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Abstract: Item Response Theory (IRT) evaluates, on the same scale, examinees who take different
tests. It requires the linkage of examinees’ ability scores as estimated from different tests. However,
the IRT linkage techniques assume independently random sampling of examinees’ abilities from
a standard normal distribution. Because of this assumption, the linkage not only requires much
labor to design, but it also has no guarantee of optimality. To resolve that shortcoming, this study
proposes a novel IRT based on deep learning, Deep-IRT, which requires no assumption of randomly
sampled examinees’ abilities from a distribution. Experiment results demonstrate that Deep-IRT
estimates examinees’ abilities more accurately than the traditional IRT does. Moreover, Deep-IRT can
express actual examinees’ ability distributions flexibly, not merely following the standard normal
distribution assumed for traditional IRT. Furthermore, the results show that Deep-IRT more accurately
predicts examinee responses to unknown items from the examinee’s own past response histories
than IRT does.

Keywords: deep learning; e-testing; test theory; item response theory

1. Introduction

As a rapidly growing area of e-assessment, E-testing involves the delivery of exam-
inations and assessments on screen, using either local systems or web-based systems.
In general, e-testing provides automatic assemblies of uniform test forms, for which each
form comprises a different set of items but which still has equivalent measurement ac-
curacy [1–10]. Uniform test forms are assembled for which all forms have equivalent
qualities for equal evaluation of examinees who have taken different test forms. Examinees’
test scores should be guaranteed to become equivalent, even if different examinees with
the same ability take different tests. However because it is difficult to develop perfectly
uniform test forms, the calibration process is fundamentally important when multiple
test forms are used. To resolve this difficulty, IRT has been used as a calibration method.
Reports of the literature describe that Item Response Theory (IRT) offers the following
benefits [11,12]:

• One can estimate examinees’ abilities while minimizing the effects of heterogeneous
or aberrant items that have low estimation accuracy.

• IRT produces examinee ability estimates on a single scale, even for results obtained
from different tests.

• IRT predicts an individual examinee’s correct response probability to an item from
the examinee’s past response histories.

Evaluating abilities of numerous examinees on a single scale requires linkage of
examinees’ abilities estimated from different tests [12–15]. However, linkage techniques of
IRT assume random sampling of examinees’ abilities from a standard normal distribution.
Because of this assumption, the IRT linkage theoretically has no guarantee for its optimality.
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Nevertheless, it requires much labor to design [16–19]. In addition, examinees’ abilities
have no guarantee of being sampled randomly from a standard normal distribution.

To resolve difficulties of linkage, this study proposes a novel Item Response Theory
based on deep learning, Deep-IRT, without assuming random sampling of examinees’
abilities from a statistical distribution. The proposed method represents a probability for
an examinee to answer an item correctly based on the examinee’s ability parameter and
the item’s difficulty parameter. The main contributions of this study are presented below:

• Based on deep learning technology, a novel IRT is proposed. It requires no linkage
procedures because it does not assume random sampling of examinees.

• Deep-IRT estimated examinees’ abilities with high accuracy when the examinees are
not sampled randomly from a single distribution or when there are no common items
among the different tests.

• Deep-IRT can express actual examinees’ abilities distributions flexibly. It does not
follow a standard normal distribution.

• The proposed method provides more reliable and robust ability estimation for actual
data than IRT does.

In the study of artificial intelligence, researchers have recently developed deep learning
methods that incorporate IRT for knowledge tracing [20–23]. Nevertheless, these methods
have not achieved interpretable parameters for examinee ability and item difficulty because
each examinee parameter depends on each item. Estimating interpretable parameters is
the most important task in the field of test theory. To increase the interpretability of the
parameters, the proposed method estimates parameters using two independent networks:
an examinee network and an item network. However, generally speaking, independent
networks are known to have less prediction accuracy than dependent networks have.
Recent studies of deep learning have demonstrated that redundancy of parameters (deep
layers of hidden variables) reduces generalization error, contrary to Occam’s razor [24–27].
Based on reports of state-of-the-art studies, the proposed method constructs two indepen-
dent redundant deep networks: an examinee network and an item network. The present
study uses the term “deep learning” in the sense of learning neural networks with a deep
layer of hidden variables. Therefore, the proposed method is expected to have highly
interpretable parameters without impairment of the estimation accuracy.

Simulation experiments demonstrate that the proposed Deep-IRT estimates examinees’
abilities more accurately than IRT does when examinees’ abilities are not sampled randomly
from a single distribution or when no common items exist among the different tests.
Experiments conducted with actual data demonstrated that the proposed method provides
more reliable and robust ability estimation than IRT does. Furthermore, Deep-IRT more
accurately predicted examinee responses to unknown items from the examinee’s past
response histories than IRT does.

2. Related Works

For knowledge tracing [28–34], the task of tracking the knowledge states of different
learners over time, several deep IRT methods that have been developed in the domain
of artificial intelligence combine IRT with a deep learning method [20–23,27]. Cheng and
Liu [21] proposed deep IRT based Long-short term memory (LSTM) [35] to estimate item
discrimination and difficulty parameters by extracting item text information. Yeung [20]
and Gan et al. [23] used the dynamic key-value memory network (DKVMN) [21] based on
a Memory-Augmented Neural Network and attention mechanisms that trace a learner’s
knowledge state. Ghosh et al. [22] used attention mechanisms that incorporates a forgetting
function of the past learner’s response data. Ghosh et al. used a Rasch model [13,36]
incorporating the learner’s ability parameters and the item’s difficulty parameter.

