency because the method is derived by AIC [Akaike, 1974], which is a

different score metric from the BDeu for which his method is proposed. Therefore, we

propose a new structure learning methodology for avoid the issue in Bayesian–Dirichlet

approaches by developing our parameter learning method that is not sensitive for select-

ing hyperparameters, as described in Chapter 3.

In the use of MFE principles for statistical science, temperature is an unknown pa-

rameter in the MFE principle, which is in the similar situation of Bayesian–Dirichlet

hyperparameters. However, we presented a model of inverted temperature that is a

monotonic increasing function of available data size, as the “Data Temperature” as-

sumption introduced in the preceding chapter. This approach can also be useful in

structure learning BNs for estimating optimal entropies of the network structure. To

realize this, remaining problems are how to define amounts corresponding to energies,

entropies, and temperatures for constraint-based structure learning.
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4.2 Representation of Free Energy in Probabilistic Models

Different from usual applications of the MFE principle in data science, we start with

a description of the free energy definitely as a function of internal energy, entropy, and

temperature to recognize important properties of temperature and use effectively free

energies clearly. Fortunately, entropy was introduced into information theory by Shan-

non. It has since become a fundamental concept of computer science and statistical sci-

ence [Cover and Thomas, 2006]. Therefore, we define the entropy of a random variable

X as Shannon entropy. The entropy is intended to avoid overfitting for small samples.

Kullback–Leibler (KL) divergence is adopted between two probabilistic distributions,

which are an empirical distribution and the optimal distribution in view point of MFE.

Here, the “Data Temperature” assumption is followed, which makes the MFE principle

express a harmony between the ML and ME principle according to the available data

size: temperature is defined as a monotonic function of the available data size such that

temperature β0 →∞ if data size N →∞, and β0 → 0 if N → 0.

4.3 An MFE Representation of Hypothesis Testing on BNs

Conditional independence tests are represented using the MFE principle for constraint-

based learning BNs. To do so, as in the usual manner [Spirtes et al., 2000; Tsamardinos

et al., 2006], we represent the null hypothesis as conditional independent relations, and

the opposite hypothesis as conditional dependent relations between two variables X and

Y given conditional sets Z.

The internal energies are defined for each hypothesis. First, we represent the internal

energy U such that the relative entropy (KL divergence) between the graphs expressing

the null hypothesis (expressed as H1, corresponding distributions as P̂1) and the true

graphs (corresponding as P0), where P̂1 of the null hypothesis is defined as a distribution

estimated using the ML method. Therefore, an internal energy U1 can be defined which

expresses the null hypothesis such as

U1(X,Y,Z) := −D( P̂1(X,Y,Z) ||P0(X,Y,Z) )

=
∑
x,y,z

P̂ (x, y, z) log
P (x, y | z)

P̂ (x | z)P̂ (y | z)
, (4.4)

where P̂ is a maximum likelihood distribution and P is a distribution that will be

estimated using the MFE principle with a “Data Temperature” model. In turn, the

internal energy U2 expresses a part of the opposite hypothesis (denoted as H2), which
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expresses a dependent relation as

U2(X,Y,Z) := −D( P̂2(X,Y,Z) ||P0(X,Y,Z) )

=
∑
x,y,z

P̂ (x, y, z) log
P (x, y |z)
P̂ (x, y |z)

. (4.5)

The definitions of conditional independences described in Chpter 2 are used for repre-

senting each internal energy.

In the next step, the entropy term is defined with respect to each hypothesis. Prob-

ability distributions that constitute the entropy are estimated under given available

samples. The entropy of the null hypothesis is described as

H1(X,Y,Z) := −
∑
x,y,z

P (x, y, z) log(P (x |z)P (y | z)P (z)) . (4.6)

The other entropy, that of the opposite hypothesis, is

H2(X,Y,Z) := −
∑
x,y,z

P (x, y, z) log(P (x, y | z)P (z)) . (4.7)

Now we are almost prepared to express the free energy of each hypothesis. The temper-

ature in each hypothesis are regarded (β1 and β2) as a global temperature over related

variables. According to the “Data Temperature” assumption, β1 = β2 = β0, which

means the same sample size. We can describe the hypotheses H1 and H2 as free energies

F1 and F2 as

F1 = U1 −
1

β0
H1, (4.8)

F2 = U2 −
1

β0
H2. (4.9)

Therefore, the difference of the free energy of each hypothesis is expressed as

F1(X,Y,Z)− F2(X,Y,Z) = Î(X;Y |Z)− 1

β0
I(X;Y |Z) , (4.10)

where

Î(X;Y |Z) =
∑
x,y,z

P̂ (x, y, z) log
P̂ (x, y | z)

P̂ (x |z)P̂ (y | z)
, (4.11)

and

I(X;Y |Z) =
∑
x,y,z

P (x, y, z) log
P (x, y | z)

P (x |z)P (y | z)
. (4.12)

According to the notation used in Chapter 3, we define the parameter β as

β :=
β0

β0 + 1
, (4.13)
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where if β0 → 0, then β → 0 (high temperature limit); if β0 → ∞, then β → 1 (low

temperature limit).

For estimating the non-empirical conditional mutual information I(X,Y |Z) as de-

scribed above, the MFE-EB method denoted in Chapter 3 for parameter learning is

used, for which a different definition of internal energies U is needed. Let P (X) and

P̂ (X) respectively represent probability distributions of joint random variables X to be

estimated from the MFE principle and ML principle. Internal energies U(X) are defined

for parameter learning as

U(X) = D(P (X) || P̂ (X) ) =
∑
x

P (x) log
P (x)

P̂ (x)
. (4.14)

Following the previous chapter, the estimated probability Pβ(x) is expressed in Boltz-

mann’s formula, reproduced as below:

Pβ(x) =
exp(−β(− log P̂ (x)))∑
x′ exp(−β(− log P̂ (x′)))

=
[P̂ (x)]β∑
x′ [P̂ (x′)]β

(4.15)

Therein, P̂ is a relative frequency: the ML estimator.

