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Abstract 

Item Response Theory (IRT) [van der Linden et.al (2013)] is a test theory which enables 

to evaluate examinees who take different tests on the same scale. However, IRT assumes 

randomly sampling examinees’ abilities from a statistical distribution. When actual 

examinees' abilities do not follow the distribution, the estimation accuracies of abilities 

tend to decrease significantly. To resolve this problem, Tsutsumi et.al (2021) proposed 

Deep-IRT which enables to estimate examinees’ abilities without the assumption. 

However, the deep-learning-based methods tend to overfit the training data when the 

sample size is small. This study proposes a new Deep-IRT model, which incorporates 

Bayesian neural network into the final layer in the Deep-IRT model. Bayesian neural 

networks (BNN) is a method to improve the accuracies of estimates in deep learning, by 

mitigating the overfitting problem. To predict examinees’ abilities, the proposed method 

employs the variational inference method for Bayesian inference. The proposed model is 

expected to have more accurate prediction than the Deep-IRT model does by mitigating 

the overfitting problem. Experiments show that the proposed model improves the 

prediction performances of the Deep-IRT model, while it provides interpretability for 

both students and items, because the proposed model mitigates the overfitting in learning 

the parameters. 

 

Keywords ： Item Response Theory, Deep Learning, Bayesian neural networks 
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Chapter 1 Introduction 

E-testing provides automatic assemblies of uniform test forms, for which each form 

comprises a different set of items but still has equivalent measurement accuracy [1–14].  

 

Examinees’ test scores should be guaranteed to become equivalent, even if other 

examinees with the same ability take various tests. However, it isn't easy to develop 

perfectly consistent test forms, and the calibration process is fundamentally important 

when multiple test forms are used. Item Response Theory (IRT) [15] is a calibration 

method to solve this difficulty. Especially, IRT has been used widely along with the 

widespread use of computer-based testing. IRT offers the following benefits [16,17]: IRT 

can estimate examinee abilities by minimizing the effects of heterogeneous or aberrant 

items with low estimation accuracy. It can also assess the examinees’ responses to 

different items on the same scale. An individual examinee’s correct response probability 

to an item from the examinee’s past response histories can be predicted by IRT. 

 

Evaluating examinee abilities on the same scale requires to estimate examinees' abilities 

on the same scale from different tests [18 –20]. For this purpose, IRT assumes that 

examinees' abilities are sampled from a normal distribution randomly. This assumption 

might sometimes be too strict for actual data [17]. Nevertheless, it requires much labor to 

design.  

 

Previous studies proposed a test theory based on deep learning, Deep-IRT [13,14], which 

requires no assumption of a random sampling of examinee abilities from a statistical 

distribution. The Deep-IRT model represents an examinee's probability of answering an 

item correctly based on the examinee’s ability parameter and the item’s difficulty 

parameter. The main contributions of the Deep-IRT are as follows: 
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1. The Deep-IRT does not assume random sampling of examinees.  

 

2. The Deep-IRT method provides more reliable and robust ability estimation for actual 

data than IRT does.  

 

 

3. The Deep-IRT method predicts examinee responses to unknown items based on the 

examinee’s past response histories more accurately than IRT does.  

 

However, Deep-IRT has the following problems.  

 

1. The Deep-IRT model is a deep-learning-based model. Training data come from actual 

examinations, and they are usually too sparse for networks to clearly capture the 

features of examinees’ abilities. It tends to overfit easily to data.  

 

2. The inputs of the Deep-IRT model are one-hot vectors, and the outputs of abilities and 

difficulties are calculated by back-propagation. Because the weights of ability are not 

assumed to have prior distributions, the estimation of the parameters tends to overfit 

to the training data.    

 

On the other hand, for Knowledge Tracing [21 –24], Deep Knowledge Tracing (DKT) 

[25] has been proposed. DKT predicts the examinees’ performances. It can capture more 

complex representations of examinees’ knowledge components. However, DKT might 

also cause overfitting for small datasets. The current deep knowledge tracing with a 

simple RNN applies a back-propagation algorithm and batch gradient descent to adjust 

parameters, accessible to overfitting and prone to gradient disappearance and gradient 

explosion for long-dependent data. To solve these problems，Li, et. al, (2019) proposed 
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Bayesian Deep Knowledge Tracing (BDKT) [26], which corporates DKT and Bayesian 

neural networks. 

 

Bayesian neural networks (BNN) [27,28] provides probabilistic interpretations of deep 

learning models by introducing model weights distributions. The model offers robustness 

for overfitting, uncertainty estimation, and ease of learning on small datasets. For the 

BDKT model, a Bayesian neural network is applied to examinees’ behavior analysis and 

knowledge tracing. The results demonstrated that BNN improved the prediction 

performances of DKT. 

 

This method can also be used in the field of E-testing. BNN provides posterior 

distributions of weights and biases given the training data. The Bayesian estimation 

avoids overfitting to data and then improves the parameter estimation accuracy. 

 

This study proposes a new Deep-IRT model incorporating Bayesian parameters 

estimation. Unlike BDKT, which aims to trace examinees’ knowledge states through time, 

the proposed model aims to predict examinees’ abilities in E-testing.   