These deep knowledge tracing methods have not achieved interpretable parameters
for learner ability and item difficulty, which are extremely important in the field of test
theory. In addition, these earlier deep knowledge tracing methods estimate time-series
changes of an examinee’s abilities to capture the examinee’s growth for knowledge tracing.
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However, the examinees’ ability change is not considered in the field of test theory because
the purpose of testing is estimating an examinee’s current ability.

Consequently, earlier deep knowledge tracing methods [20–23,27] emphasized not a
test theory but a knowledge tracing task. By contrast, this study proposes an IRT model
based on deep learning as a novel test theory. Herein, we designate the proposed IRT as
“Deep-IRT”: a novel test theory.

3. Item Response Theory

This section briefly introduces IRT and a two-parameter logistic model (2PLM), which
is an extremely popular IRT model as a test theory. For the two-parameter logistic model,
uij denotes the response of examinee i to item j (1, . . . , n) as

uij =

{
1 (examinee i answers correctly to item j)
0 (otherwise)

In the two parameter logistic model, the probability of a correct answer given to item
j by examinee i with ability parameter θi ∈ (−∞, ∞) is assumed as

Pj(θi) = P(uij = 1 | θi)

=
1

1 + exp(−1.7aj(θi − bj))
, (1)

where aj ∈ (0, ∞) is the j-th item’s discrimination parameter expressing the discriminatory
power for examinee’s abilities, and where bj ∈ (−∞, ∞) is the j-th item’s difficulty parame-
ter expressing the degree of difficulty. From Bayes’ theorem, the posterior distribution of
an ability parameter g(θ|u) is given as

g(θ|u) = L(θ|u) f (θ)
h(u)

, (2)

where h(u) is a marginal distribution:

h(u) =
∫ ∞

−∞
L(θ|u) f (θ)dθ. (3)

The parameters are estimated using the expected a priori (EAP) method, which is
known to maximize the prediction accuracy theoretically as

θ̂ =
∫ ∞

−∞
θg(θ|u)dθ. (4)

Because calculating the parameters analytically is difficult, numerical calculation
methods such as Markov Chain Monte Carlo methods (MCMC) are generally used.

Here, prior distribution f (θ) indicates the examinees’ ability distribution. The exami-
nees’ abilities are assumed to be sampled randomly from f (θ). Therefore, comparing the
examinees’ abilities as estimated from different tests requires a linkage that scales those
abilities on the same scale using common examinees or items among the tests.

Evaluating examinees’ abilities on the same scale requires linkage of examinees’
abilities as estimated from different tests [12–15]. Many researchers have developed IRT
linkage and calibration methods. Linkage and calibration methods for IRT are divisible
into separate calibrations, calibrations with fixed common item parameters, and concurrent
calibrations as follows [37–40]:

• Common-item non-equivalent group linkage: transforming scales of parameters into
common scales using common items such as substituting the means and deviations of
the item parameter estimates of common items [41–49].
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• Concurrent calibration: Item parameters for different tests are estimated together
using common items [37,50].

• Fixed common item parameters: fixing the common item parameters and calibrating
only the pretest items so that the item parameter estimates of the pretest are of the
same scale as the common item parameters [51,52].

Even though linkage requires much labor to design, no linkage method can fully
represent the joint probability distribution. Particularly when examinees are not sam-
pled randomly from a certain statistical distribution, the linkage accuracy is greatly de-
creased [16–19]. In addition, examinees’ abilities might not be sampled randomly from the
standard normal distribution.

4. Deep-IRT

To resolve the difficulties described above, this study proposes a novel Item Response
Theory based on Deep Learning: Deep-IRT. To increase the interpretability of the param-
eters, Deep-IRT estimates parameters using two independent networks: an examinee
network and an item network. However, in general, independent networks are known to
have less prediction accuracy than dependent networks have. Recent studies of deep learn-
ing have demonstrated that redundancy of parameters (deep layers of hidden variables)
reduces generalization error, contrary to Occam’s razor [24–27]. Based on state-of-the-art
reports, Deep-IRT constructs two independent redundant deep networks: an examinee net-
work and an item network. Deep-IRT is expected to have highly interpretable parameters
without impairment of the estimation accuracy.

4.1. Method

This subsection presents an explanation of the Deep-IRT method. This method uses
two independent neural networks: Examinee Layer and Item Layer. Using outputs of both
networks, a probability for an examinee to answer an item correctly is calculated. Figure 1
presents a brief illustration.

Figure 1. Outline of Deep-IRT.

To express the i-th examinee, the encode of Examinee Layer is a one-hot vector
si ∈ {0, 1}I , where I represents the number of examinees. The i-th element is 1; the other
elements are 0s. The Examinee Layer comprises three layers as described below:

θ
(i)
1 = tanh

(
W (θ1)si + τ(θ1)

)
. (5)
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θ
(i)
2 = tanh

(
W (θ2)θ

(i)
1 + τ(θ2)

)
. (6)

θ
(i)
3 = W (θ3)θ

(i)
2 + τ(θ3). (7)

Here, we use the hyperbolic tangent as an activation function:

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

. (8)

In addition, W (θ1) and W (θ2) are the weight matrices given as

W (θ1) =


w(θ1)

11 w(θ1)
12 . . . w(θ1)

1I
w(θ1)

21 w(θ1)
22 . . . w(θ1)

2I
...