Finally, we obtain the condition of conditional independence (CI), which we call MFE

based CI condition as

Î(X;Y |Z) <
1− β

β
Iβ(X;Y |Z) , (4.16)

where Iβ is defined as

Iβ(X;Y |Z) =
∑
x,y,z

Pβ(x, y, z) log
Pβ(x, y |z)

Pβ(x | z)Pβ(y | z)

=
∑
x,y,z

Pβ(x, y, z) log
Pβ(x, y, z)Pβ(z)

Pβ(x, z)Pβ(y, z)
. (4.17)

Therein, β only plays the role of a symbolic index; it does not represent a sole parameter.

In each estimator, β must be calculated using the explicit model of “Data Temperature.”

Therefore, β in (4.17) represents local temperature. In (4.16), the left-hand-side corre-

sponds to the likelihood term, which is dominant for a large data size (large β), and the

right-hand-side corresponds to the entropy term, which is dominant for a small data size

(small β). We designate g2β and represent the MFE based CI condition with it as

g2β = Î(X;Y |Z)− 1− β

β
Iβ(X;Y |Z) < 0 . (4.18)

This is useful for combination with the classical hypothesis tests.
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4.4 “Data Temperature” Model

In searching for the values of β, a simple model of temperature is used; it is proposed as

a function of data size N described in the preceding chapter. The model function of β

is defined as

β := 1− exp

(
− N

γNc

)
,

γ := |X| − 1 ,

(4.19)

where γ is defined as the degrees of freedom of related random variablesX, and where Nc

is a decoupling constant, which can be regarded as a hyperparameter for β. We use Nc

as only one common hyperparameter in learning of both parameter and structure. This

explicit model shows good performance and robustness against selected hyperparameters

Nc in classification tasks using Bayesian network classifiers with structure learning, as

described in the previous chapter.

4.5 Asymptotic Theoretical Analysis

The proposed method is hoped to provide consistency with the classical hypothesis test

for an asymptotic region because it is theoretically justified. However, the conditional

independence conditions using the inequality (4.16) cannot be used straightforwardly for

large data sizes because g2β ≥ 0 always for sufficiently large data size because Î(X;Y |Z) ≥
0 and [(1 − β)/β] Iβ(X;Y |Z) → 0 as β goes to 1 (as N becomes sufficiently large),

which means that our method would produce an overly dense graph for sufficiently large

data size. In such regions, the effect of enlarging the entropy term has vanished and

the likelihood term has become dominant. However, different from parameter learning,

hypothesis testing for BNs means that extra edges should be removed even for a large

sample size, based on Occam’s razor [Pearl, 2000]. This connecting problem is solved as

described below.

For a large sample size region, we wish to use the G2 statistic for conditional in-

dependence testing, which is often used [Spirtes et al., 2000; Tsamardinos et al., 2006].

The G2 test is used to identify Ind (X,Y |Z), by which the null hypothesis of conditional

independence is represented. Let Nxyz represent the number of times in the data where

X = x, Y = y and Z = z. We define Nxz, Nyz, and Nz similarly. Consequently, the G2

statistic is defined as follows:

G2 = 2
∑
x,y,z

Nxyz log
NxyzNz

NxzNyz
. (4.20)
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The degrees of freedom df are defined as

df = (|X| − 1)(|Y | − 1)
∏
Z∈Z
|Z| , (4.21)

where we designate |X| as the number of states in X. It is noteworthy that the G2 statis-

tics have a relation with the empirical mutual information with data size N [Kullback,

1968] as

G2 = 2N Î(X;Y |Z) . (4.22)

The statistic is proven to be approximated asymptotically to a χ2 distribution with

degrees of freedom df [Kullback, 1968]. Therefore, in a large sample size region, we

should set the condition in which the null hypothesis (i.e. conditional independence) is

not rejected, as

G2 < χ2
α,df , (4.23)

where α is a significance level such as 0.05, and where df are the degrees of freedom, as

defined in (4.21).

It is worthy to note that if we need a threshold with information theoretical approach

as Cheng et al. [2002] did, then we can decide the threshold incorporating degrees of

freedom and available sample size using the G2 statistics, as pointed out as a problem

related to using mutual information tests and arbitrary thresholds [Tsamardinos et al.,

2006].

Here, we intend to connect the classical condition with the MFE based CI condition

represented by eq. (4.16). A formal correspondence amount G2
β to G2 is defined using

(4.18) and (4.22) as

G2
β := 2Ng2β

= G2 − 2N
1− β

β
Iβ(X;Y |Z) . (4.24)

We can recognize that G2
β converges to G2 if β converges to 1 faster than O(N) in an

asymptotic region. Furthermore, a stronger convergence characteristic can be proven as

follows:

Theorem 4.1 If N →∞, then G2
β converges to the G2 statistics.

Proof. In the asymptotic region, β approaches 1 because of the “Data Temperature”

assumption; for that reason, Iβ(X;Y |Z) approaches Î(X;Y |Z). Then, G2
β is described
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as

G2
β → 2NÎ(X;Y |Z)− 2N

1− β

β
Î(X;Y |Z)

= 2NÎ(X;Y |Z)

(
1− 1− β

β

)
→ 2NÎ(X;Y |Z) = G2.

2

Then, the MFE and the classical condition can be treated in the unified treatment

because a condition G2
β < χ2

α,df can include the MFE based CI condition (4.18) and the

classical CI condition (4.23). Even when the data size is small and G2
β ≥ 0, the classical

hypothesis tests can be conducted because our method was shown to generate pseudo-

samples similarly to the Bayesian methods, as described in eq. (3.20). Consequently,

conditional independence tests can be conducted on variables X and Y given Z using

the MFE principle and G2 tests, as described below.

• If G2
β < 0 because of the MFE principle, then we set X ⊥⊥ Y |Z (conditional

independence),

• else if 0 ≤ G2
β < χ2

α,df , because of the classical test, then we set X ⊥⊥ Y |Z,

• else, we set X /⊥⊥ Y |Z (conditional dependence).

We designate this conditional independence method as MFE–CI.

