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 要  旨 

ベイジアンネットワーク分類器（Bayesian Network Classifier: BNC）は同時確率分布をモデ

ル化した生成モデルの分類器である．BNC の構造学習はこれまで候補構造から近似的に識別モ

デルの学習スコアが最大となる構造を探索する手法が用いられてきた．近年，菅原ら（2020）

はベイジアンネットワークの学習スコアにより厳密学習した BNC は分類精度が低いとは限らな

いと報告している．さらに彼らは，構造に Augmented Naive Bayes（ANB）を仮定し生成モデル

として BNC を厳密学習する手法を提案した．これによりデータが少ない場合も分類精度の高い

BNC を学習できることを示した．しかし，厳密学習は変数の増加に対して計算量が指数的に増

加するため，菅原ら（2020）の手法は数十変数の ANB 学習が限界である．そこで，本論文では

大規模変数を持つ BNC を学習できる手法を提案する．因果モデルの研究分野では，条件付き独

立性検定（CIテスト）とエッジの方向付けによる計算効率の高い構造学習法が提案されており，

制約ベースアプローチと呼ぶ．名取らは，CI テストに Bayes factor を用いることで真の構造

への漸近一致性を有しつつ 1000変数以上の構造学習を実現し，本田らはその手法に推移性を組

み込むことで 3500変数の構造学習を実現した．そこで本論文では，本田らの手法を用いて従来

より大規模な ANB を学習できる手法を提案し，提案手法が ANB 構造について漸近的にパラメー

タ数を最小にして真の同時確率分布に収束することを示す．実験により，大規模構造学習にお

いて提案手法が有用であることを示す． 
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Chapter 1

Introduction

A Bayesian network is a probabilistic graphical model in which discrete random vari-
ables are represented by nodes and dependencies between nodes are represented by
Directed Acyclic Graph (DAG). It decomposes a joint probability distribution into
a product of conditional probabilities by assuming a DAG in the probability struc-
ture. The structure of a Bayesian network generally needs to be estimated from the
data. A most common score for learning Bayesian network structures is the marginal
likelihood of the structure. The structure which maximizes marginal likelihood is
called a generative model, which represents the joint probability distribution of all
variables. The marginal likelihood is known to have asymptotic consistency, which
guarantees that the structure which maximizes the marginal likelihood converges to
the true structure when the sample size is sufficiently large (Heckerman, Geiger, &
Chickering, 1995). A Bayesian network classifier (BNC), in which one node is a
class variable and the other nodes are feature variables in a Bayesian network, is
known as a classifier for discrete variables (Friedman, Geiger, & Goldszmidt, 1997).
It is known that discriminative models expressing the conditional probability of the
class variables given the feature variables have higher classification accuracy than
generative models expressing the joint probability of all variables (Carvalho, Roos,
Oliveira, & Myllymäki, 2011; Carvalho, Adão, & Mateus, 2013; Grossman & Domin-
gos, 2004). Recently, however, Sugahara et al. (2018) showed that when the data is
large enough, the generative model has higher classification accuracy. On the other
hand, they pointed out that when the data is small and the structure of the class
variable has many parent variables, the data used for parameter learning becomes
sparse, resulting in a significant decrease in accuracy. To solve this problem, they
proposed a method for exact learning of Augmented Naive Bayes (ANB) (Friedman
et al., 1997), which assumes a structure in which class variables have no parents and
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all feature variables as children. They showed that this method can achieve high clas-
sification accuracy even when the data is small. Furthermore, Sugahara et al. (2020)
proposed an efficient algorithm for exact learning of ANB structures. However, they
used dynamic programming, which cannot be applied to large-scale variables because
it is limited to learning structures of several dozen variables.

On the other hand, as an alternative approach for learning large network struc-
tures, a constraint-based approach has been known. This method learns structure by
orienting edges using orientation rules (Pearl, 2000) on an undirected graph that is
learned by applying the Conditional Independence test (CI test) between two vari-
ables to a fully undirected graph. In the study of constraint-based approaches, the
PC algorithm (Spirtes, Glymour, & Scheines, 2000), the TPDA algorithm (Cheng,
Greiner, Kelly, Bell, & Liu, 2002), the MMHC algorithm (Tsamardinos, Brown, &
Aliferis, 2006), and the RAI algorithm (Yehezkel & Lerner, 2009) have been pro-
posed. As CI tests, the G2 test, χ2 test, and conditional mutual information have
been used for these constraint-based methods. However, these tests have no asymp-
totic consistency. To solve the problem, Natori et al. (2015, 2017) use the Bayes
factor, which has asymptotic consistency with respect to independence for CI test-
ing of RAI algorithms, and improve the learning accuracy. Furthermore, Honda et
al. (2019) reduce the number of CI tests and computation time by incorporating
Bayesian network transitivity into the RAI algorithm to achieve large-scale structure
learning with 3500 variables.