...
. . .

...
w(θ1)
|θ1|1

w(θ1)
|θ1|2

. . . w(θ1)
|θ1|I



W (θ2) =


w(θ2)

11 w(θ2)
12 . . . w(θ2)

1|θ1|
w(θ2)

21 w(θ2)
22 . . . w(θ2)

2|θ1|
...

...
. . .

...
w(θ2)
|θ2|1

w(θ2)
|θ2|2

. . . w(θ2)
|θ2||θ1|

.


Therein, W (θ3) is the weight vector given as

W (θ3) =
(

w(θ3)
1 , w(θ3)

2 , . . . , w(θ3)
|θ2|

.
)

In addition, τ(θ1) =
(

τ
(θ1)
1 , τ

(θ1)
2 , ..., τ

(θ1)
|θ1|

)
and τ(θ2) =

(
τ
(θ2)
1 , τ

(θ2)
2 , ..., τ

(θ2)
|θ2|

)
are the

bias parameters vectors; τ(θ3) is the bias parameter. In this study, we consider the last layer
θ
(i)
3 as the ith examinee’s ability parameter. An overview of the calculation in terms of

the Examinee Layer is presented in Figure 2. Weight matrix W represents an estimate of
the relation between an examinee’s ability and all other examinees’ abilities. Therefore,
Deep-IRT does not require assumption of random sampling examinees’ abilities from a
statistical distribution because it estimates an examinees’ ability by adjusting the other
examinees’ ability estimates.

Figure 2. Examinee layer structure.
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Similarly, to express the j-th item, the encoding of the Item Layer is a one-hot vector
qi ∈ {0, 1}J , where J stands for the number of items. The j-th element is 1; the other
elements are 0s. The Item Layer consists of three layers as follows:

β
(j)
1 = tanh

(
W (β1)qj + τ(β1)

)
. (9)

β
(j)
2 = tanh

(
W (β2)β

(j)
1 + τ(β2)

)
. (10)

β
(j)
3 = W (β3)β

(j)
2 + τ(β3). (11)

In addition, W (β1) and W (β2) are the weight matrices given as presented below:

W (β1) =


w(β1)

11 w(β1)
12 . . . w(β1)

1J

w(β1)
21 w(β1)

22 . . . w(β1)
2J

...
...

. . .
...

w(β1)
|β1|1

w(β1)
|β1|2

. . . w(β1)
|β1|J



W (β2) =


w(β2)

11 w(β2)
12 . . . w(β2)

1|β1|
w(β2)

21 w(β2)
22 . . . w(β2)

2|β1|
...

...
. . .

...
w(β2)
|β2|1

w(β2)
|β2|2

. . . w(β2)
|β2||β1|


Here, W (β3) is the weight vector given as shown below:

W (β3) =
(

w(β3)
1 , w(β3)

2 , . . . , w(β3)
|β2|

)
Additionally, τ(β1) =

(
τ
(β1)
1 , τ

(β1)
2 , . . . , τ

(β1)
|β1|

)
and τ(β2) =

(
τ
(β2)
1 , τ

(β2)
2 , . . . , τ

(β2)
|β2|

)
are

the bias parameters’ vectors. τ(β3) is the bias parameter. For this study, we consider
the last layer β

(j)
3 as the j th item’s difficulty parameter. Similarly to the sampling of

examinees, this method does not assume random sampling of item difficulty parameters
from a statistical distribution.

Then, Deep-IRT represents an examinee’s correct response probability to an item using
the difference between the examinee’s ability parameter and the item difficulty parameter.
Specifically, examinee i’s correct response probability to j’s item is described using a hidden
layer h(i,j) = (h(i,j)0 , h(i,j)1 ) as

h(i,j) = (W (y))T(θ
(i)
3 − β

(j)
3 ) + τ(y). (12)

ŷi,j = so f tmax(h(i,j))

=
exp(h(i,j)1 )

exp(h(i,j)0 ) + exp(h(i,j)1 )
. (13)

Here, W (y) = (w(y)
1 , w(y)

2 ) and τ(y) = (τ
(y)
1 , τ

(y)
2 ) are the weight vector and bias’

parameters vector.
Deep-IRT does not assume random sampling of examinees’ abilities and item difficul-

ties from any statistical distribution. Instead, it uses a deep learning method to estimate
the relation between an examinees’ ability and all other examinees’ abilities by maximizing
the prediction accuracy of examinees’ responses. The unique feature of this method is to es-
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timate an examinee’s ability by adjusting the other examinees’ ability estimates. Because of
this property, this method requires no linkage procedure.