 

This study implements the proposed model using Tensorflow. Two experiments compare 

the performances of the proposed model and the Deep-IRT model. Experiment 1 

compares the estimation accuracies of the abilities of the two models from simulation 

datasets. Experiment 2 compares the prediction accuracies of unknown responses for the 

two models from actual datasets. 
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Chapter 2 Previous Study 

2.1 Item Response Theory 

 

Item Response Theory (IRT) is a standard framework to predict an examinee's probability 

of a correct answer to an item [15,29]. IRT is essentially a structured logistic regression 

to an examinee's probability of a correct answer to an item from the difference between 

the examinee’s ability and the item's difficulty. It is assumed that an examinee’s ability 

does not change during the examination.  

 

This section introduces the two-parameter logistic model (2PLM), which is the most 

popular IRT model [15].  

 

For the two-parameter logistic model, 𝑢𝑖𝑗 denotes the response of examinee 𝑖 to item 

𝑗 (1, . . . , 𝑛) as 

 

𝑢𝑖𝑗 =  {
 1 (𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑒 𝑖 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑡𝑜 𝑖𝑡𝑒𝑚 𝑗)

 0                                                             (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
. 

 

𝑃𝑗(𝜃𝑖)  denotes the probability that an examinee 𝑖  answers correctly to an item 

(question)  𝑗 . 𝜃𝑖  ∈  (−∞,  ∞ )  represents 𝑖 -th examinee's ability. This possibility is 

defined by the item response function by the difference of an examinee's ability level and 

an item's difficulty level,   

Specifically, in the two-parameter logistic model, the following logistic function is used 

as an item response function: 

 

𝑃𝑗(𝜃𝑖) =  𝑃(𝑢𝑖𝑗 = 1 | 𝜃𝑖 ) =  
1

1+exp (−1.7𝑎𝑗(𝜃𝑖− 𝑏𝑗))
 ,            (2.1) 
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where 𝑎𝑗  ∈  (0, ∞) is the 𝑗-th item’s discrimination parameter, and 𝑏𝑗  ∈  (−∞,∞ ) is 

the 𝑗-th item’s difficulty parameter. The examinees’ abilities are assumed to be sampled 

randomly from an examinees’ ability distribution. 

 

Because it is difficult to estimate the parameters analytically, numerical calculation 

methods such as Markov Chain Monte Carlo methods (MCMC) are generally used to 

calculate the parameters. However, since the IRT model was initially designed to be used 

in educational testing environments, the model assumes that the examinees' ability does 

not change during the test.  

 

IRT models assume randomly sampling examinees’ abilities from a statistical distribution. 

If actual examinees' abilities do not follow the distribution, the estimation accuracies of 

abilities tend to decrease significantly. 
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2.2 Deep-IRT 

 

In order to solve the problem mentioned above, E. Tsutsumi, R. Kinoshita, and M. Ueno 

proposed Deep-IRT [13], which does not assume randomly sampling examinees’ abilities 

from a statistical distribution. The Deep-IRT method is expected to estimate examinees’ 

abilities more reliably and robustly than IRT. The Deep-IRT model combines two 

independent neural networks, an Examinee network and an Item network. Using the 

outputs of both networks, the probability of an examinee answering an item correctly is 

calculated. The structure of the Deep-IRT model is shown in Figure 1. 

 

 

Figure 1 the structure of the Deep-IRT [23] 

 

2.2.1 The Examinee network 

 

To represent the 𝑖-th examinee in the examinee network, this study takes the one-hot-

vector 𝑠𝑖  ∈ {0,1}𝐼, where only the 𝑖-th element is one, and the other elements are 0, as 
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input, and calculate the output for each layer as in equations (2.2), (2.3), and (2.4), 

 

𝜃 1
(𝑖)

 = tanh(𝑾(𝜃1)𝑠𝑖 + 𝜏 (𝜃1) )      ,                 (2.2) 

𝜃 2
(𝑖)

 = tanh(𝑾(𝜃2) 𝜃1
(𝑖)

+  𝜏 (𝜃2) )     ,                (2.3)  

and     𝜃 3
(𝑖)

 = 𝑾(𝜃3) 𝜃2
(𝑖)

+  𝜏 (𝜃3)              ,                (2.4) 

 

where tanh is the activation function and is calculated as 

 

tanh(𝑥) =  
exp(𝑥)−exp (−𝑥)

exp(𝑥)+exp (−𝑥)
       ,              (2.5) 

 

𝑾(𝜃1) and 𝑾(𝜃2) represent the weight parameter matrices as 

 

𝑾(𝜃1) =   (

𝑤11
(𝜃1)

⋯ 𝑤1𝐼
(𝜃1)

⋮ ⋱ ⋮

𝑤
|𝜃1|1
(𝜃1)

⋯ 𝑤
|𝜃1|𝐼
(𝜃1)

), 

 

𝑾(𝜃2) =   (

𝑤11
(𝜃2)

⋯ 𝑤1|𝜃1|

(𝜃2)

⋮ ⋱ ⋮

𝑤
|𝜃2|1
(𝜃2)

⋯ 𝑤
|𝜃2||𝜃1|

(𝜃2)
), 

 

𝑾(𝜃3) represents the weight parameter vector as 

 

𝑾(𝜃3)𝑇 = (

𝑤1
(𝜃3)

⋮

𝑤
|𝜃2|

(𝜃3)
), 

 

𝜏 (𝜃1) and 𝜏 (𝜃2) represent the bias parameter vectors and 𝜏 (𝜃3) is the bias parameter. 
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The weight parameters in 𝑾(𝜃1), 𝑾(𝜃2) and 𝑾(𝜃3) are updated so as to maximize the 

model fitting to the data, and the output 𝜃 3
(𝑖)

of the examinee network is regarded as the 

ability parameter of examinee 𝑖 . In the Deep-IRT model, all weight parameters are 

updated when new response data are obtained, without an assumption of independence 

among examinee parameters. 

