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ABSTRACT
Knowledge tracing (KT), the task of tracking the knowledge
state of each student over time, has been assessed actively
by artificial intelligence researchers. Recent reports have
described that Deep-IRT, which combines Item Response
Theory (IRT) with a deep learning model, provides superior
performance. It can express the abilities of each student
and the difficulty of each item such as IRT. However, its
interpretability and applicability remain limited compared
to those of IRT because the ability parameter depends on
each item. Namely, the ability estimate for the same student
and time might differ if the student attempts a different
item. To overcome those difficulties, this study proposes a
novel Deep-IRT model that models a student response to an
item by two independent networks: a student network and
an item network. Results of experiments demonstrate that
the proposed method improves prediction accuracy and the
interpretability of earlier KT methods
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1. INTRODUCTION
Recently, along with the advancement of online education,
Knowledge Tracing (KT) has attracted broad attention for
helping students to learn effectively by presenting optimal
problems and a teacher’s support [5, 14, 16, 22, 23, 24, 37,
39, 43, 45, 46]. Important tasks of KT are tracing the stu-
dent’s evolving knowledge state and discovering concepts
that the student has not mastered based on the student’s
prior learning history data. Furthermore, predicting a stu-
dent’s performance (correct or incorrect responses to an un-
known item) accurately is important for adaptive learning.
Many researchers have developed various methods to solve
KT tasks. Methods for KT are divisible into probabilistic
approaches and deep-learning approaches.

For example, Bayesian Knowledge Tracing (BKT), a tradi-

tional and well known probabilistic model for KT [1, 5, 8, 14,
16, 22, 23, 26, 45], employs a Hidden Markov Model to trace
a process of student ability growth. It predicts the proba-
bility of a student responding to an item correctly. Item
Response Theory (IRT) [3, 34, 35], which is used in the test
theory area [10, 11, 12, 13, 28, 33, 36], has come to be used
for KT [6, 40]. Actually, IRT predicts a student’s correct
answer probability to an item based on the student’s latent
ability parameter and item characteristic parameters.

Actually, a learning task is associated with multiple skills.
Students must master the knowledge of multiple skills to
solve a task. However, BKT and IRT have a restriction by
which they express only uni-dimensional ability.

To overcome the limitations, Deep Knowledge Tracing (DKT)
[24] was proposed as the first deep-learning-based method.
DKT employs Long short - term memory (LSTM) [27] to
predict a student’s performance. LSTM relaxes the restric-
tions of skill separation and binary state assumptions. How-
ever, the hidden states include a summary of the past se-
quence of learning history data in LSTM. Therefore, DKT
does not explicitly treat the student’s ability of each skill.

To improve the DKT performance, various deep-learning-
based methods have been proposed [2, 4, 17, 19, 29, 30,
31, 38, 42, 44]. Especially, the dynamic key-value memory
network (DKVMN) was developed to exploit the relations
among underlying skills and to trace the respective knowl-
edge states [46]. To trace student ability, DKVMN uses a
Memory-Augmented Neural Network and attention mecha-
nisms. Furthermore, to improve the explanatory capabilities
of the parameters, Deep-IRT was proposed by combining
DKVMN with an IRT module [43]. In fact, Deep-IRT can
estimate a student’s ability and an item’s difficulty just as
standard IRT models can. However, the ability parameter of
the Deep-IRT depends on each item characteristic because
it implicitly assumes that items with the same skills are
equivalent. The assumption does not hold when the item
difficulties for the same skills differ greatly. Items for the
same skills which are not equivalent hinder interpretation of
a student’s ability estimate.

Most recently, Gosh et al. (2020) proposed attentive knowl-
edge tracing (AKT) [7], which incorporates a forgetting func-
tion of past data to attention mechanisms. Additionally,
they indicated a problem by which earlier KT methods as-
sumed that items with the same skills are equivalent. To re-



solve that difficulty, they employed both items and skills as
inputs. The predictive accuracy of a student’s performance
was improved by AKT. However the interpretability of the
parameters is limited because it cannot express a student’s
ability transition of each skill.

Earlier studies have tackled to develop deep-learning-based
methods to give parameter interpretability similarly to IRT
models, but those studies have not achieved it for student
ability parameters, which are most important for student
modeling. The problem is the difficulty of incorporating the
ability parameters and item parameters independently into
deep-learning-based methods so as not to degrade prediction
accuracy. This study addresses that problem.