4.2. Learning Parameters

In general, deep learning methods learn their parameters using the back-propagation
algorithm by minimizing a loss function. The loss function of the proposed Deep-IRT em-
ploys cross-entropy, which reflects classification errors. It is calculated from the predicted
responses ŷi,j and the true responses ui,j as

`(ui,j, ŷi,j) = −ui,j log ŷi,j − (1− ui,j) log(1− ŷi,j). (14)

Like other machine learning techniques, deep learning methods are biased to data they
have encountered before. Therefore, the generalization capacity of the methods depends on
the training data, which leads to sub-optimal performance. Consequently, Deep-IRT cannot
predict responses of examinees or items accurately with an extremely small number of
(in)correct answers. To overcome this shortcoming, cost-sensitive learning, which weights
minority data over majority, has been used widely [53]. Therefore, we add the loss function
based on a cost-sensitive approach as

Lossclass = ∑
i

∑
j
`(ui,j, ŷi,j) (15)

+ γ1 ∑
i∈Le

∑
j∈(ui,j=1)

`(ui,j, ŷi,j)

+ γ2 ∑
i∈He

∑
j∈(ui,j=0)

`(ui,j, ŷi,j)

+ γ3 ∑
j∈Li

∑
i∈(ui,j=1)

`(ui,j, ŷi,j)

+ γ4 ∑
j∈Hi

∑
i∈(ui,j=0)

`(ui,j, ŷi,j),

where Le stands for a group of examinees whose correct answer rates are less than αLe , He
denotes a group of examinees whose correct answer rates are more than αHe , Li signifies
a group of items of which correct answer rates are less than αLi , and Hi represents a
group of items with correct answer rates that are more than αHi . Here, γ1, γ2, γ3, γ4 and
αLe , αHe , αLi , αHi are tuning parameters.

All of the parameters are learned simultaneously using a popular optimization algo-
rithm: adaptive moment estimation [54].

5. Simulation Experiments

This section presents evaluation of the performances of Deep-IRT using simulation
data according to earlier IRT studies of the linkage or the multi-population [55,56].

5.1. Experiment Settings

We implemented Deep-IRT using Chainer (https://chainer.org/ (accessed on 23 April
2021)), a popular framework for neural networks. The values of tuning parameters are
presented in Table 1.

For implementation of IRT, we employ 2PLM and estimate the parameters using EAP
estimation with the MCMC algorithm. The prior distributions are

θ ∼ N(0, 1), log a ∼ N(0, 1), b ∼ N(1, 0.4). (16)

https://chainer.org/
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Table 1. Values of tuning parameters.

Parameter Value Parameter Value

|θ(i)1 | 50 γ1 0.1

|θ(i)2 | 50 γ2 0.1

|β(j)
1 | 50 γ3 0.1

|β(j)
2 | 50 γ4 0.1

Epoch 300 αLe 0.2
- - αHe 0.8
- - αLi 0.2
- - αHi 0.8

5.1.1. Estimation Accuracy

For this experiment, we evaluate root mean square error (RMSE), Pearson’s correlation
coefficient, and the Kendall rank correlation coefficient between the estimated abilities and
the true values. For calculation of RMSE, the estimated abilities of Deep-IRT are standardized.

5.2. Estimation Accuracy for Randomly Sampled Examinee Data

To underscore the effectiveness of Deep-IRT for data of examinees’ abilities that are
not randomly sampled, this subsection presents evaluation of the estimation accuracy with
changing examinee assignments for different tests. The procedures of this experiment are
explained hereinafter.

This experiment generates 10 test data that have no common examinees. In addition,
the k-th test (k = 1, . . . , 10) has common items only among the k− 1-th test and the k + 1-
th test.

The true parameters were generated randomly:

θ ∼ N(0, 1), log a ∼ N(0, 1), b ∼ N(1, 0.4). (17)

Here, the simulation data were generated based on 2PLM in the following two ways.
The first way is that examinees are assigned randomly to each test from Equation (17).
The other way is that examinees are assigned systematically to each test as described below.

1. Examinees are sampled randomly from Equation (17).
2. The examinees are sorted in order of their ascending ability. Furthermore, the exami-

nees are divided equally into groups of 10 examinees in order of their respective abili-
ties.

3. The k th examinee group is assigned to the k-th test.

Table 2 demonstrates the average of estimation accuracies for each condition. Results
of the random assignment condition show that IRT outperforms Deep-IRT. The reason is
that the condition is an ideal situation for IRT because the data are generated randomly
from the IRT model. However, for a small number of examinees or items, the differences
between IRT and Deep-IRT become smaller.

In contrast, the results obtained for the systematically assignment condition show
Deep-IRT without assuming randomly sampling examinees outperforms IRT with that
assumption. Furthermore, Deep-IRT suppresses the decline of accuracy in cases without
common items among different tests. These results are expected to be beneficial for
applying Deep-IRT with actual data.
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Table 2. Parameter estimation accuracies.