 

2.2.2 The Item network  

 

To represent the 𝑗-th item in the item network, this study employs the one-hot vector 

𝑞𝑗 ∈ {0,1}𝐽, in which only the 𝑗-th element is one and the other parts are 0, as the input, 

and calculate the output for each layer as in Equations (2.6), (2.7), and (2.8), 

 

𝛽 1
(𝑗)

 = tanh(𝑾(𝛽1)𝑞𝑗 +  𝜏 (𝛽1) )      ,             (2.6) 

𝛽 2
(𝑗)

 = tanh (𝑾(𝛽2) 𝛽1
(𝑗)

+ 𝜏 (𝛽2) )    ,            (2.7) 

and     𝛽 3
(𝑗)

 = 𝑾(𝛽3) 𝛽2
(𝑗)

+ 𝜏 (𝛽3)           ,             (2.8) 

 

where 𝑾(𝛽1), 𝑾(𝛽2) are the weight parameter matrices shown as 

 

𝑾(𝛽1) =   (

𝑤11
(𝛽1)

⋯ 𝑤1𝐽
(𝛽1)

⋮ ⋱ ⋮

𝑤
|𝛽1|1
(𝛽1)

⋯ 𝑤
|𝛽1|𝐽
(𝛽1)

), 

 

𝑾(𝛽2) =   (

𝑤11
(𝛽2)

⋯ 𝑤1|𝛽1|

(𝛽2)

⋮ ⋱ ⋮

𝑤
|𝛽2|1
(𝛽2)

⋯ 𝑤
|𝛽2||𝛽1|

(𝛽2)
) , 
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𝑾(𝛽3) is the weight parameter vector shown as 

 

𝑾(𝛽3)𝑇 = (

𝑤1
(𝛽3)

⋮

𝑤
|𝛽2|

(𝛽3)
), 

 

𝜏 (𝛽1) and 𝜏 (𝛽2) are the bias parameter vectors, and 𝜏 (𝛽3) is the bias parameter. The 

weight parameters in  𝑾(𝛽1) , 𝑾(𝛽2) and 𝑾(𝛽3) are updated so as to fit the obtained 

response data, and the output of the item network is calculated by 𝛽 3
(𝑗)

 alone via the 

weight parameters. The output of the network 𝛽 3
(𝑗)

 in the Deep-IRT model is interpreted 

as the difficulty parameter of item j. In the Deep-IRT model, all the item difficulty 

parameters are dependent one another. 

 

2.2.3 The output of the Deep-IRT model 

 

The difference between an examinee’s ability parameter and an item's difficulty latent 

variable parameter predicts the examinee's correct response probability to the item. 

Specifically, the response of examinee i to item j, the hidden layer ℎ(𝑖,𝑗) = (ℎ0
(𝑖,𝑗)

, ℎ1
(𝑖,𝑗)

), 

is represented by 

 

ℎ(𝑖,𝑗)  =  (𝑾(𝑦))
𝑇

(𝜃3
(𝑖)

− 𝛽3
(𝑗)

) +  𝜏(𝑦)      ,         (2.9) 

 

where 𝑾(𝑦) is the weight parameter vector, and the 𝜏(𝑦) is the bias parameter vector. 

The weight parameters in 𝑾(𝑦) are updated so as to maximize the model fitting to the 

data. 
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The correct response probability of examinee i to item j is obtained by 

 

�̂�𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎ(𝑖,𝑗)) =  
exp(ℎ1

(𝑖,𝑗)
)

exp(ℎ0
(𝑖,𝑗)

)+exp (ℎ1
(𝑖,𝑗)

)
    .        (2.10) 

 

Deep-IRT uses a deep learning method to estimate the relationship between an examinees’ 

ability and all the other examinees’ abilities so as to maximize the model fitting to the 

data. The unique feature of this method is to estimate an examinee’s ability by adjusting 

the other examinees’ ability estimates.  

 

In general, deep-learning-based models learn their parameters using the back-propagation 

algorithm by minimizing a loss function. Because the Deep-IRT model is a classification 

model, the cross-entropy is often used as a loss function. It is possible to calculate the 

predicted responses and the actual responses as  

 

cross entropy =  −𝑢𝑖𝑗 log �̂�𝑖𝑗 − (1 − 𝑢𝑖𝑗) log(1 − �̂�𝑖𝑗)  ,      (2.11) 

 

where 𝑢𝑖𝑗 are the actual responses and the �̂�𝑖𝑗 are the predicted responses.  

 

However, the Deep-IRT model is deep-learning-based. Overfitting is an unavoidable 

problem in standard deep learning models. 