4.6 Experiments

Next the performance of our approach is demonstrated compared with traditional sta-

tistical testing methods. Some experiments of learning BNs are done using the PC

algorithm [Spirtes et al., 2000], which is a well known benchmark algorithm of constraint-

based methods, embedding conditional independence tests or classical independence tests

using χ2 distributions with fixed significant level α = 0.05 for each hypothesis test of con-

ditional independence. The PC algorithm was implemented as described in section 2.5.1

for embedding the MFE–CI method using C++ programming language.

The PC algorithm is performed under the faithfulness assumption described in Chap-

ter 2. Consequently, the algorithm can infer correct graph structures by finding condi-

tional independence for probability distributions. However, if the assumption is violated,

even though the true graph means Ind (X,Y |Z) for X and Y and a conditional set Z,

then the algorithm might find another false conditional set Z′ for the test between X
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and Y , and then add Z′ to SepSet(XY), which denotes a separator set between X and

Y , in PC algorithm described in section 2.5.1. This false detection has no influence on

removing the edge between X and Y correctly, which means that Adjacency Faithful-

ness [Ramsey et al., 2006] is satisfied but that Orientation Faithfulness [Ramsey et al.,

2006] is violated. However, the algorithm decides the wrong direction of edges using the

orientation rules described in section 2.5.1. In this situation, finding correctly conditional

sets strongly influences the directionality of edges in BNs. When the conditional sets

|Z| are numerous, the number of CI tests is intractably large because of a combinatorial

explosion. Therefore, we did not perform CI tests and assume conditional dependence

when |Z| ≥ 5. A value of the hyperparameter Nc was selected for β in (4.19) as 2.0,

which shows good performance in preliminary experiments.

4.6.1 Simulation Studies

Settings

We conducted the simulation study with various quantities of variables: {10, 20, 40,
80}, where each variable has all four possible states, and with networks of two types, i.e.

the sparser and denser graphs, where sparser cases have the same number of edges as

variables; the denser cases have twice. For each such graph, a random structure network

was constructed with conditional probability tables (CPTs) of five types that were set

by random numbers. The available sample size varies in a range of {500, 1000, 2500,
5000, and 10000}. The performance criteria were set as counting added edges, removed

edges, and reversed edges. Counting added edges expresses the consequence where two

variables X and Y are not adjacent in original BNs, but where an edge exists between

them in reconstructed BNs. On the other hand, counting removed edges indicates the

opposite. Counting reversed edges means that if X → Y in the original, then Y → X in

the output.

Results

Table 4.1 presents results for sample sizes of 500 and 1000. Table 4.2 shows those for

2500 and 5000. Table 4.3 shows those for 10000. The values in the tables are averaged

values of simulations for five random sets of CPTs. We designate the PC algorithm

with a standard G2 test as Std-PC or Std, and the PC embedded with the MFE–CI as

MFE-PC.

These tables show that the counted quantities of extra added edges were very small,

even for a small sample size such as 500 and even for denser structures. In contrast,

quantities of removed edges are large to some degree in both Std-PC and MFE-PC. The
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MFE-PC removed true edges more than Std-PC to a certain degree. Reversed checks

revealed many errors in Std-PC. These characteristics were noticeable in large and dense

networks. These results are discussed later. A key for understanding the results is

apparently the faithfulness condition.

The MFE-PC shows great effectiveness for deciding the direction of edges. It might

be unfair, however, to conclude that because the MFE-PC removed more edges than Std-

PC. Therefore, we defined reversed ratio as (number of reversed edges)/((true number of

edges) – (number of removed edges)). Results of reversed ratio for denser networks are

portrayed in Fig. 4.1, 4.2 and 4.3. where the horizontal axis expresses the true number

of edges, the vertical axis expresses the reversed ratio, and G2 and MFE respectively

signify Std-PC and MFE-PC. In addition, Figs. 4.1, 4.2 and 4.3 show that the algorithm

found wrong v-structures, which are marked as V-err in the figures; and those results

resemble that of the reversed ratio, which is discussed later. These figures show that the

MFE-PC outperforms Std-PC in deciding the direction of edges, especially for denser

networks, even using samples such as 5000, which are not regarded as small samples in

general.

Discussion

Discussion of these comparative results demands some reference to the validity of evalua-

tion using added edges and removed edges in this simulation. In fact, MFE-PC performs

CI tests in more cases than Std-PC, which does the test only for sufficiently large data

size. For example, even for data size N = 5000, Std-PC was unable to perform CI tests

for |Z| ≥ 3 in this simulation, which implies that Std-PC might sometimes correctly

happen to maintain some existing edges. Short of undoing the tests for such frequent

cases, there is not so great a difference in the number of errors for added edges be-

tween MFE-PC and Std-PC. This result suggests that Std-PC detects wrong separator

sets, and then the simulation data were likely to be regarded as violationg faithfulness

condition. In other words, unfortunately, these data were under threat of violating

the condition that Ind (X;Y |Z) ⇒ DsepG(X;Y |Z). This situation was also reported

by Ramsey et al. [2006] for linear Gaussian models of DAGs where they also used sim-

ulation data. The fact complicates recognition of the differece for true power of the

test between Std-PC and MFE-PC. Therefore, we must consider a greater deal of the

ratio of reversed edges than the counts of added and removed edges for this simula-

tion. For the results shown in Figs. 4.1, 4.2 and 4.3, it is necessary to emphasize that

MFE-PC more correctly decided the direction of edges than Std-PC. This fact means

that Std-PC was likely to detect conditional independence for invalid conditional sets

Z more than MFE-PC. In fact, Std-PC generated more wrong v-structures, divergence
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connections such as X ← U → Y , and serial connections such as X → U → Y in the

edge orientation algorithms. This result influences on the correctness for the results of

edge orientations in step 4 of the PC algorithm, which are described in section 2.5.1.