Assignment No. Items of
Each Test

No. Common Items
(Total No. Items)

No. Examinees for Each Test
(Total No. Examinees) Method RMSE Pearson Kendall

random

10

5 (55)

50 (500) Deep-IRT 0.469 0.890 0.748
IRT 0.420 0.912 0.781

100 (1000) Deep-IRT 0.447 0.900 0.766
IRT 0.438 0.904 0.770

500 (5000) Deep-IRT 0.434 0.907 0.769
IRT 0.432 0.907 0.776

1000 (10,000) Deep-IRT 0.424 0.908 0.771
IRT 0.411 0.911 0.733

0 (100)

50 (500) Deep-IRT 0.458 0.896 0.747
IRT 0.456 0.896 0.751

100 (1000) Deep-IRT 0.455 0.832 0.765
IRT 0.440 0.903 0.767

500 (5000) Deep-IRT 0.433 0.852 0.785
IRT 0.423 0.861 0.789

1000 (10,000) Deep-IRT 0.412 0.910 0.799
IRT 0.403 0.914 0.794

30

5 (255)

50 (500) Deep-IRT 0.328 0.921 0.855
IRT 0.301 0.941 0.865

100 (1000) Deep-IRT 0.319 0.949 0.865
IRT 0.292 0.957 0.870

500 (5000) Deep-IRT 0.339 0.942 0.834
IRT 0.290 0.958 0.873

1000 (10,000) Deep-IRT 0.329 0.947 0.844
IRT 0.298 0.968 0.879

0 (300)

50 (500) Deep-IRT 0.328 0.946 0.860
IRT 0.308 0.952 0.858

100 (1000) Deep-IRT 0.339 0.943 0.851
IRT 0.314 0.951 0.858

500 (5000) Deep-IRT 0.321 0.941 0.853
IRT 0.299 0.945 0.873

1000 (10,000) Deep-IRT 0.302 0.938 0.853
IRT 0.281 0.948 0.881

50

5 (455)

50 (500) Deep-IRT 0.317 0.950 0.882
IRT 0.251 0.969 0.895

100 (1000) Deep-IRT 0.312 0.964 0.891
IRT 0.243 0.970 0.896

500 (5000) Deep-IRT 0.288 0.959 0.894
IRT 0.232 0.973 0.901

1000 (10,000) Deep-IRT 0.278 0.961 0.894
IRT 0.234 0.973 0.901

0 (500)

50 (500) Deep-IRT 0.360 0.935 0.856
IRT 0.274 0.962 0.876

100 (1000) Deep-IRT 0.261 0.966 0.884
IRT 0.251 0.968 0.892

500 (5000) Deep-IRT 0.341 0.942 0.887
IRT 0.241 0.971 0.899

1000 (10,000) Deep-IRT 0.266 0.968 0.889
IRT 0.241 0.972 0.901
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Table 2. Cont.

Assignment No. Items of
Each Test

No. Common Items
(Total No. Items)

No. Examinees for Each Test
(Total No. Examinees) Method RMSE Pearson Kendall

system

10

5 (55)

50 (500) Deep-IRT 0.665 0.778 0.568
IRT 1.111 0.381 0.237

100 (1000) Deep-IRT 0.622 0.807 0.629
IRT 0.779 0.696 0.466

500 (5000) Deep-IRT 0.611 0.812 0.639
IRT 0.792 0.702 0.499

1000 (10,000) Deep-IRT 0.621 0.822 0.651
IRT 0.712 0.702 0.501

0 (100)

50 (500) Deep-IRT 0.997 0.502 0.267
IRT 1.170 0.314 0.184

100 (1000) Deep-IRT 0.721 0.740 0.561
IRT 1.176 0.308 0.197

500 (5000) Deep-IRT 0.701 0.761 0.591
IRT 1.016 0.498 0.277

1000 (10,000) Deep-IRT 0.698 0.782 0.591
IRT 0.808 0.673 0.457

30

5 (255)

50 (500) Deep-IRT 0.561 0.835 0.696
IRT 0.613 0.786 0.622

100 (1000) Deep-IRT 0.501 0.875 0.716
IRT 0.573 0.836 0.672

500 (5000) Deep-IRT 0.499 0.878 0.722
IRT 0.553 0.846 0.679

1000 (10,000) Deep-IRT 0.495 0.892 0.731
IRT 0.534 0.851 0.691

0 (300)

50 (500) Deep-IRT 0.661 0.781 0.586
IRT 0.786 0.691 0.489

100 (1000) Deep-IRT 0.579 0.832 0.664
IRT 0.762 0.709 0.506

500 (5000) Deep-IRT 0.561 0.852 0.684
IRT 0.732 0.705 0.512

1000 (10,000) Deep-IRT 0.539 0.850 0.644
IRT 0.712 0.709 0.506

50

5 (455)

50 (500) Deep-IRT 0.376 0.929 0.802
IRT 0.426 0.909 0.760

100 (1000) Deep-IRT 0.393 0.923 0.811
IRT 0.805 0.750 0.543

500 (5000) Deep-IRT 0.372 0.930 0.810
IRT 1.044 0.454 0.282

1000 (10,000) Deep-IRT 0.392 0.914 0.798
IRT 0.923 0.512 0.342

0 (500)

50 (500) Deep-IRT 0.635 0.798 0.599
IRT 0.782 0.694 0.489

100 (1000) Deep-IRT 0.408 0.916 0.785
IRT 0.612 0.812 0.532

500 (5000) Deep-IRT 0.421 0.891 0.765
IRT 0.598 0.822 0.495

1000 (10,000) Deep-IRT 0.411 0.901 0.785
IRT 0.602 0.829 0.498
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5.3. Estimation Accuracy for Multi-Population Data

As described earlier, IRT assumes that examinees’ abilities follow a standard normal
distribution. Furthermore, it is known that no optimal linkage occurs under the assump-
tion [17]. Additionally, no guarantee exists that examinees’ abilities follow a standard
normal distribution. When the assumption is violated, ability estimation accuracy of IRT
becomes extremely worse, even without the linkage problem. However, because Deep-IRT
does not assume random sampling from a statistical distribution, robust ability estimation
is expected to be provided even when the IRT presumption is violated. To demonstrate the
benefits of the proposed method, this subsection evaluates estimation accuracies of IRT
and Deep-IRT when examinees’ abilities follow multiple populations.