 

To mitigate the overfitting problem of the Deep-IRT, the next chapter will propose a new 

model incorporating Bayesian estimation of an examinee's ability and an item difficulty 

into Deep-IRT.  
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Chapter 3 The proposed model 

3.1 Bayesian neural networks 

 

Bayesian neural networks (BNNs) apply Bayesian learning to deep learning. It realizes 

the combination of probabilistic programming and deep learning, bringing massive 

innovation to deep learning [26,27].  

 

For BNNs, we can use the following Bayesian methods, 

 

Input data:   𝐷 = {𝑥, 𝑦} ,   

 

Prior:        𝑝(𝑤) ,   

 

Posterior:     𝑝(𝑤|𝐷) =  
𝑝(𝑤)𝑝(𝐷|𝑤)

𝑝(𝐷)
  ,   

 

and     Prediction:   𝑝(�̂�|𝐷) = ∫ 𝑝(�̂�|𝑤)𝑝(𝑤|𝐷)𝑑𝑤,          (3.1) 

 

where 𝐷   is the dataset, and it is made up of 𝑥  and 𝑦 . 𝑥  is the input of the neural 

network. 𝑦  is the label data. 𝑤  is the weights vector or matrix in neural networks. 

𝑝(𝑤)  is the prior over the weights vector or matrix. This study estimates the 

posterior  𝑝(𝑤│𝐷),  which assumes the posterior distribution of the weights vector or 

matrix influenced by the dataset. �̂� is the prediction or the output of the neural network. 

It is possible to calculate the gradient descent by comparing 𝑦  and �̂�  and update 

parameters. 

 

It is difficult to analytically calculate the posterior   𝑝(𝑤│𝐷) . Therefore, it needs to 
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assume a variational posterior Q(𝑤; 𝜉) to approximate 𝑝(𝑤│𝐷) . This study employs 

the variational inference method. Q(𝑤;  𝜉) is the variational posterior parameterized by 

parameters 𝜉.  

 

Peterson (1987) [30] and Hinton & Van Camp (1993) [31] firstly applied variational 

inference to neural networks. Variational reasoning uses optimization instead of Bayesian 

modeling marginalization. Namely, a derivative is used instead of an integral calculation. 

In contrast to the optimization methods often used in deep learning, in this case, 

distributions of the weights are estimated instead of estimating the points. This method 

retains advantages of Bayesian modeling (such as the balance between a complex model 

and a model that can explain the data satisfactorily). It leads to a probabilistic model that 

captures the uncertainty of the model. 

 

The approximated distribution is estimated to be as close as possible to the posterior 

distribution obtained from the original model. Therefore, this study minimizes the 

Kullback-Leibler (KL) divergence [27] to measure the distance between the variational 

posterior Q(𝑤;  𝜉) and the Posterior 𝑝(𝑤│𝐷) as 

 

𝐾𝐿(Q(𝑤; 𝜉)||𝑝(𝑤|𝐷)) =   ∫ Q(𝑤; 𝜉) log
Q(𝑤;𝜉)

𝑝(𝑤|𝐷)
𝑑𝑤   .     (3.2) 

 

Because the KL divergence is still difficult to be calculated, it is transformed as follows 

 

∫ Q(𝑤; 𝜉) log
Q(𝑤; 𝜉)

𝑝(𝑤|𝐷)
𝑑𝑤 =  − ∫ Q(𝑤; 𝜉) log

𝑝(𝑤|𝐷)

Q(𝑤; 𝜉)
𝑑𝑤  

 

=  −  (∫ Q(𝑤; 𝜉) log
𝑝(𝐷,𝑤)

Q(𝑤;𝜉)
𝑑𝑤 − ∫ Q(𝑤; 𝜉) log 𝑝(𝐷)𝑑𝑤 )       
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=  − ∫ Q(𝑤; 𝜉) log
𝑝(𝐷,𝑤)

Q(𝑤;𝜉)
𝑑𝑤 +  ∫ Q(𝑤; 𝜉) log 𝑝(𝐷)𝑑𝑤  ,           (3.3) 

 

where  

 

∫ Q(𝑤; 𝜉)𝑑𝑤 = 1            .            (3.4) 

 

As a result, we obtain 

 

𝐾𝐿(Q(𝑤; 𝜉)||𝑝(𝑤|𝐷)) = − ∫ Q(𝑤; 𝜉) log
𝑝(𝐷,𝑤)

Q(𝑤;𝜉)
𝑑𝑤 +  𝑙𝑜𝑔 𝑝(𝐷) .  (3.5) 

 

The first term of the right side of (3.5) is called as −𝐸𝐿𝐵𝑂(𝜉) , 

 

∫ Q(𝑤; 𝜉) log
𝑝(𝐷,𝑤)

Q(𝑤;𝜉)
𝑑𝑤 =  ∫ Q(𝑤;  𝜉) log 𝑝(𝐷|𝑤)𝑑𝑤  −  ∫ Q(𝑤;  𝜉) log

Q(𝑤; 𝜉)

𝑝(𝑤)
𝑑𝑤  , 

(3.6) 

 

𝐸𝐿𝐵𝑂(𝜉) =  ∫ Q(𝑤;  𝜉) log 𝑝(𝐷|𝑤)𝑑𝑤  −  ∫ Q(𝑤;  𝜉) log
Q(𝑤; 𝜉)

𝑝(𝑤)
𝑑𝑤  . (3.7) 

 

The Kullback-Leibler divergence between the Q(𝑤; 𝜉) and 𝑝(𝑤|𝐷) can be represented 

by   

 

𝐾𝐿(Q(𝑤; 𝜉)||𝑝(𝑤|𝐷)) = −𝐸𝐿𝐵𝑂(𝜉) + 𝑙𝑜𝑔 𝑝(𝐷)   .    (3.8) 

 

Because the 𝑙𝑜𝑔 𝑝(𝐷) is constant for the variational posterior, to minimize the KL, the 

𝐸𝐿𝐵𝑂(𝜉) (equation 3.7) has to be maximized. 