Recent studies of deep learning have shown that redundancy
of parameters for training data reduces generalization error,
contrary to Occam’s razor. The studies also clarify the rea-
sons [9, 20, 21]. Based on state-of-the-art reports, this study
proposes a novel Deep-IRT that models a student’s response
to an item by two independent redundant networks: a stu-
dent network and an item network. The proposed method
learns student parameters and item parameters indepen-
dently to avoid impairing the predictive accuracy. A student
network employs memory network architecture to reflect dy-
namic changes of student abilities as DKVMN does. There-
fore, the ability parameters of the proposed method do not
depend on each item characteristic. They have higher inter-
pretability than those of Deep-IRT. Moreover, the proposed
method employs both items and skills as inputs in a differ-
ent mode of Gosh et al. (2020) [7]. Although Tsutsumi et
al. previously proposed a Deep-IRT for test theory, it can-
not be applied to KT because a student’s ability is constant
throughout a learning process [32].

2. RELATED WORK
2.1 Item response theory
There are many item response theory (IRT) models [3, 18,
34, 35, 41]. This subsection briefly introduces two-parameter
logistic model (2PLM): an extremely popular IRT model. In
2PLM, the probability of a correct answer given to item j by
student i with ability parameter θi ∈ (−∞,∞) is assumed
as

Pj(θi) =
1

1 + exp(−1.7aj(θi − bj))
, (1)

where aj ∈ (0,∞) is the j-th item’s discrimination param-
eter expressing the discriminatory power for student’s abil-
ities, and bj ∈ (−∞,∞) is the j-th item’s difficulty param-
eter representing the degree of difficulty.

2.2 Dynamic key-value memory network
The salient feature of DKVMN is that it assumes N underly-
ing skills and relations between the input (items). Underly-
ing skills are stored in key memory Mk ∈ RN×dk . However,
value memory Mv

t ∈ RN×dt holds abilities of underlying
skills at time t. Here, dk and dt are tuning parameters. To
express the j-th item, the input of DKVMN is a one-hot vec-
tor qj ∈ {0, 1}J , where J represents the number of items for
which the j-th element is 1 and for which the other elements
are zeroes. DKVMN predicts the performance of item j at
time t as explained below.

First, DKVMN calculates the attention, which indicates how
strongly an item j is related to each skill as

β
(j)
1 = W (β1)qj + τ (β1), (2)

wtl = Softmax
(
Mk

l β
(j)
1

)
, (3)

where Mk
l represents a l th row vector and wtl signifies the

degree of strength of the relation between skill l and item
j addressed by a student at time t. In addition, W (·) is
the weight matrix and weight vector. τ (·) is the bias vector

and scalar. Next, student vector θ
(t)
1 is calculated using the

weighted sum of value memory.

θ
(t)
1 =

N∑
l=1

wtl (Mv
tl)
> . (4)

Finally, it concatenates θ
(t)
1 with β

(j)
1 and predicts correct

probability Ptj for an item j as

θ
(t)
2 = tanh

(
W (θ2)

[
θ
(t)
1 ,β

(j)
1

]
+ τ (θ2)

)
, (5)

Ptj = σ
(
W (u)θ

(t)
2 + τ (u)

)
, (6)

where Mv
tl represents the l th row vector of Mv

t , [·] is a
concatenation of vectors, and σ(·) represents the sigmoid
function. Reportedly, DKVMN has the capability of accu-
rately predicting performance. However, unfortunately, a
lack of the interpretability of the parameter remains.

2.3 Deep-IRT
Deep-IRT is implemented by combining DKVMN with an
IRT module [43] to improve the DKVMN interpretability.
Deep-IRT exploits both the strong prediction ability of DKVMN
and the interpretable parameters of IRT. Deep-IRT adds a
hidden layer to DKVMN to gain the applicable ability and
item difficulty. Specifically, when a student attempts item j

at time t, an ability θ
(t,j)
3 and item difficulty β

(j)
2 are calcu-

lated as shown below.

θ
(t,j)
3 = tanh

(
W (θ3)θ

(t)
2 + τ (θ3)

)
, (7)

β
(j)
2 = tanh

(
W (β2)β

(j)
1 + τ (β2)

)
, (8)

The prediction is based on the difference between θ
(t,j)
3 and

β
(j)
2 such as IRT.