For this experiment, the abilities of examinees taking different tests are assumed to
be sampled from different populations. For this study, we assume two tests including 50
items. The abilities of the tests are sampled randomly from N1(µ1, σ2) and N2(µ2, σ2).

Table 3 shows the average of estimation accuracies with different ability distributions
and the number of common items. The standard deviation of each distribution was ascer-
tained so that the total abilities’ standard deviation is close to 1.0. Here, Wilcoxon’s signed
rank test is applied to infer whether the accuracies of IRT and Deep-IRT are significantly
different. The results showed that when the difference between µ1 and µ2 becomes small,
IRT provides significantly high accuracy because the distribution approaches a single nor-
mal distribution. By contrast, as the difference between µ1 and µ2 becomes large, Deep-IRT
estimates examinees’ abilities accurately. Therefore, Deep-IRT is robust for estimation of
examinees’ abilities when they follow different distributions. The results also show that,
when there is no common item, Deep-IRT estimates the examinees’ abilities more accu-
rately than IRT does. Consequently, Deep-IRT can estimate examinees’ abilities accurately
without common items.

Table 3. Estimation accuracies for multi-population data.

No. Examinees
for Each Test

No. Common
Items µ1 µ2 σ2 IRT Deep-IRT

500

5

−0.3 0.3 0.7 0.186 ** 0.216
−0.5 0.5 0.5 0.184 ** 0.232
−0.7 0.7 0.3 0.210 0.206
−0.9 0.9 0.1 0.207 0.195 *

0

−0.3 0.3 0.7 0.358 0.325 *
−0.5 0.5 0.5 0.501 0.324 **
−0.7 0.7 0.3 0.993 0.382 **
−0.9 0.9 0.1 1.027 0.385 **

** p < 0.01, * p < 0.05.

Next, we demonstrate that Deep-IRT can accommodate abilities with multiple pop-
ulations. Specifically, we generate abilities according to multiple populations for data
N1(−0.7, 0.3) and N2(0.7, 0.3) in Table 3. Figure 3 shows histograms of the true abilities,
the estimated abilities using IRT, and the estimated abilities using Deep-IRT. Figure 3 shows
that Deep-IRT clearly estimates a bimodal distribution as the ability distribution similar
to the true distribution. The result demonstrates that Deep-IRT flexibly expresses actual
examinees’ abilities distributions that do not follow a standard normal distribution.

Next, we evaluate the estimated ability distributions of IRT and Deep-IRT using a
fitting score to the true distribution as

∑
k∈{1,2}

Ik

∑
i=1

log p(θ̂ki|µk, σ), (18)
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where Ik represents the number of examinees who took the k-th test. In addition, θ̂ki is the
estimated ability of i-th examinee for the k-th test. In addition, p(θ̂ki|µk, σ) is the likelihood
of estimated abilities given the true ability distribution as

p(θ̂ki|µk, σ) =
1√

2πσ2
exp

(
− (θ̂ki − µk)

2

2σ2

)
. (19)

If the method fits the true distribution, then the estimated distribution approaches
the true distribution. The fitting score of IRT is −1633.4. That of Deep-IRT is −1437.1.
The latter is higher than the former. Therefore, Deep-IRT expresses the examinees’ ability
distributions more accurately than IRT does.

(a) True abilities (b) Abilities estimated using IRT

(c) Abilities estimated using Deep-IRT

Figure 3. Histograms of estimated abilities for multi-population data.

6. Actual Data Experiments

The simulation experiments suggested that Deep-IRT might estimate examinees’
abilities with high accuracy for actual data. This section evaluates the effectiveness of
Deep-IRT using actual datasets.

6.1. Actual Datasets

For this experiment, we use the following actual datasets. Here, we present “Rate.Sparse”
which is the average rate of items that an examinee did not address in the learning process.

1. Information datasets consist of two test data (Information 1, 2) related to information
technology. Information 1 has 169 examinees over 50 items. Information 2 has
266 examinees over 50 items. The tests were conducted of the learning management
system, “Samurai” developed by [57–59]. Rate.Sparse is 0%.

2. The critical thinking dataset has 1221 undergraduate examinees over 179 items about
critical thinking. Rate.Sparse is 87.8%.

3. Program datasets consist of two test data (Program 1, 2) about programming. Program
1 has 93 examinees over 13 items. Rate.Sparse is 0%. Program 2 has 74 examinees
over 19 items with 6.8% Rate.Sparse.

4. Practice Exam dataset consists of two test data for high school students. Each test
relates to mathematics and physics. Mathematics data have 12,348 examinees over
48 items. Physics data have 9172 examinees over 24 items. The respective values of
Rate.Sparse are 16.4% and 12.0%.
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5. Assistments dataset is the 2009–2010 dataset of Assistments (https://sites.google.
com/site/assistmentsdata/\home/assistment-2009-2010-data (accessed on 23 April
2021).), which is a large dataset that is used widely for knowledge tracing. Here, we
removed examinees answering only one item and items answered by fewer than 30
examinees. For that reason, our dataset has 3941 examinees over 2921 items with
84.4% Rate.Sparse.