 

The calculation of derivatives is usually much more accessible than integration, making 
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many approximations easier to handle. By adding 𝐸𝐿𝐵𝑂(𝜉) in loss function, this study 

uses the re-parameterization trick for backpropagation [32] to update the variational 

parameters. 
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3.2 The proposed model 

 

 

Figure 2 the structure of the proposed model 

 

The Deep-IRT model has two networks to estimate examinees’ abilities and the items’ 

difficulties. Specifically, this study incorporates Bayesian neural network [27] into the 

final layers of the examinee network and the item network as  

 

𝜃 3
(𝑖)

 = 𝑾(𝜃3) 𝜃2
(𝑖)

+  𝜏 (𝜃3), 

 

and                    𝛽 3
(𝑗)

 = 𝑾(𝛽3) 𝛽2
(𝑗)

+  𝜏 (𝛽3),                    (3.9) 

 

where 𝑾(𝜃3) and 𝑾(𝛽3) follow the posteriors 𝑝(𝑾(𝜃3)|𝐷) and 𝑝(𝑾(𝛽3)|𝐷) , 

respectively. The structure of the proposed model is shown in Figure 2.  
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3.2.1 learning parameters 

 

The priors 𝑝(𝑾(𝜃3))  and 𝑝(𝑾(𝛽3))  are defined as a standard multivariate normal 

distribution.  

 

It is difficult to analytically calculate the posterior 𝑝(𝑾(𝜃3)|𝐷) and 𝑝(𝑾(𝛽3)|𝐷),  this 

study introduces the variational posteriors Q(𝑾(𝜽𝟑);  𝜉𝜃)  and 𝑄(𝑾(𝛽3);  𝜉𝛽)  of the 

variational Bayes [27] to approximate them as 

 

Q(𝑾(𝜃3);  𝜉𝜃) =   𝑁(𝜇𝜃 , Σ𝜃)  , 

 

and        Q(𝑾(𝛽3);  𝜉𝛽)  =   𝑁(𝜇𝛽 ,Σ𝛽)  ,                  (3.10) 

 

where   𝑁(𝜇𝜃 , Σ𝜃)  and 𝑁(𝜇𝛽  , Σ𝛽)  are the multivariate normal distributions 

parameterized by the variational parameters  𝜉𝜃 = { 𝜇𝜃 , Σ𝜃 }  and 𝜉𝛽 = { 𝜇𝛽  , Σ𝛽} 

respectively. 𝜇𝜃 and 𝜇𝛽 are the mean vectors. Σ𝜃 and Σ𝛽 are the covariance matrices. 

The Σ𝜃 and Σ𝛽 are diagonal matrices as  

 

Σ𝜃 =  (
𝜎11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝜃𝜃

), 

 

            and           Σ𝛽 =  (

𝜎11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝛽𝛽

). 
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The variational Bayes uses the following Kullback-Liebler (KL) divergence to measure 

the distance between the variational posterior Q(𝑾(𝜃3);  𝜉𝜃)  and the Posterior 

𝑝(𝑾(𝜃3)|𝐷) as 

 

𝐾𝐿 (Q(𝑾(𝜃3);  𝜉𝜃)||𝑝(𝑾(𝜃3)|𝐷)) =   ∫ Q(𝑾(𝜃3);  𝜉𝜃) log
Q(𝑾(𝜃3); 𝜉𝜃)

𝑝(𝑾(𝜃3)
|𝐷)

𝑑𝑾(𝜃3),  (3.11) 

 

where 𝐾𝐿 (Q(𝑾(𝜽𝟑);  𝜉𝜃)||𝑝(𝑾(𝜃3)|𝐷)) is obtained as  

 

𝐾𝐿 (Q(𝑾(𝜽𝟑);  𝜉𝜃)||𝑝(𝑾(𝜃3)|𝐷)) = −𝐸𝐿𝐵𝑂(𝜉𝜃) + 𝑙𝑜𝑔 𝑝(𝐷),      (3.12) 

 

and  

 

𝐸𝐿𝐵𝑂(𝜉𝜃) =

∫ Q(𝑾(𝜃3);  𝜉𝜃) log 𝑝(𝐷|𝑾(𝜃3))𝑑𝑾(𝜃3) −  ∫ Q(𝑾(𝜃3);  𝜉𝜃) log
Q(𝑾(𝜃3); 𝜉𝜃)

𝑝(𝑾(𝜃3))
𝑑𝑾(𝜃3). 

(3.13) 

 

This study estimated the variational parameters 𝜉𝛽 = { 𝜇𝛽 ,Σ𝛽} in the item network with 

the same process.  