In this paper, we propose an extension of Honda’s method (Honda, Natori, Sug-
ahara, Isozak, & Ueno, 2019) to the learning of BNCs under the assumption of ANB
structure, which enables us to learn larger scale BNCs than before. We also prove
that the proposed method can learn the ANB structure representing the true joint
probability with a minimal number of parameters when the sample size is sufficiently
large. Furthermore, simulation experiments on random networks and numerical ex-
periments on benchmark datasets show that the proposed method can learn larger
networks than the exact solution search approach and has higher classification accu-
racy than the conventional methods on large networks.
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Chapter 2

Bayesian Network

1. Learning Bayesian Networks
Let V = {X0, X1, . . . , Xn} be a set of N discrete variables. Each can take values in
the set of states {1, . . . , ri}. We write Xi = k when we observe that variable Xi is
state k. According to the Bayesian network structure G = (V, E), where E is a set
of edges, the joint probability distribution is given as

P (X0, X1, . . . , Xn) =
n∏

i=0
P (Xi | Πi, G). (2.1)

where Πi is the parent variable set of Xi.
Let a path between node X and Y in G be a sequence of distinct nodes {X0, X1, . . . , Xn}.

On the path, the three variables A, B, and C are A → C → B, A ← C → B and
A → C ← B, which are called head-to-tail, tail-to-tail, and head-to-head with the
variable C. The Bayesian network structure expresses conditional independence by
blocking the path connecting the two variables. The blocks are defined as follows.

Theorem 2.1 When a path p in two variables X and Y satisfies one of the following
conditions, the path p is blocked by a variable set Z.

1. The path p is head-to-tail or tail-to-tail with the variable Z ∈ Z.

2. The path p is head-to-head with the variable Z /∈ Z, and no descendant of Z

belongs to Z.

When all paths connecting two variables X and Y are blocked by the set of variables
Z,　we represent the conditional independence between A and B in the structure G

as IG(X, Y |Z). Also, when X and Y are conditionally independent given Z in the true
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joint probability distribution, we denote IP (X, Y |Z). Conversely, when X and Y are
dependent given Z in the true joint probability distribution, we denote DP (X, Y |Z).

Bayesian networks represent the joint probability distribution of all variables with
a DAG structure G and a parameter set Θ. However, DAGs are not capable of repre-
senting all conditional independence in the joint probability distribution. Therefore,
Bayesian networks handle only the conditional independence that can be represented
by the DAG, and the following I-map is defined.

Theorem 2.2 Let G∗ be true structure. If any independence implied by a structure
G is also implied by the structure G∗, G is an independence map (I-map) of G∗.

The joint probability distribution represented by the I-map asymptotically converges
to the true distribution. In addition, the following relationship holds between the
true structure and the I-map.

Theorem 2.3 Let G∗ = (V, E∗) be true structure, and let EXY be the edge between
X and Y . If any structure G = (V, E) satisfies the following three conditions, then
G is an I-map.

1. For ∀X, Y ∈ V, if EXY ∈ E∗, then EXY ∈ E．

2. For ∀X, Y, Z ∈ V, if G∗ has head-to-head X → Z ← Y , then EXY ∈ E or G

has head-to-head X → Z ← Y .

3. For ∀X, Y, Z ∈ V, if G∗has head-to-tail X → Z → Y or tail-to-tail X ←
Z → Y，then EXY ∈ E or G has head-to-tail X → Z → Y or tail-to-tail
X ← Z → Y .

The proof of Theorem 2.3 is shown in (Chickering, 2002).