V-errs of Figs. 4.1, 4.2, and 4.3 definitely show the mistakes, in the wrong v-structure

counts on MFE-PC and Std-PC, appearantly show that the reversed edges are mainly

attributable to the incorrectly detecting colliders, which result from the following sit-

uations: for triplet {X,Y,W}, Std-PC incorrectly detected Ind (X;Y |Z ′) for W ∈ Z ′

while MFE-PC correctly detected Ind (X;Y |Z) for W /∈ Z (see, Chapter 2). For ex-

ample, assuming a DAG that consists of four nodes {X,Y, U,W}, if Ind (X;Y |{U,W}),
then the graph appears as shown in Fig. 4.4(a), which shows an undirected graph as a

Markov equivalent class. If the algorithm wrongly detected Ind (X;Y |U) for the DAG,

then the constructed network are presented in Fig. 4.4(b). The reason is that a node W

is a collider if wrong Sepset(X,Y ) has only U while true Sepset(X,Y ) has U and W ,

which means that both U and W cannot be colliders.
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Table 4.1: Results for the simulation using data sizes of 500 and 1000

500 1000

Sparser Denser Sparser Denser

Type Nodes Std MFE Std MFE Std MFE Std MFE

Added 10 0 0 0.6 0.2 0.4 0 1.8 0

20 0 0 0.4 0.4 0.2 0 1.2 0

40 0.2 0 0.4 0 0.6 0.4 0.8 0

80 0.6 0.4 1.4 0.8 0.4 0.2 2.2 0.2

Removed 10 3.0 3.4 9.0 14.0 2.4 2.8 3.6 11.6

20 4.2 7.6 19.0 26.2 3.0 5.8 11.4 22.0

40 11.2 15.8 41.6 53.6 6.4 12.0 25.0 46.6

80 21.4 32.0 81.2 109 11.0 21.2 48.6 93.8

Reversed 10 1.8 1.4 7.4 2.2 0.8 0.8 12.2 4.2

20 5.4 2.0 14.6 6.4 5.2 2.6 22.2 7.6

40 10.6 5.2 26.6 11.8 10.2 4.0 42.6 16.8

80 18.8 10.6 54.2 26.6 21.0 11.2 86.4 26.0

Table 4.2: Results for simulations using data sizes of 2500 and 5000

2500 5000

Sparser Denser Sparser Denser

Type Nodes Std MFE Std MFE Std MFE Std MFE

Added 10 0 0 0 0 0 0 1.2 0.2

20 0 0 0.2 0 0 0 0.4 0.0

40 0 0 0 0 0.4 0.4 0.0 0.0

80 0.2 0.2 0 0 0.4 0.4 0.0 0.0

Removed 10 1.8 1.8 4.4 8.6 1.0 1.0 1.8 6.4

20 2.0 2.8 12.8 18.6 0.4 1.4 6.2 14.6

40 6.0 7.2 26.0 37.2 2.6 4.6 16.0 30.0

80 9.0 12.0 54.4 73.8 4.6 7.2 24.2 59.2

Reversed 10 0.6 0.6 9.2 5.2 0.6 0.6 7.2 4.4

20 2.8 2.4 13.2 7.6 2.6 2.4 20.8 9.6

40 6.6 6.4 31.8 19.4 5.0 3.8 36.6 20.8

80 11.6 10.8 56.6 38.8 8.4 7.8 78.0 38.0
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Table 4.3: Results for simulations using data size of 10000

10000

Sparser Denser

Type Nodes Std MFE Std MFE

Added 10 0 0 1.2 0.2

20 0 0 0.4 0.0

40 0.4 0.4 0.0 0.0

80 0.4 0.4 0.0 0.0

Removed 10 1.0 1.0 1.8 6.4

20 0.4 1.4 6.2 14.6

40 2.6 4.6 16.0 30.0

80 4.6 7.2 24.2 59.2

Reversed 10 0.6 0.6 7.2 4.4

20 2.6 2.4 20.8 9.6

40 5.0 3.8 36.6 20.8

80 8.4 7.8 78.0 38.0
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Figure 4.1: Ratio of reversed edges in the resultant graphs with denser BNs from the

use of a standard PC and PC embedded with the MFE–CI method: (a) Sample size =

500 and (b) 1000.
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(d) Sample size = 5000.

Figure 4.2: Ratio of reversed edges in resultant graphs with denser BNs from the use of

a standard PC and PC embedded with the MFE–CI method: (c) Sample size = 2500

and (d) 5000.
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Figure 4.3: Ratio of reversed edges in the resultant graphs with denser BNs from the

use of a standard PC and PC embedded with the MFE–CI method: (e) Sample size =

10000.
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(a) True Graph. (b) False Graph.

Figure 4.4: True graph (a) represents Ind (X;Y |{U,W}) while a false graph (b) repre-

sents Ind (X;Y |U), which generates a wrong collider W .
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4.6.2 Real World Datasets

Settings

In addition to simulation experiments, we will show other experiments using real-world

datasets. Training cases are sampled from the probability distributions of known net-

works, and ask the Std-PC and MFE-PC to reconstruct the original network structures

from the data. We selected five Bayesian networks from datasets, which consist of defi-

nite DAG structures and discrete conditional probability distributions, typically used for

reconstructing BN structures: Alarm (Fig. 4.5), Insurance (Fig. 4.6), Barley (Fig. 4.7),

Mildew (Fig. 4.8) and Hailfinder (Fig. 4.9). The Alarm network [Beinlich et al., 1989]

was constructed by medical experts for monitoring patients in intensive care wards. The

Insurance network [Binder et al., 1997] is used for evaluating car insurance risks. The

Mildew [Jensen and Jensen, 1996] is a preliminary model for deciding on the amount of

fungicides to be used against attack of mildew in wheat. The Barley network [Kristensen

and Rasmussen, 2002] is a model of barley crops yield. The Hailfinder network [Abram-

son et al., 1996] is a normative system that forecasts severe summer hail in northeastern

Colorado. Information of the networks used in the thesis is presented in Table 4.4. In

the table, Num.vars, Num.edges and Num.params represent the number of variables,

edges and all parameters for each. Max In/Out degree signifies the maximum degree of

incoming edges and outgoing edges at a node. Domain range represents the ranges of

internal states of variables. The Barley and Mildew have larger networks than Alarm

and Insurance, as viewed from the scale in the parametric space size. Learning per-

formances were examined for various training sample sizes:{250, 500, 1000, 1500, 2000,
5000, 10000}. For the experiments, we sampled 10 distinct datasets from CPTs for each

number of training data; the values shown herein are averaged ones for 10 datasets.