Ptj = σ
(

3.0 ∗ θ(t,j)3 − β(j)
2

)
. (9)

Here, ability θ
(t,j)
3 is calculated using wt in equation (6),

which depends on the item to solve because it implicitly as-
sumes that items with the same skills are equivalent. In
other words, the ability estimate for the same student and
time might differ if the student attempts a different item.
Furthermore, in equation (7), Deep-IRT uses item vector

β
(j)
1 to calculate θ

(t)
2 . An important difficulty is that a stu-

dent’s ability, which depends on each item, hinders the in-
terpretability of the parameters. Although Tsutsumi et al.
[32] also proposed a Deep-IRT as a test theory, the purpose
is different from this study because it can not be available
for KT as mentioned before.



𝑀!"#
$

𝑀!%#
$

𝑀!
$

𝜃	(#,%)

𝝎#
	

𝒒%	 𝜷'
(%)

𝑀	
'

𝑝#%	

𝛽	(%)

…

𝒔%	 𝜸'
(%)

𝛽(#)*
(%)

𝜸+
(%)

…

…

𝜷+
(%)

𝛽,-(..
(%)

𝜽-
(#,%)𝜽'

(#,%)

student network

item network

Figure 1: Network architecture for Deep-IRT with indepen-
dent student and item networks. The yellow components rep-
resent the process of getting the attention weight. Also, the
green components are associated with the student network
and the process of updating the value memory. The blue
components are associated with the item network.

3. DEEP-IRT WITH INDEPENDENT STU-
DENT AND ITEM NETWORKS

To resolve the difficulty described above, this study proposes
a novel Deep-IRT method comprising two independent neu-
ral networks: the student network and Item deep network,
as shown in Figure 1. The student network employs memory
network architecture such as DKVMN to ascertain changes
in student ability comprehensively. The item network in-
cludes inputs of two kinds: the item attempted by a student
and the necessary skills to solve the item. Using outputs
of both networks, the probability of a student answering an
item correctly can be calculated.

The proposed method can estimate student parameters and
item parameters independently such that prediction accu-
racy does not decline because the two independent networks
are designed to be more redundant than with earlier meth-
ods , based on state-of-the-art reports [9, 20, 21]. The pro-
posed method predicts Ptj , the probability of a correct an-
swer assigned to item j at time t, using the item difficulties
and the student abilities, as follows.

3.1 Item network
In the item network, two difficulty parameters of item j
are estimated: the item characteristic difficulty parameter
βjitem and the skill difficulty βjskill to solve item j. The
item characteristic difficulty parameter indicates the unique
difficulties of the item, excepting the required skill difficulty.
The proposed method expresses item difficulty as the sum
of the two difficulty parameters of βjitem and βjskill.

As with DKVMN, to express the j-th item, an input of the

item network is a one-hot vector qj ∈ RJ as shown below.

qjm =

{
1 (j = m)

0 (otherwise)
(10)

Here, J stands for the number of items. The item network
comprises n layers. The item characteristic difficulty pa-
rameter of item j is calculated using a feed forward neural
network as

βj1 = tanh
(
W (q1)qj + τ (q1)

)
, (11)

βjk = tanh
(
W (βk)βjk−1 + τ (βk)

)
, (12)

βjitem = W (βitem)βjn + τ (βitem), (13)

where k = {2, ..., n}. The last layer β
(j)
item represents the j-th

item characteristic difficulty parameter.

Similarly, to compute the difficulty of skills, the proposed
method uses the input of necessary skills sj ∈ RS as pre-
sented below.

sjm =

{
1 (item j requires skill m)

0 (otherwise)
(14)

Here, S represents the number of skills:

γj1 = tanh
(
W (γ1)sj + τ (γ1)

)
, (15)

γjk = tanh
(
W (γk)γjk−1 + τ (γk)

)
, (16)

βjskill = W (βskill)γjn + τ (βskill), (17)

where k = {2, ..., n}. The last layer βjskill denotes the diffi-
culty parameter of the required skills to solve the j-th item.

3.2 Student network
In the student network, the proposed method calculates θt1
based on the past response history as

θ
(t,j)
1 =

N∑
l=1

Mv
t,l, (18)

where Mv
t is a memory matrix holding a students’ latent

knowledge state, which are estimated similarly to DKVMN.
Next, an interpretable student’s ability vector θtn is esti-
mated as follows. Therein, n represents a number of hidden
layers decided depending on the prediction accuracy of ac-
tual data.