6. CDM datasets, which are widely used open datasets, are included in the R pack-
age CDM [60]. We used two datasets: ECPE and TIMSS. ECPE data include those
for 2922 examinees over 28 language-related items. TIMSS data include those for
757 examinees over 23 math items. Rate.Sparse is 0%.

7. Statistics dataset includes those of 26 undergraduate examinees over 25 items about
statistics. Rate.Sparse is 33.8%.

8. Information Ethics dataset has 31 undergraduate examinees over 90 items related to
information ethics. Rate.Sparse is 46.3%.

9. Engineer Ethics dataset has 85 undergraduate examinees over 69 items related to
engineer ethics. Rate.Sparse is 26.4%.

10. Classi datasets consist of three test data for high school examinees: tests relate to
physics, chemistry, and biology. The tests were conducted on the web-based system,
“Classi (https://classi.jp (accessed on 23 April 2021).)” using a tablet. Datasets have
239, 1139, and 192 examinees, respectively, and 119, 364, and 114 items. The respective
values of Rate.Sparse are 92.4%, 96.4%, and 93.5%.

6.2. Reliability of Ability Estimation

This subsection presents evaluation of the reliability of abilities estimation of Deep-IRT.
Because the true values of parameters are unknown, we evaluate the reliabilities as follows:
(1) Each dataset is divided equally into two sets of data. (2) Parameters of each method are
estimated for the divided data from each dataset. (3) The RMSE and correlation between
the two sets of the estimated parameters from the two divided datasets are calculated.
(4) These procedures are repeated 10 times. The average of the RMSEs and correlations
is calculated. Table 4 presents the results. Here, a Wilcoxon signed rank test is applied to
infer whether the reliabilities of IRT and Deep-IRT are significantly different.

Table 4. Reliability of ability parameter estimation.

Dataset Method RMSE Pearson Kendall

Information 1 2PLM 0.466 0.891 0.685
Deep-IRT 0.514 0.867 0.687

Information 2 2PLM 0.562 0.841 0.668
Deep-IRT 0.555 0.845 0.662

Critical Thinking 2PLM 1.064 0.464 0.318
Deep-IRT 1.025 0.474 0.327

Program 1 2PLM 0.890 0.599 0.403
Deep-IRT 0.864 0.622 0.417

Program 2 2PLM 0.752 0.713 0.468
Deep-IRT 0.720 0.737 0.475

Practice_Math 2PLM 0.589 0.748 0.533
Deep-IRT 0.744 0.723 0.514

Practice_Physics 2PLM 0.884 0.609 0.424
Deep-IRT 0.911 0.585 0.411

https://sites.google.com/site/assistmentsdata/\home/assistment-2009-2010-data
https://sites.google.com/site/assistmentsdata/\home/assistment-2009-2010-data
https://classi.jp
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Table 4. Cont.

Dataset Method RMSE Pearson Kendall

ASSISTMENTS 2PLM 0.827 0.658 0.441
Deep-IRT 0.849 0.639 0.478

ECPE 2PLM 0.875 0.615 0.435
Deep-IRT 0.874 0.618 0.440

TIMSS 2PLM 0.753 0.716 0.525
Deep-IRT 0.753 0.716 0.523

Statistics 2PLM 0.619 0.801 0.398
Deep-IRT 0.545 0.846 0.582

Information Ethics 2PLM 0.394 0.920 0.643
Deep-IRT 0.382 0.925 0.712

Engineer Ethics 2PLM 0.544 0.850 0.403
Deep-IRT 0.517 0.865 0.313

Classi_Physics 2PLM 1.053 0.444 0.299
Deep-IRT 0.943 0.554 0.403

Classi_Chemistry 2PLM 1.077 0.420 0.297
Deep-IRT 0.923 0.574 0.439

Classi_Biology 2PLM 1.020 0.475 0.326
Deep-IRT 0.748 0.717 0.531

Average 2PLM 0.764 0.680 0.451
Deep-IRT 0.742 0.707 0.495 *

* p < 0.05.

Table 4 shows that Deep-IRT provides more reliable ability estimates than IRT does.
In particular, regarding the average of Kendall rank correlation coefficient, which is known
to provide a robust estimate for aberrant values, Deep-IRT outperforms IRT significantly.
Results indicate that Deep-IRT can estimate parameters more reliably than IRT does for
actual test data. It is surprising that Deep-IRT outperforms IRT for small datasets such
as Program 1, Program 2, Statistics, Information Ethics, and Engineer Ethics. This result
indicates Deep-IRT as effective even for small datasets. For Practice_Math, Practice_Physics,
and ASSISTMENTS, IRT has a higher Kendall rank correlation coefficient than Deep-IRT
does because the ability estimation of IRT tends to become stable when the dataset becomes
large. IRT has that stability because it is guaranteed to converge asymptotically to the true
joint probability distribution.