 

Because the proposed model is also a classification model, it can still use the cross-

entropy as a loss function (equation 2.11). This study calculates 𝐸𝐿𝐵𝑂(𝜉𝜃)  and 

𝐸𝐿𝐵𝑂(𝜉𝛽)  to update the variational parameters 𝜉𝜃   and 𝜉𝛽  by minimizing the 

following loss function. 
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𝐿 =  cross entropy - 𝐸𝐿𝐵𝑂(𝜉𝜃) - 𝐸𝐿𝐵𝑂(𝜉𝛽) ,            (3.14) 

 

where 𝐸𝐿𝐵𝑂(𝜉𝜃)  and 𝐸𝐿𝐵𝑂(𝜉𝛽)  (equation 3.7) are calculated using the 

DenseVariational layer. The variational parameters  𝜉𝜃  and 𝜉𝛽  are trained by the re-

parameterization trick for backpropagation so as to maximize the 𝐸𝐿𝐵𝑂(𝜉𝜃)  and 

𝐸𝐿𝐵𝑂(𝜉𝛽). 

 

This study uses the DenseVariational layer to achieve the re-parameterization trick for 

backpropagation to update parameters. The DenseVariational layer is an API (Application 

Programming Interface) from the TensorFlow Probability library [33].  

 

The variational inference learns the distributions by maximizing the 𝐸𝐿𝐵𝑂(𝜉) (equation 

3.7), and two terms of the 𝐸𝐿𝐵𝑂(𝜉)  are computed in the DenseVariational layer 

separately.  

 

For each epoch of training, we employ the batch processing. Each input dataset is divided 

into several small batches. ∫ Q(𝑤; 𝜉) log 𝑝(𝐷|𝑤)𝑑𝑤 is calculated by approximating it 

with a single random sample from Q(𝑤;  𝜉) on each small batch, because the sampling is 

repeated for each batch. Thus, by simply drawing a random set of weights from Q(𝑤;  𝜉)  

and then computing the loss function, the first term of ELBO is approximated 

automatically. On the other hand,  ∫ Q(𝑤;  𝜉) log
Q(𝑤; 𝜉)

𝑝(𝑤)
𝑑𝑤  is computed analytically 

and then added to the layer as a regularization loss.  
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3.2.2 Estimation of an examinee’s ability and an item’s difficulty 

 

By incorporating the Bayesian neural networks into the Deep-IRT model, the weights 

vector in the examinee network (equation 2.4) follows  

 

𝑾(𝜃3)~   𝑁( 𝜇𝜃 , Σ𝜃 )    .                     (3.15) 

 

Each weight parameter ( 𝑤1
(𝜃3)

 ⋯ 𝑤
|𝜃2|

(𝜃3)
) in the vector is sampled from the variational 

posterior distribution. The variational parameter 𝜇𝜃 and Σ𝜃 are trained by the 

DenseVariational layer.  

 

The weights vector in the item network (equation 2.8) also follows  

 

𝑾(𝛽3)~   𝑁( 𝜇𝛽 , Σ𝛽 )    .                   (3.16) 

 

Each weight parameter ( 𝑤1
(𝛽3)

 ⋯ 𝑤
|𝛽2|

(𝛽3)
) in the vector is sampled from the variational 

posterior distribution. The variational parameter 𝜇𝛽 and Σ𝛽 are trained by the 

DenseVariational layer.  

 

The estimation of an examinee’s ability 𝜃  in the examinee network is obtained as 

follows 

 

𝜃𝑙|𝐷 ∼  𝑝(𝜃|𝐷) = ∫ 𝑝(𝜃|𝑤𝜃)𝑝(𝑤𝜃|𝐷)𝑑𝑤, 

and  

�̅�|𝐷 =  
1

𝑛
∑ 𝜃𝑙|𝐷𝑛

𝑙=1 ,                      (3.17) 
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where 𝑛 is the sample size from the variational posterior of 𝜃. 

 

The estimation of an item’s difficulty 𝛽 in the item network is obtained as follows 

 

𝛽𝑙|𝐷 ∼ 𝑝(𝛽|𝐷) = ∫ 𝑝(𝛽|𝑤𝛽)𝑝(𝑤𝛽|𝐷)𝑑𝑤, 

and  

�̅�|𝐷 =  
1

𝑛
∑ 𝛽𝑙|𝐷

𝑛
𝑙=1 ,                      (3.18) 

 

where 𝑛 is the sample size from the variational posterior of 𝛽.   
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3.2.3 Prediction of an examinee's response �̂�𝑖𝑗 to an item  

 

The prediction probability 𝑝𝑖𝑗 of a correct answer to the item 𝑗 by the examinee 𝑖 is 

calculated by 

 

𝑝𝑖𝑗|𝐷 =
1

1+exp [−(𝜃𝑖𝑗|𝐷−𝛽𝑖𝑗|𝐷)]
  .                 (3.19) 

 

This study predicts the examinee’s unknown response as �̂�𝑖𝑗 = 1  if  𝑝𝑖𝑗 ≥ 0.5  , 

otherwise, �̂�𝑖𝑗 = 0. 