θ
(t,j)
k = tanh

(
W (θk)θ

(t,j)
k−1 + τ (θk)

)
, (19)

θ(t,j) = w>t θ
(t,j)
k , (20)

where k = {2, ..., n}. As a difference between the proposed
method and Deep-IRT, the proposed method does not mul-

tiply the attention in equation (18). In addition, θ
(t,j)
k is

not calculated using features of items such as equations (5)

and (7). Therefore, the ability parameter vector θ(t,j) does
not depend on each item. Namely, it is independent from
the difficulty parameter. The value of which denotes the
ability for the corresponding latent skill because it is inde-

pendent of any item. Therefore, θ
(t,j)
k can be interpreted as

a measurement model such as a multidimensional IRT [25].



3.3 Prediction of student response to an item
The proposed method predicts a student’s response prob-
ability to an item using the difference between a student’s
ability θ(t,j) to solve item j at time t and the sum of two
difficulty parameters βjitem and βjskill.

Ptj = σ
(

3.0 ∗ θ(t,j) − (βjitem + βjskill)
)
. (21)

After the procedure, the value memory is updated using
cj based on the input qj and actual performance such as
DKVMN [46].

The loss function of the proposed method employs cross-
entropy, which reflects classification errors. The cross-entropy
of the predicted responses Ptj and the true responses utj is
calculated as

`(ut, Ptj) = −
∑
t

(utj logPtj + (1− utj) log(1− Ptj)) ,

(22)
where utj is the true response to item j at time t. The
student’s response utj is recorded as 1 when the student
answers the item correctly and 0 otherwise. All parameters
are learned simultaneously using a well known optimization
algorithm: adaptive moment estimation [15].

4. PREDICTIVE ACCURACY
4.1 Datasets
We conduct experiments to compare the performance of our
approach against existing solutions. This section presents
comparison of the prediction accuracies for student perfor-
mance of the proposed method with those of earlier methods
(DKT, DKVMN, Deep-IRT, AKT) using four benchmark
datasets as ASSISTments20091, ASSISTments20152, Stat-
ics2011 3, KDDcup4. ASSISTments2009 and KDDcup have
item and skill tags, although most methods explained in
the relevant literature adopt only the skill tag as an input.
However, methods with skill inputs rely on the assumption
that items with the same skill are equivalent [7]. That as-
sumption does not hold when an item’s difficulties in the
same skill differ greatly. Therefore, as inputs to AKT and
the proposed method, we employ not only skills but also
items.ASSISTments2015 has only the skill tag. Therefore,
we employ only the skill tag as an input.

Table 1 presents the number of students (No. Students),
the number of skills (No. Skills), the number of items (No.
Items), the rate of correct responses (Rate Correct), the
average length of items which students addressed (Learning
length), and the rate of items in which the number of student
addressed is less than 10 (Sparsity). For all the datasets,
we excepted students who addressed fewer than five items.
Additionally, we set 200 items as the upper limit of the input
length according to an earlier study [43]. When the input
length of items becomes greater than 200, we use the first
200 response data for all methods.

1https://sites.google.com/site/assistmentsdata/home/
assistment-2009-2010-data
2https://sites.google.com/site/assistmentsdata/home/2015-
assistments-skill-builder-data
3https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId
=507
4https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
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Figure 2: AUC and the Number of Layers

4.2 Hyperparameter selection and evaluation
We used ten-fold cross-validation to evaluate the prediction
accuracies of the methods. The item parameters and the
hyperparameters are learned using 70% of datasets. Given
the estimated hyperparameters, a student’s ability can be
estimated at each time using the remaining 30% of each
dataset. For all methods, the hidden layer size and memory
dimension are chosen from {10, 20, 50, 100, 200} using cross-
validation. In addition, for the earlier methods, we used the
hyperparameters reported from earlier studies [7, 43].

To ascertain the number of layers n for the proposed method,
we conducted some experiments to gain experience using
ASSISTments2009 while changing the layer number. The
results are presented in Figure 2. As shown in the figure,
AUC score reaches its highest level when n = 2 and n = 4.
Based on this result, we employ n = 2 for the following
experiments because the computation time of the proposal
increases exponentially as the number of layers increases.