6.3. Prediction of Responses to Unknown Items

In the field of artificial intelligence in education, the prediction of examinee’s responses
to unknown items from the examinee’s past response history becomes important for
adaptive learning systems [20,30,32,61,62]. Reportedly, the prediction accuracy of IRT is the
highest for the problem [63]. This subsection presents comparison of the prediction accuracy
of Deep-IRT with that of IRT. Specifically, using ten-fold cross validation, the parameters
are learned from training data and are used to predict responses in the remaining data.
Then, we calculate the accuracy rates for the cross validation experiments. Here, a Wilcoxon
signed rank test is applied to infer whether the respective accuracies of IRT and Deep-IRT
are significantly different.

Table 5 shows the results: the average of F1 value of Deep-IRT is significantly higher
than that of IRT. Deep-IRT can predict examinees’ responses to unknown items more
accurately than IRT can. It is noteworthy that Deep-IRT does not always outperform
for large data. For ASSISTMENTS and Critical Thinking, IRT provides better perfor-
mance than Deep-IRT does because ASSISTMENTS and Critical Thinking have high values
of Rate.Sparse. Deep-IRT might be weak in dealing with sparse datasets. In contrast,
for datasets with low values of Rate.Sparse, Deep-IRT outperforms IRT even for small
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datasets. Generally speaking, the IRT prediction accuracy increases along with the num-
ber of examinees. Therefore, IRT has high prediction accuracies for Practice_Math and
Practice_Physics.

Table 5. Prediction accuracies of responses to unknown items.

Data No. Examinees No. Items Rate.Sparse IRT Deep-IRT

Information 1 169 50 0% 0.734 0.737
Information 2 266 50 0% 0.699 0.700
Critical Thinking 1221 179 87.8% 0.695 0.689
Program 1 94 13 0% 0.719 0.729
Program 2 74 19 6.8% 0.676 0.685
Practice_Math 12,348 48 16.4% 0.783 0.780
Practice_Physics 9172 24 12.0% 0.721 0.710
ASSISTMENTS 3941 2921 84.4% 0.685 0.679
ECPE 2922 28 0% 0.719 0.729
TIMSS 757 24 0% 0.711 0.712
Statistics 26 25 33.8% 0.852 0.893
Information Ethics 31 90 46.3% 0.746 0.803
Engineer Ethics 85 69 26.4% 0.634 0.685
Classi_Physics 239 119 92.4% 0.720 0.721
Classi_Chemistry 1139 364 96.4% 0.710 0.711
Classi_Biology 192 114 93.5% 0.722 0.725

Average 0.719 0.728 *
* p < 0.05.

Furthermore, Figure 4 depicts histograms of abilities estimated from Practice_Math,
where the prediction accuracy of IRT is higher than that of Deep-IRT. Figure 5 depicts
histograms of abilities estimated from Classi_Biology data, where the prediction accuracy
of Deep-IRT is higher than that of IRT. Figure 4 shows estimates conducted using both
methods for the ability distribution similar to the standard normal distribution. In contrast,
Figure 5 shows that Deep-IRT expresses a multi modal distribution, although IRT estimates
a unimodal distribution. Deep-IRT can predict responses to unknown items because it can
flexibly express distributions of various abilities.

(a) Abilities estimated using IRT (b) Abilities estimated using Deep-IRT

Figure 4. Histograms of abilities estimated using IRT and Deep-IRT for Practice_Math data.
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(a) Abilities estimated using IRT (b) Abilities estimated using Deep-IRT

Figure 5. Histograms of abilities estimated using IRT and Deep-IRT for Classi_Biology data.

7. Conclusions

This study examines a novel test theory based on deep learning: Deep-IRT. To increase
the interpretability of the parameters, Deep-IRT estimates parameters using two indepen-
dent networks: an examinee network and an item network. However, generally speaking,
independent networks are known to have less prediction accuracy than dependent net-
works have. Recent studies of deep learning have indicated that redundancy of parameters
reduces generalization error, contrary to Occam’s razor [24–27]. Based on reports of state-
of-the-art research, Deep-IRT was constructed to have two independent redundant deep
networks. Therefore, Deep-IRT has high interpretable parameters without impairment of
the estimation accuracy. The main contributions of Deep-IRT are presented below:

(1) Deep-IRT does not assume random sampling of examinees’ abilities from a statistical
distribution because the weight matrix of the ability parameters estimates the relation
between an examinee’s ability and all other examinees’ abilities.

(2) Deep-IRT estimates examinees’ abilities with high accuracy when the examinees are
not sampled randomly from a single distribution or when no common items exist
among the different tests.

(3) Deep-IRT flexibly expresses actual examinees’ ability distributions that do not follow
a standard normal distribution.

Experiments conducted using actual data demonstrated that Deep-IRT provided
more reliable and robust ability estimation than IRT did. Furthermore, Deep-IRT more
accurately predicted examinee responses to unknown items from the examinee’s past
response histories than IRT did. Results showed that Deep-IRT is effective even for small
datasets. However, the results also suggest that Deep-IRT might be weak in dealing with
sparse data. To estimate an examinee’s ability for sparse data robustly, one must improve
the estimation methods. One potential means of doing so is optimizing the number of
hidden layers of each neural network.

Furthermore, as another subject of future work, we expect to incorporate Deep-IRT with
(CAT) [64,65] to improve the examinee’s ability estimation accuracy in an actual environment.
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