Table 4.4: Real-world Bayesian networks used in the experiments.

Num. Num. Num. Max In/Out- Domain

Network vars edges params degree range

Alarm 37 46 509 4 / 5 2-4

Insurance 27 52 1008 3 / 7 2-5

Hailfinder 56 66 2656 4 / 16 2-11

Barley 48 84 114005 4 / 5 2-67

Mildew 35 46 540150 3 / 3 3-100
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Figure 4.5: Alarm network
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Results

The obtained results present some degree of difference from simulation data. In the real-

world data, there also exist add–remove errors, although they are only slightly recognized

in the simulation results. Two-tailed t-tests were used to test the differences between

MFE-PC and Std-PC with 0.05 of significant level. First, we show the reversed edge

ratio on each network in Fig. 4.10, 4.11, 4.12, 4.13 and 4.14, where the vertical axes

denote the sum of numbers of extra edges and missing edges, and the horizontal axes

denote number of training samples and, for each column, designate Std-PC for G2 and

MFE-PC for MFE. Here, MFE-PC is superior for

• N = |D| ≤ 1000 in the Alarm network,

• N ≤ 500 in the Insurance network,

• N ≤ 2000 in the Hailfinder network,

• N ≤ 10000 in the Barley network, and

• N ≤ 10000 in the Mildew network,

and there was no statistical difference between two methods in the other sample sizes.

The results show clearly that MFE-PC is superior to Std-PC for small data size for

Alarm and Insurance, which we intend to be, and for Hailfinder, Barley and Mildew

superior for from small to medium data size.

The results of the add–remove errors are shown next, differences of which are scarcely

found for the simulation study. The results are shown in Figs. 4.15, 4.16, 4.17, 4.18,

and 4.19. The range in which MFE-PC has advantages is over Std-PC, as in the following:

• N = 250 for Alarm,

• N = 250 for Insurance,1

• N ≤ 2000 for Hailfinder,

• N ≤ 5000 for Barley, and

• 500 ≤ N ≤ 10000 for Mildew,

and no statistical difference was observed between Std-PC and MFE-PC in the other

sample sizes. Therefore, from the add–remove errors combined to the reversed edge

ratio, we can conclude that MFE-PC shows superiority to Std-PC for small data size

1For only N = 500, Std-PC is superior to MFE-PC.
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Figure 4.10: Reversed edge ratios in the Alarm network

in general and even for medium data size in large networks in view of parametric space

size.

For 250 sample sizes of both the Barley and Mildew networks, no difference was found

between Std-PC and MFE-PC in add–remove errors. The Std-PC did not conduct the

CI test for the size of conditioning set |Z| ≥ 1, whereas MFE-PC decided all these as

independent. Therefore, too small samples exist to conduct the CI tests appropriately

for the sample size.

Barley and Mildew are very large scale networks, as shown from the perspective of

number of parameters in Table 4.4, and Mildew, as expected, seems to need very large

training samples over 10000. However, Barley does not apparently need such very large

data for deciding existence of edges in relation to its parametric size.

According to results of both the reversed ratio and add–remove errors, the difference

in the former type of error is seen for wider sample ranges between MFE-PC and Std-PC.

This result implies that it is more difficult to detect correct separator sets (SepSet in PC

algorithm, see section 2.5.1) than to detect independencies.
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Figure 4.11: Reversed edge ratios in the Insurance network
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Figure 4.12: Reversed edge ratios in the Hailfinder network
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Figure 4.13: Reversed edge ratios in the Barley network
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Figure 4.14: Reversed edge ratios in the Mildew network
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Figure 4.15: Number of add–remove errors in the Alarm network
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Figure 4.16: Number of add–remove errors in the Insurance network
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Figure 4.17: Number of add–remove errors in the Hailfinder network
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Figure 4.18: Number of add–remove errors in the Barley network
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Figure 4.19: Number of add–remove errors in the Mildew network
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4.6.3 General Discussion of Experiments

Next, we discuss the results for both the simulation and real-world datasets. Although

a tendency to regard the faithfulness condition as violated was noted in the simulation

studies, such was not the case for the real-world datasets. The reason is probably the

randomness of the generation process of simulation data, although real data have a

definite bias or tendency and are not random in (conditional) probabilities. Although

Ramsey et al. [2006] also reported violation of the faithfulness condition, where they

found 40% violation of the condition, their study used simulation data only. Therefore,

that awful situation for the violation probably occurs only rarely when using real data.

In summary, MFE–CI method is robust for the data that have the tendency of nearly

violating the faithfulness condition. This property is preferred for causal discovery,

in which existing edges are expected to represent definite direct dependence between

variables, and where direction has important meaning.

4.7 Related Work

Some studies have used the MFE principle, as described in the previous chapter. Her-

skovits and Cooper [1990] first proposed a score for unrestricted network structure in the

score and search approaches, where they claimed the score was based on the Maximum

Entropy principle. However, in fact, they used the Maximum Likelihood principle with

Bayesian smoothing, as shown by their use of an inverted minus sign of entropy. Subse-

quently, they proposed the Bayesian–Dirichlet score metric described in Chapter 2. In

addition, Beal [2003] attempted to produce learning DAG structures that contain latent

variables using variational free energies and variational Bayes EM (VBEM) methods [Jor-

dan et al., 1999] in score and search procedures, which aimed at the rapid construction

of DAGs, although learning DAGs with latent variables is generally expected to be time-

consuming in marginalization processes. It was then reported that VBEM outperforms

standard BIC [Schwarz, 1978] and CS [Cheeseman and Stutz, 1996] scores. More re-

cently, Watanabe et al. [2009] analyzed the upper bound of variational free energy of

biparticle Bayesian networks. These studies do not consider the role of temperature.

Consequently, their studies assumed equivalently constant temperature, i.e., constant

data size or a large sample limit if our “Date Temperature” assumption or similar con-

cept is needed for learning with free energy.