1.1 Parameter estimation

Assume a Dirichlet distribution P (Θ) as the prior distribution of the parameters.
Let D = {D1, . . . , DN} denote the data for the set of variables X. The Dirichlet
distribution P (Θ) and the posterior distribution P (Θ | D, G) are represented as

P (Θ) =
n∏

i=0

qi∏
j=1

Γ(∑ri
k=1 αijk)∏ri

k=1 Γ(αijk)

ri∏
k=1

θ
αijk−1
ijk , (2.2)

P (Θ | D, G) =
n∏

i=0

qi∏
j=1

Γ{∑ri
k=1(αijk + Nijk)}∏ri

k=1 Γ(αijk + Nijk)

ri∏
k=1

θ
αijk+Nijk−1
ijk , (2.3)
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where Nijk represents the number of frequencies of Xi = k when the parent variable
set Πi = j, Nij = ∑ri

k=1 Nijk. Also, αijk denotes the hyperparameters of the Dirichlet
prior distributions (αijk is a pseudo-sample corresponding to Nijk); αij = ∑ri

k=1 αijk.
In Bayesian networks, the most commonly used parameter estimate is Expected

a Posteriori (EAP) estimate. It is obtained by taking the expected value in equation
2.3.

θ̂ijk = αijk + Nijk

αij + Nij

. (2.4)

1.2 Learning structure

In order to estimate the parameters of a Bayesian network, it is necessary to estimate
the optimal structure from the data. A popular structure learning approach is the
score-based approach, which uses score functions to seek the best structure. The
learning score is generally based on the marginal likelihood P (D | G). The marginal
likelihood can be expressed in closed form by marginalizing the parameter estimates
from the posterior distribution of the equation 2.3.

P (D | G) =
n∏

i=0

qi∏
j=1

Γ(αij)
Γ(αij + Nij)

ri∏
k=1

Γ(αijk + Nijk)
Γ(αijk)

. (2.5)

The results for αijk = 1 (uniform prior distribution) are known to asymptotically
converge to the results of Bayesian Information Criterion (BIC) (Schwarz, 1978) and
Minimum Description Length (MDL) (Rissanen, 1978). Recently, Bayesian Dirichlet
equivalent uniform (BDeu) (αijk = α/(riqi)) is the most used score (Heckerman et al.,
1995; Buntine, 1991), where α is a pseudo-sample that represents the weight of prior
knowledge, called Equivalent Sample Size (ESS). Ueno et al. (2008, 2010, 2011, 2012)
reported that BDeu using a non-informative prior distribution is the most useful. The
score-based approach by BDeu has the following asymptotic consistency.

Definition 2.1 When the number of data is sufficiently large, if the structure esti-
mated by a structure learning approach is almost sure convergence to I-map with the
minimum number of parameters, then this approach has asymptotic consistency for
the Bayesian network structure.

However, this approach has NP-hard problem [14], entailing heavy computational
costs as the number of variables increases. In order to efficiently search for the best
structure, several methods have been proposed, such as dynamic programming (Cow-
ell, 2009; Koivisto & Sood, 2004; Singth & Moore, 2005; Silander & Myllymäki, 2006;
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Figure 2.1: (a) Example of GBN; (b) Example of Naive Bayes; (c) Example of TAN;
(d) Example of ANB;

Malone, Yuan, Hansen, & Bridges, 2011), A∗ search (Yuan, Lim, & Lu, 2011), and
integer programming (Barlett & Cussens, 2013). However, even the most advanced
method, (Barlett & Cussens, 2013), is limited to learning structures of about 60
variables.

2. Bayesian Network Classifier
2.1 Learning Bayesian network classifier

A Bayesian network classifier (BNC) can be interpreted as a Bayesian network for
which X0 is the class variable and for which X0, . . . , Xn are feature variables. Given
an instance x = ⟨x0, . . . , xn⟩ for feature variables X0, . . . , Xn, the BNC predicts the
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class c by maximizing the posterior probability as

ĉ = arg max
c∈{1,...,r0}

P (c | x1, . . . , xn, G, Θ) (2.6)

= arg max
c∈{1,...,r0}

n∏
i=0

qi∏
j=1

ri∏
k=1

(θijk)1ijk

= arg max
c∈{1,...,r0}

q0∏
j=1

r0∏
k=1

(θ0jk)10jk ×
∏

i:Xi∈Ch

qi∏
j=1

ri∏
k=1

(θijk)1ijk ,

where 1ijk if Xi = k and Πi = j in case ⟨x0, . . . , xn⟩ and 1ijk = 0 otherwise. Further-
more, Ch is a set of children of the class variable X0. From Equation 2.6, we can
infer class c given only the values of the X0 ’s parents, the X0 ’s children, and the
parents of the X0 ’s children, which are called a Markov blanket of X0.