If the predicted correct answer probability for the next item
is 0.5 or more, then the student’s response to the next item
is predicted as correct. Otherwise, the student’s response
is predicted as incorrect. For this study, we leverage three
metrics for prediction accuracy: Accuracy (Acc) score, AUC
score, and F1 score. The first, Acc, represents the con-
cordance rate between the student predictive performance
and the true performance. The second, AUC, represents
the predictive accuracy of the correct answer probabilities.
F1 indicates the average of the F1 score of incorrect answer
prediction and the F1 score of correct answer prediction.

4.3 Results
The respective values of Acc, AUC, and F1 for those bench-
mark datasets are shown in Table 2. Results show that
the proposed method with item and skill inputs provides
the best performance for the metrics: averages of Acc and
F1. Especially noteworthy is that the proposed method out-
performs AKT, which is the most advanced method. Fur-
thermore, the proposed method with item and skill inputs
provides better performance than that with skill or item in-
puts. These results indicate that parameter estimation, not
only with skill but also with item, improves the predictive
accuracy.



Table 1: Summary of Benchmark Datasets
Dataset No. students No. skills No. Items Rate Correct Learning Length Sparsity

ASSIST2009 4,151 111 26,684 68.0% 70.8 55.2%
ASSIST2015 19,840 100 N/A 73.2% 34.2 12.6%
Statics2011 333 156 1,223 77.7% 180.9 2.6%
KDDcup 820 43 476 78.3% 11.9 57.8%

Table 2: Predictive Accuracy of Student Performance with Benchmark Datasets
DKT DKVMN Deep-IRT AKT AKT Proposed Proposed

(item&skill) (item&skill)
Acc 0.759 0.763 0.768 0.692 0.755 0.768 0.765

ASSIST2009 AUC 0.781 0.807 0.806 0.717 0.811 0.818 0.810
F1 0.697 0.714 0.718 0.639 0.726 0.725 0.722
Acc 0.754 0.749 0.747 0.757 N/A 0.752 N/A

ASSIST2015 AUC 0.730 0.732 0.727 0.760 N/A 0.751 N/A
F1 0.433 0.541 0.540 0.616 N/A 0.543 N/A
Acc 0.769 0.805 0.817 0.809 0.818 0.819 0.822

Statics2011 AUC 0.666 0.819 0.822 0.821 0.827 0.821 0.821
F1 0.483 0.679 0.681 0.690 0.677 0.679 0.690
Acc 0.784 0.773 0.792 0.774 0.780 0.786 0.802

KDDcup AUC 0.538 0.594 0.588 0.606 0.610 0.588 0.610
F1 0.439 0.439 0.455 0.441 0.449 0.469 0.478

Acc 0.767 0.773 0.781 0.758 0.784 0.781 0.796
Average AUC 0.679 0.738 0.736 0.726 0.749 0.745 0.747

F1 0.513 0.593 0.599 0.597 0.617 0.604 0.630

However, AKT with item and skill inputs shows the best
average values of AUC. Actually, AKT with item and skill
inputs also provides higher performance than that achieved
with skill or item inputs, as shown in [7]. Gosh et al. (2020)
reported that AKT is more effective for large datasets. There-
fore, AKT provides the best performance for all the metrics
of ASSISTments2015, which has an extremely large number
of students.

Furthermore, surprisingly, the averages of ACC, AUC, and
F1 obtained using the proposed method with skill input are
better than Deep-IRT, although the proposed method sepa-
rates student and item networks. This result implies that re-
dundant deep student and item networks function effectively
for performance prediction. These results are explainable
from reports of state-of-the-art methods [9, 20, 21].

The performance results obtained using DKVMN are almost
identical to those obtained using Deep-IRT because they
have almost identical network structures. Results show that
DKT provides the worst performance among the methods
studied here.

5. PARAMETER INTERPRETABILITY
5.1 Interpretability of difficulty parameters
To evaluate the interpretability of the difficulty parameters
of the proposed method, we compare the parameters of IRT
with those of Deep-IRT using a simulation data. The dataset
includes 2000 students’ responses to 50 items and it is gen-
erated from 2PLM as shown in equation (1). The priors of
the parameters have θ ∼ N(0, 1),a ∼ LN(0, 1), b ∼ N(0, 1).
We estimated the parameters of the proposal and Deep-IRT
using the dataset. Table 3 shows the Pearson correlation
between the true parameters of the true models and the es-
timated parameters, respectively, of the proposed method

Table 3: Pearson correlation
parameter Deep-IRT Proposed
difficulty 0.611 0.886

accuracy 0.694 0.695

and Deep-IRT. Additionally, we show the prediction accu-
racies of the proposed method and Deep-IRT for the dataset.
The proposal provides higher correlations with true parame-
ters than Deep-IRT does, whereas the proposed method has
higher accuracy than Deep-IRT has. The results demon-
strate that the two independent networks of the proposed
method function effectively for the interpretability of the
estimated parameters and for the prediction accuracies.