Some researchers improved the constraint-based approach along with the PC algo-

rithm. For example, Steck and Tresp [1999] proposed a necessary path condition (NPC),

which is a simple but important improvement of the PC algorithm in both theoretical and

practical views. The NPC improves the PC search step, where the NPC, when testing
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conditional independences on X and Y , detects only nodes on a currently existing path

between X and Y , which reduces the search spaces of conditioning sets and errors of de-

tecting false separator sets. Somewhat later, Cooper [1997] proposed a constraint-based

method, which he called the Local Causal Discovery (LCD) algorithm. In fact, LCD is a

specialization of the PC and Fast Causal Inference (FCI) [Spirtes et al., 1999] algorithms

that use background knowledge related to an non-causal variable, which is a poorer

language than those. However, LCD is simpler to implement and it is more computa-

tionally efficient than those, even for worst cases. Ramsey, Spirtes and Zhang introduced

decomposition of the faithfulness condition into two parts—Adjacency-Faithfulness and

Orientation-Faithfulness—and proposed a new algorithm that is a variation of the PC

algorithm [Ramsey et al., 2006; Zhang, 2006]. Their problem consciousness was similar

to ours: they attacked the problem of improving the accuracy of constraint-based al-

gorithm. However, the approach explained herein differed from theirs. We attempt to

solve the accuracy problem in constraint-based learning, which we consider results from

the shortage of sample data, whereas they attempted to reduce mistakes of detecting the

separator sets by introducing ambiguity into their PC algorithm, which they called the

conservative PC (CPC) algorithm. Therefore, the approach explained herein is probably

a more aggressive attempt to solve the problem.

4.8 Summary

For constraint-based learning Bayesian networks, which are used for causal discovery and

which have a weak point of overfitting for insufficient samples in conditional independence

(CI) testing, we proposed a method for its improvement. To do this, the minimum free

energy (MFE) principle was used with the “Data Temperature” assumption. As a result,

a new CI condition was derived, which can be used with a broad range of sample sizes.

This CI method incorporates the maximum entropy and maximum likelihood principles

and converges to the classical hypothesis tests in asymptotic regions. Through this

work, we provide a unified framework of learning parameters and structures of BNs

using MFE principle because we already proposed a parameter learning method of BNs

in the previous chapter.

Results presented herein demonstrated the effectiveness of this novel method by

embedding it in the well known PC algorithm. The results show that our method

correctly identified the direction of the edges, at least in some simulation studies, better

than the standard tests did, which is expected to be effective for causal discovery where

the orientation of edges is significant. Furthermore, for five real-world datasets, our

method shows better performance and identification of the direction for detection of
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true edges for small samples.



Chapter 5

Conclusions and Future Projects

5.1 Conclusions

In this dissertation, we have pursued the challenge of proposing a new learning method-

ology for a probabilistic graphical model—Bayesian networks (BNs) that deal with mul-

tivariate probability distributions in combination with directed acyclic graphs—in which

we have taken particular note of potential discovery of causality from observational

data. In attempting to consolidate effective causal discovering tools using BNs, we de-

composed the causal discovery problems into two parts: (1) estimating parameters that

have a strong influence on causal discovery because BNs entail probability distributions

and statistical inference of the distributions; and (2) learning structures that represent

causal modeling qualitatively. Practical effectiveness has been emphasized. Therefore,

we sought to improve the weakness of accuracy that is dependent on overfitting to an

insufficiently large amount of data. Because of the existence of this problem, the au-

thor wondered how the most effective information can be derived from available finite

data. The Bayesian approach, which has attracted many researchers in broad domains

of statistical science, apparently has difficulty at consistently deciding the optimal values

of the entailed hyperparameter, under the condition of no prior knowledge, from both

theoretical views (associated to noninformative priors) and practical views. Particularly,

from recent studies of the latter views, because accuracies of learning are found to be

highly sensitive to the values, it has been a critical issue that principled methods have not

been found to decide the optimal values within a Bayesian framework. Consequently,

some other principles are sought to let us obtain the maximum effective information,

even from insufficient data.

This new approach comes from noticing that the Bayesian priors play a role of enlarg-

ing entropy depending on the available data size by adopting uniform hyperparameters

78
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when no prior knowledge is available. One might wonder whether any principle exists to

decide optimal entropies of target probability distributions for learning, according to the

training data size. Is there any principle-based method that generates a similar effect

to that of Bayesian methods? Thermodynamics has provided attractive frameworks for

which the minimum free energy (MFE) principle maintains a balance between minimum

(internal) energy and maximum entropy. It seems to be a metaphor of conflict between

maximum likelihood and maximum entropy in statistical science. Therefore, description

of the learning methodology was addressed using the MFE principle. We sought to pro-

vide a unified framework of learning BNs including parameters and structures; then we

obtained the results described in Chapter 3 and 4.

In Chapter 3, we first introduced and defined the free energy, internal energy, entropy

so that the free energy represents an objective function with respect to the parameter

learning of BNs. At that time, we proposed the “Data Temperature” assumption for

making minimizing the free energies represent both the maximum likelihood and the

maximum entropy principles with weights according to available data size, and providing

a meaning of free energy, internal energy and temperature. Next, we proposed a simple

“Data Temperature” model for leveraging the role of temperature with computational

efficiency. The method showed superiority to the Bayesian Dirichlet parameter learning

method with some recommended hyperparameters, and showed low sensitivity against

selection of hyperparameters of our “Data Temperature” model. Furthermore, this new

method has the advantage of not presenting difficulty of the inconsistency for selecting

hyperparameters in theoretical and practical views as the Bayesian Dirichlet method has.

Chapter 4 presented an attempt to improve constraint-based structure learning BNs

using the method developed in the previous chapter. Internal energy was defined for

representing the classical hypothesis testing that is usually used in constraint-based

structure learning of BNs. Then we derived a conditional independence condition for

constraint-based learning attributable to the MFE principle, and proved that our method

connects naturally to the classical G2 statistics in asymptotic region, which means that

our formation can be regarded as an extension of the classical statistics to that including

the maximum entropy principle explicitly. Subsequently, it is shown that our method is

effective for structure learning with small data size in simulation studies and experiments

using real-world datasets.