 

The proposed model learns its parameters using the back-propagation algorithm by 

minimizing a loss function. It is calculated from the predicted responses �̂�𝑖𝑗 and the true 

responses 𝑢𝑖𝑗 by adding them in the loss function (equation 3.14).  
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Chapter 4 Experiments 

 

This chapter demonstrates two experiments to evaluate the performances of the proposed 

model. To compare the Deep-IRT model and the proposed model, this study implements 

the models using the GPU, Radeon R9 M390. 

 

4.1 Datasets 

4.1.1 Simulation datasets 

 

To demonstrate the effectiveness of the proposed model when examinees’ abilities are not 

randomly sampled, this subsection compares the estimation accuracies with changing 

examinee assignments for different tests. This study generates simulation experiments’ 

data as Tsutsumi et.al (2021) [13,14] did.  

 

This experiment generates 10 test datasets that have no common examinees. In addition, 

the 𝑘-th test (𝑘 =  1, . . . , 10) has common items only among the (𝑘−1)-th test and the 

(𝑘 + 1)- th test. The actual parameters were generated randomly:  

 

𝜃 ∼  𝑁(0, 1), 𝑙𝑜𝑔 𝑎 ∼  𝑁(0, 1), 𝑏 ∼  𝑁(1, 0.4) .            (4.1) 

 

Here, the simulation data were generated based on 2PLM in the following two ways. The 

first way is that examinees are assigned randomly to each test from Equation (4.1). The 

other way is that examinees are given systematically to each test as described below.  
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1. Examinees are sampled randomly from Equation (4.1).  

 

2. The examinees are sorted in order of their ascending ability. Furthermore, the 

examinees are divided equally into groups of 10 examinees in charge of their 

respective abilities.  

 

3. The k-th examinee group is assigned to the k-th test. 

 

The simulation data is set on Items in {10, 50, 100} and examinees in {100, 500, 1000}. 

 

4.1.2 The actual datasets 

 

This study used the same actual datasets used in Tsutsumi et.al (2021) [13,14]. These 

datasets are originally from [35]～[39].  

 

The summary of actual datasets is shown in Table 1. 

 

Table 1 Summary of actual datasets 

Dataset Examinees Items 

Benesse Japanese test 314 60 

Discrete mathematics  77 125 

programming1 148 7 

programming2 75 18 
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4.2 Experiments 1: Estimation of the estimated abilities 

 

This experiment compares the estimation accuracies of the estimated abilities of Deep-

IRT with those of the proposed model using simulation datasets. 

 

The training epochs are 300, and we divide each dataset into 10 batches. 

 

This experiment employs the root mean square error (RMSE) and the correlation 

coefficients between the estimated abilities and the true values. 

 

Because the proposed model samples several times to estimate the examinee’s ability, we 

can calculate the standard error of the estimated abilities 𝜃. The standard error can be 

estimated by 

 

𝑆𝐸 =  √
1

𝑛
∑ (𝜃𝑙|𝐷 − �̅�|𝐷)2𝑛

𝑙=1 ,                  (4.2) 

 

where 𝑛  is the sample size from the posterior of 𝜃 . This experiment calculates the 

standard errors when sample size = {5,10,20,30,50}.  
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Table 2 Estimation accuracies and standard errors of the estimated abilities 

Model Deep-IRT Sample size-5 Sample size-10 Sample size-20 Sample size-30 Sample size-50 

Dataset: RMSE RMSE SE RMSE SE RMSE SE RMSE SE RMSE SE 

{100.10} 0.8200 0.4557 0.0436 0.4552 0.0474 0.4560 0.0490 0.4561 0.0492 0.4553 0.0514 

{500.10} 0.7572 0.5816 0.0409 0.5813 0.0449 0.5812 0.0468 0.5816 0.0478 0.5816 0.0481 

{1000.10} 0.8801 0.6250 0.0484 0.6249 0.0516 0.6246 0.0537 0.6253 0.0547 0.6253 0.0554 

{100.50} 0.55 0.3208 0.0507 0.3199 0.0562 0.3201 0..0599 0.3205 0.0607 0.3201 0.0618 

{500.50} 0.451 0.3433 0.0603 0.3437 0.0662 0.3443 0.0691 0.3445 0.0696 0.3441 0.0706 

{1000.50} 0.500 0.3362 0.0719 0.3361 0.0805 0.3356 0.0840 0.3360 0.0849 0.3360 0.0856 

{100.100} 0.783 0.4805 0.0345 0.4809 0.0371 0.4805 0.0389 0.4803 0.0392 0.4800 0.0394 

{500.100} 0.633 0.4330 0.0708 0.4329 0.0779 0.4326 0.0806 0.4328 0.0825 0.4333 0.0830 

{1000.100} 0.614 0.4268 0.0797 0.4269 0.0874 0.4267 0.0911 0.4265 0.0927 0.4266 0.0935 

 

Table 2 shows the RMSEs of the proposed model tend to be less than those of the Deep-

IRT model. Table 2 also demonstrates the estimated standard errors slightly decrease as 

the sample size increases. In this study, (sample size = 5) is used as an example to compare 

the performances of the correlation coefficients.  
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Table 3 Estimation accuracies of the estimated abilities (Sample size = 5) 