5.2 Student ability transitions
This section shows student ability transitions using the pro-
posed method. Visualizing the ability transition for each
skill is helpful for both students and teachers because they
can discover student strengths and weaknesses and can im-
prove the learning method to fill in the learning gaps. Ye-
ung [43] demonstrated a student ability transition for each
skill using Deep-IRT. However, their results included some
counter-intuitive ability estimates. For example, even when
the student answered incorrectly, the corresponding student
ability estimate increased. Moreover, Deep-IRT cannot iden-
tify a relation among multidimensional skills. There are
cases in which a student’s ability for low-level skills decreases
even when the student responds correctly to items for high-
level skills. These unstable behaviors of Deep-IRT might
engender serious difficulties, which will consequently confuse
students and teachers, as a student model.

Figure 3 depicts a student’s ability transitions of the pro-
posal for the ASSIST2009 dataset. The vertical axis shows



Figure 3: An example of a student ability transition from the ASSIST2009 dataset. The skill tags are classified respectively as
equation solving two or fewer steps (blue), ordering fractions (orange), finding percents (green), and equation solving more than
two steps (red). The student responses to items are shown at the bottom of the graph.

the student ability on the left side, with the student’s re-
sponse to an item on the right side. The horizontal axis
shows the item number. The student’s response is 1 when
the student answers the item correctly; it is 0 otherwise. The
student attempted skills of ”equation solving more than two
steps” (shown in red), ”equation solving two or few steps”
(shown in blue), ”ordering factions” (shown in orange), and
”finding percents” (shown in green). Figure 3 can be inter-
preted as explained below.

1. Theta 1 decreases when the student responds to item 2
”ordering factions”(orange) incorrectly and it increases
when the student responds to item 3 correctly. There-
fore, theta 1 indicates the ability of ”ordering factions”.

2. Items 6–17 correspond to the skill of ”equation solving
two or few steps”(blue). Theta 2 indicates the ability
of ”equation solving two or few steps” because theta 2
greatly increases while the student answers correctly.

3. For the skill of ”finding percents” (green), the student
answers all items incorrectly. Theta 3 indicates the
ability of ”finding percents” (green) because it greatly
decreases in items 18–24.

4. Items 4, 5, and 25–30 correspond to the skill of ”equa-
tion solving more than two steps” (red). Theta 4 de-
creases when the student answers to item 4 and 5 in-
correctly, and increases when the student answers to
items 26–29 correctly. Therefore, theta 4 represents
the ability of ”equation solving more than two steps”
(red).

Figure 3 shows that the proposed method estimates the abil-
ity of each skill to reflect the student responses. Addition-
ally, it estimates relations among the skills. Therefore, when

a student responds to an item correctly/incorrectly, not only
does the corresponding skill ability increase/decrease; those
for other skills increase/decrease as well. Consequently, the
results demonstrate that the proposed method improves both
the interpretability and the prediction accuracies of Deep-
IRT.

6. CONCLUSIONS
This study proposed a novel Deep-IRT that models a stu-
dent’s response to an item by two independent redundant
networks: a student network and an item network. Because
two independent redundant neural networks are used, the
parameters of the proposed method can be highly inter-
preted with keeping hight prediction accuracy. Moreover,
the proposed method employs both items and skills as in-
puts. Experiments demonstrated that the proposed method
with item and skill inputs provided the best performance for
the metrics: averages of Acc and F1. deep-learning-based
methods. The result also showed AKT with item and skill
inputs provided the best average values of AUC. Especially,
AKT provided the best performances for large datasets as
Gosh et al. (2020) reported [7]. In addition, results of ex-
periments show that the parameters of the proposed method
are more interpretable than those of Deep-IRT. This study
employed slightly redundant deep networks compared to ear-
lier methods. As future work, we intend to use the proposed
method to investigate the performances of more redundant
and deeper networks. In addition, we will try to optimize a
forgetting function for past data to maximize the prediction
accuracy for large data sets.
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