From these studies, the main contributions of the dissertation to this field can be

regarded as follows:

• We introduce an assumption of “Data Temperature” enable MFE principle to ad-

dress both the maximal likelihood and the maximum entropy principles in a unified

manner, and assign meaning to temperature for use of free energy in statistical sci-
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ences.

• An actually useful learning method is provided, which is effective even for a small

sample size, which Bayesian network learning often suffers from.

• A unified learning methodology of parameters and structures of BNs is defined; it

presents advantages over the standard information criterion such as AIC, BIC, and

MDL, none which is applicable for parameter learning though those have similar

effect on structure learning BNs.

• The methodology presented herein has advantages over the Bayesian–Dirichlet

method, which presents controversial problems in theoretical aspects related to

noninformative priors for no prior knowledge and which has difficulty finding opti-

mal hyperparameters, despite the fact that learning accuracies are highly sensitive

to the values.

5.2 Future Works

The framework of the MFE principle with the “Data Temperature” assumption will

provide many further studies that we will attempt to undertake. Some studies are

planned in addition to investigating and improving the present simple model of “Data

Temperature”, as explained below.

We intend to compare the MFE-EB method embedded in a PC algorithm with state-

of-the-art structure learning algorithms such as Sparse Candidate [Friedman et al., 1999],

Optimal Reinsertion [Moore and Wong, 2003], Greedy Equivalent Search [Chickering,

2002], TPDA [Cheng et al., 2002], and MMHC [Tsamardinos et al., 2006] in view of

learning from insufficient data. As described in section 2.5.4, the learning performance

of BNs using score-search methods is dependent on the selected hyperparameters, which

means that the overfitting issue is important in learning BNs. Therefore, the issue is

expected to be a main cause of underperformance of typical constraint-based methods

against score-search methods. We alleviated it in the work described in the thesis, then

the comparison seems to be an attractive research.

We intend to develop a method based on another main approach—a score-search

approach combined with our MFE framework. Cowell [2001] claimed that conditional

independence tests based and the score-search-based methods engender identical models

of BNs under some conditions: (1) constructing BNs in a predictive sense, (2) assuming

preferable to simple models, (3) assuming partial node ordering. However, we suspect

that these conditions might hide the keys to understanding their mutual differences,

which are to be investigated using our method.
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Spirtes et al. [1995] extended their PC algorithm to deal with latent common causes

and selection bias, which they call the FCI algorithm. Further studies must investigate

the effectiveness of our method in the task of detecting latent variables using the FCI

algorithm.

In this dissertation, we decomposed the poor accuracy issue of constraint-based al-

gorithms into a pure shortage of data (theoretical aspects) and algorithmic aspects, and

attacked the former using the MFE principle. We will address the latter: algorithmic

aspects, for improving accuracy of causal discovery, including the latent variable models.

Additionally, the possibilities of justification of our manner of definitions of internal

energies must be investigated. Especially, attention is devoted herein to the views of

information theory and information geometry [Amari and Nagaoka, 2000].

One reason that Bayesian methods are broadly accepted in machine-learning do-

mains is the fact that they can incorporate prior background knowledge, which avoids

overfitting to training data. Prior knowledge is intended to be incorporated into our

framework. Additionally, as presented in this dissertation, our method generates equiv-

alent imaginary samples to those of Bayesian methods. Therefore the relation between

Bayesian methods and our framework should be investigated further.

Many researchers have tackled learning problems using variational free energy method.

However, no approach incorporating temperature is known. Consequently, it might be

valuable to investigate whether this approach is effective for the method.



Appendix A

Some Lemmas and Proofs of the

Theorems in Chapter 2

In this appendix, we describe the Lemmas related to the theorems in Chapter 2 and the

proofs of the Theorems.

A.1 Theorem 2.1

The theorem 2.1 is provable from the following three lemmas.

Lemma A.1 (Verma and Pearl [1988]) Presume P as a probability distribution for

V and G be a DAG. Here, (G, P ) satisfies the Markov condition if and only if, for every

three mutually disjoint subsets X,Y ,Z ⊆ V , whenever X and Y are d-separated by

Z, X and Y are conditionally independent in P given Z. That is, (G, P ) satisfies the

Markov condition if and only if

DsepG(X;Y |Z) =⇒ Ind (X;Y |Z), (A.1)

Is there any other conditional independence not required by d-separation? The

answer is No, as proven by the following two lemmas. The definition 2.9 for it is provided

in Chapter 2; then the lemmas are stated.

Lemma A.2 Any conditional independence entailed by a DAG, based on the Markov

condition, is equivalent to a conditional independence among disjoint sets of random

variables.

Proof. The proof is shown in Neapolitan [2004].
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Lemma A.3 (Geiger and Pearl [1988b]) Let G = (V ,E ) be a DAG, and P be the

set of all probability distributions P such that (G, P ) satisfies the Markov condition. For

every three mutually disjoint subsets X,Y ,Z ⊆ V ,

Ind (X;Y |Z) for all P ∈ P ⇒ DsepG(X;Y |Z).

A.2 Theorem 2.3

The following three lemmas are necessary for the proof of theorem 2.3.

Lemma A.4 (Verma and Pearl [1990]) Let G be a DAG and X and Y ∈ V . Then

X and Y are adjacent in G if and only if they are not d-separated by any set in G.

Corollary A.1 (Verma and Pearl [1990]) Let G be a DAG and X and Y ∈ V .

Then, if X and Y are d-separated by some set, they are d-separated either by the set

consisting of the parents of X or the set consisting of the parents of Y .

Lemma A.5 (Verma and Pearl [1990]) Presuming that we have a DAG G = (V ,E )

and an unlooped connection X − Z − Y , then the following are equivalent:

• X − Z − Y is a v-structure.

• There exists a set not containing Z by which X and Y are d-separated.

• All sets containing Z do not d-separate X and Y .

Lemma A.6 (Verma and Pearl [1990]) If G1 and G2 are Markov equivalent, then

X and Y are adjacent in G1 if and only if they are adjacent in G2: Markov equivalent

DAGs have the same links (edges without direction).