Items Examinees Theta 𝜃 RMSE Pearson Kendall Spearman 

10 100 Deep-IRT 0.82 0.691 0.520 0.691 

Proposed 0.45 0.735 0.553 0.735 

500 Deep-IRT 0.757 0.766 0.571 0.767 

Proposed 0.581 0.778 0.579 0.775 

1000 Deep-IRT 0.880 0.595 0.420 0.591 

Proposed 0.625 0.620 0.463 0.645 

50 100 Deep-IRT 0.55 0.928 0.775 0.927 

Proposed 0.32 0.926 0.784 0.936 

500 Deep-IRT 0.451 0.924 0.787 0.939 

Proposed 0.343 0.921 0.791 0.942 

1000 Deep-IRT 0.500 0.925 0.788 0.940 

Proposed 0.336 0.932 0.796 0.944 

100 100 Deep-IRT 0.783 0.943 0.796 0.940 

Proposed 0.480 0.952 0.802 0.942 

500 Deep-IRT 0.633 0.936 0.803 0.949 

Proposed 0.433 0.930 0.809 0.951 

1000 Deep-IRT 0.614 0.936 0.825 0.958 

Proposed 0.427 0.942 0.827 0.958 

 

Table 3 shows the proposed model tends to have higher the correlation coefficients than 

the Deep-IRT model does. Namely, the abilities predicted by the proposed model is closer 

to the true abilities than those by the Deep-IRT.  

 

The histogram of estimated abilities for items {100} and examinee {500} is depicted as 

follows. 
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Histogram 1 The true 𝜃 

 

 

Histogram 2 The 𝜃 predicted by Deep-IRT 
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Histogram 3 The 𝜃 predicted by the proposed model 

 

The peak value of the true 𝜃 in [0.22, 0.66], and the proposed model’s distribution is 

closer than that of the Deep-IRT model. It shows that Bayesian neural networks make the 

model more explainable. 

 

4.3 Experiment 2: Prediction accuracies  

This experiment compares the prediction accuracies of predicted examinees' responses of 

the proposed model and the previous Deep-IRT model. This experiment used some 

simulation datasets and actual datasets. 

 

The training epochs are 300, and we divide each dataset into 10 batches. 

 

For all the datasets, 20% of the sequences are held out as a test set, and the remaining 80% 

are used as a training set. Furthermore, five-fold cross-validation is applied to the training 

set. This study compares the performances of the models using accuracy (Acc), the AUC 
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scores and the F1 scores.  

 

Table 4 Prediction accuracies in simulation datasets 

Items Examinees Metrics(%) Acc AUC F1 

10 100 Deep-IRT 67.0 68.3 63.0 

Proposed 74.0 77.9 72.5 

500 Deep-IRT 74.0 76.3 67.6 

Proposed 74.8 78.2 72.2 

1000 Deep-IRT 76.5 76.2 67.5 

Proposed 76.6 76.2 74.1 

50 100 Deep-IRT 70.5 75.4 70.0 

Proposed 72.5 76.4 72.2 

500 Deep-IRT 70.5 75.7 70.3 

Proposed 71.2 76.3 71.1 

1000 Deep-IRT 73.6 78.3 73.4 

Proposed 74.3 79.4 74.2 

100 100 Deep-IRT 71.1 74.8 71.3 

Proposed 71.8 75.1 72.1 

500 Deep-IRT 71.8 76.3 71.3 

Proposed 72.7 76.3 72.5 

1000 Deep-IRT 73.5 78.3 73.4 

Proposed 73.5 78.7 73.6 

 

Table 4 shows that the proposed model performs better than the Deep-IRT model 

especially for small datasets because the Deep-IRT model tends to over-fit for small 

datasets, but the proposed model mitigates it. The proposed model has a better F1 score 

because it mitigated the overfitting in deep learning. 
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Table 5 Prediction accuracies in actual datasets 

Dataset Metrics(%) Acc AUC F1 

Benese Deep-IRT 73.8 74.8 73.5 

Proposed 74.6 75.8 74.4 

Discrete 

mathematics 

Deep-IRT 71.2 78.5 71.5 

Proposed 72.2 78.9 73.0 

programming1 Deep-IRT 66.4 73.4 63.0 

Proposed 71.0 76.0 64.4 

programming2 Deep-IRT 73.4 78.3 71.5 

Proposed 74.5 79.1 73.4 

 

Table 5 shows the results: the average of metrics of the proposed model is significantly 

higher than that of the Deep-IRT model. The proposed model can predict examinees’ 

responses to unknown items more accurately than the Deep-IRT model can, especially in 

programming1 and programming2 which are relatively small datasets. 

 

The results show that Bayesian neural network helps the Deep-IRT model to predict more 

accurately an examinee's responses to unknown items.  
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Chapter 5 Conclusions 

 

This study proposed a new Deep-IRT model based on Bayesian neural networks, which 

used the Bayesian approach to model examinees' reactions to an item. Due to the 

effectiveness of Bayesian neural networks, the parameters of the proposed model can be 

highly explained. The proposed model mitigated the overfitting problem of the previous 

Deep-IRT because it showed higher F1 scores than the previous model did. The results 

also demonstrated the proposed model accurately estimated the examinees’ abilities. In 

addition, the proposed model improved the accuracy of response probability prediction 

of the previous model. As a future work, we will incorporate Bayesian neural network 

into all the layers of the Deep-IRT model. Furthermore, as another future work, we will 

apply the proposed model for Computer Adaptive Testing (CAT) [40,41] to improve the 

examinee’s ability estimation accuracy. 
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