The following lemmas related to the patterns of Markov equivalent classes are derived

from the corresponding lemmas for DAG

Lemma A.7 Let Gp be a DAG and X and Y be nodes in Gp. Then X and Y are

adjacent in Gp if and only if they are not d-separated by some set in Gp.

The proof follows from Lemma A.4.

Lemma A.8 Presuming a DAG pattern Gp and an unlooped connection X − Z − Y ,

then the following are equivalent:

• X − Z − Y is a v-structure.

• There exists a set not containing Z which d-separates X and Y .

• All sets containing Z do not d-separate X and Y .

The proof follows from Lemma A.5.
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A.3 Theorem 2.6

Here, we describe the proof of the theorem 2.6.

Proof. Presuming that Gp is the DAG pattern faithful to P . Then, because of Theo-

rem 2.5, all and only the independencies in P are identified by d-separation in Gp, which

are the d-separations in any DAG G in the equivalence class represented by Gp. There-

fore, Condition (1) follows from Lemma A.4, and Condition (2) follows from Lemma ??.

Arguing in the other direction, presume that Conditions (1) and (2) hold for Gp

and P . We have assumed P admits a faithful DAG representation. Therefore, there is

some DAG pattern Gp’ faithful to P . By what was just proven, we know that Conditions

(1) and (2) also hold for Gp’ and P . However, this means that any DAG G in the

Markov equivalence class represented by Gp must have the same links and same set

of v-structures as any DAG G’ in the Markov equivalence class represented by Gp’.

Theorem 2.3 therefore says G and G’ are in the same Markov equivalence class, which

means that Gp = Gp’. 2

A.4 Theorem 2.7

The proof is described as following:

Proof. • Rule1: Y becomes an unshielded collider if a directed edge from Z to

Y exists. However unshielded colliders must have been recognized because of the

assumption of the theorem. Therefore, Y should not be an unshielded collider and

we should orient an edge from Y to Z.

• Rule2: If a directed edge from Z to X exists, then X, Y , and Z form a cyclic closed

path, which fact contradicts the assumption that we have a hidden DAG structure.

Therefore, the edge should be oriented from X to Z.

• Rule3: If a directed edge from Z to X exists, then for avoiding cyclic closed paths,

we should orient edges from X to W and from X to Y , which both generate new

v-structures that must have been recognized before applying the rules. Therefore,

we should orient edges from X to Z.

2

A.5 Theorem 2.8

The proof requires the following three lemmas.
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Lemma A.9 (Spirtes et al. [2000]) If the set of conditional independencies admits a

faithful DAG representation, then the algorithms create a link between X and Y if and

only if a link exists between X and Y in the DAG pattern Gp containing the corresponding

d-separations in this set.

Proof. The algorithms generate a link if and only if X and Y are not d-separated by

any subset of V , which is the case if and only if X and Y are adjacent in Gp because of

Lemma A.7. 2

Lemma A.10 (Spirtes et al. [2000]) If the set of conditional independencies admit

a faithful DAG representation, then any directed edge generated by the algorithms is a

directed edge in the DAG pattern containing the corresponding d-separations in this set.

Proof. In step 4-1 of the algorithms, the fact that such edges must be directed as follows

from Lemma A.8. In step 4-2 of the algorithms, the fact that such edges must be directed

follows from Theorem 2.7. 2

Lemma A.11 (Meek [1995a]) If the set of conditional independencies admits a faith-

ful DAG representation, then all the directed edges, in the DAG pattern containing the

corresponding d-separations, are directed by the algorithms.

Proof. Meek [1995a] proved the lemma. 2

Then the proof of the Theorem 2.8 follows from the preceding three lemmas.



Appendix B

An Example of Unfaithful DAG

In this appendix, we describe an example of distribution that is unfaithful to a DAG

depicted in Neapolitan [2004].

Presuming that we have a DAG G with conditional probabilities in Fig. B.1, then,

from the figure, one finds that DsepG (X;Z |Y ).
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Figure B.1: Example of Bayesian network with assignments of conditional probability

distribution unfaithful to the DAG.

However, it can be unfaithful to the DAG as shown by calculating the conditional

probabilities. First, we derive the other expression of conditional independencies denoted

in eq. 2.3. For an assumption P (y, z) > 0, equivalent transformations can be performed
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as follows.

P (x, y | z) = P (x | z)P (y | z)

⇐⇒ P (x, y | z)P (z) = P (x | z)P (y | z)P (z)

⇐⇒ P (x, y, z) = P (x | z)P (y, z)

⇐⇒ P (x | y, z)P (y, z) = P (x | z)P (y, z)

⇐⇒ P (x | y, z) = P (x | z). (B.1)

Therefore, one can alternatively note that

Ind (X;Y |Z),

if ∀x, y, z where P (y, z) > 0,

P (x | y, z) = P (x |z).

Additionally and similarly, it is notable that

Ind (X;Z),

if ∀x, z where P (z) > 0,

P (x | z) = P (x). (B.2)

Therefore, whether the equation B.2 is consistent or not is investigated. If it consis-

tent, then DsepG (X;Z |Y ) and Ind (X;Z), which shows unfaithful distribution to the

DAG in Fig. B.1.

P (z1 |x1) =
∑
y

P (z1 | y, x1)P (y |x1)

=
∑
y

P (z1 | y)P (y |x1)

= P (z1 | y1)P (y1 |x1) + P (z1 | y2)P (y2 |x1) + P (z1 | y3)P (y3 |x1)

= e− be+ bf.

On the other hand,

P (z1) =
∑
x,y

P (z1 | y)P (y |x)P (x)

= P (z1 | y1)P (y1 |x1)P (x1) + P (z1 |Y2)P (y2 |x1)P (x1)

+P (z1 |Y3)P (y3 |x1)P (x1) + P (z1 | y1)P (y1 |x2)P (x2)

+P (z1 |Y2)P (y2 |x2)P (x2) + P (z1 |Y3)P (y3 |x2)P (x2)

= e− be+ bf

= P (z1 |x1). (B.3)
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Similarly, it is shown that P (z2 |x1), P (z1 |x2) and P (z2 |x2) present equal corresponding
marginal probabilities.

Therefore, the assignments of conditional probabilities show unfaithfulness to the

DAG.
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