A BNC that use a general Bayesian network is called a General Bayesian Network
(GBN) (Figure 2.1 (a)). A GBN exactly learned by BDeu may learn a structure that
has a small number of child class variables and a large number of parent variables.
Therefore, the conditional probability parameter estimation of the class variable be-
comes unstable because the number of patterns of the parents becomes large. As a
result, the classification accuracy tends to decrease significantly (Jensen & Nielsen,
2007; Mitchell, 1997). As a means of resolving this difficulty, Minsky (1961) proposed
Naive Bayes classifier (Figure 2.1 (b)), for which the class variable has no parents
and for which each feature variable is independent, and Friedman et al. (1997) pro-
posed the tree-augmented naive Bayes (TAN) classifier (Figure 2.1 (c)), for which the
class variable has no parents and for which each feature variable has a class variable
and at most one other feature variable as a parent variable. It is known that TAN
with likelihood as a score can be learned in polynomial time (Friedman et al., 1997;
Madden, 2009). In adiition, as a more expressive model that generalizes Naive Bayes
and TAN, they proposed the augmented naive Bayes (ANB) classifier, for which the
class variable has no parent and in which all feature variables have the class variable
as a parent. Similar to the GBN, the ANB structure can be used to interpret causal
relationships between the feature variables.

Although the GBN that maximizes the marginal likelihood is a generative model
that represents the joint probability of all variables, discriminative models that rep-
resent the conditional probability of the class variables given the feature variables
have been reported to have higher asymptotic classification accuracy (Carvalho et al.,
2013; Grossman & Domingos, 2004). However, previous studies have not theoretically
shown the basis for GBN as a discriminative model to have higher classification accu-
racy than GBN as a generative model with asymptotic consistency for the Bayesian
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network structure. And, in their experiments, they used approximate learning ap-
proaches even though the BNC as a generative model can be learned using exact
ones. Sugahara et al. (2018, 2020) showed that GBN as a generative model have
higher classification accuracy than ones with as a discriminative model when the
data is sufficient. However, they showed in their experiments that the number of
parent variables of the class variable in GBN as a generative model may become ex-
cessive when the data is small, and the classification accuracy is significantly reduced
in this case. To solve this problem, they proposed an exact learning approach with
ANB as a generative model. The results show that their approach can obtain stable
classification accuracy even when the data is small, and the classification accuracy
is significantly higher BNC as a discriminative model. However, the exact learning
approach is limited to learning dozens of variables and cannot be applied to the cases
with large variables. Therefore, in this paper, we propose an approach that can learn
a BNC with large variables.

3. Constraint-based learning Bayesian Networks
As an alternative approach for learning large network structures, a constraint-based
approach has been known. This section presents an overview of the constraint-based
approach and a RAI algorithm using a Bayes factor.

3.1 RAI algorithm using Bayes factor

Now assume that a true Bayesian network is as follows.

Assumption 2.1 Let G∗ = (V, E∗) be true Bayesian network structure. In this case,
G∗ satisfies the following.

∀X, ∀Y ∈ V, ∀Z ⊆ V \ {X, Y }, IP (X, Y |Z)⇔ EXY ̸∈ E∗.

Next, we define Markov equivalent.

Definition 2.2 Let G1 and G2 be two DAGs consisting of a set of variables V. If
the following holds for ∀X, ∀Y ∈ V, ∀Z ⊆ V, G1 and G2 are Markov equivalent,

IG1(X, Y |Z)⇔ IG2(X, Y |Z).

A graph representing a Markov equivalent class are commonly represented using undi-
rected edges. A DAG containing such a subgraph is called a Partially DAG (PDAG).
In the constraint-based approach, if there exists the true Bayesian network structure
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Figure 2.2: (a) Dependent model; (b) independent model

satisfying the assumption 2.1, the goal is to estimate a class of PDAG that are Markov
equivalent to that structure.

The basic algorithm of this approach is as follows.

(1) Generates a complete undirected graph.

(2) Remove edges from the complete undirected graph generated in (1) by a Con-
ditional Independence test (CI test).

(3) Orient the undirected graph obtained in (2) using a orientation rule (Pearl,
2000).

In general, the learning accuracy of a constraint-based approach depends on the
accuracy of CI tests, and the learning speed depends on the number of CI test to
be executed. As constraint-based approaches, PC algorithm (Spirtes et al., 2000),
TPDA algorithm (Cheng et al., 2002), MMHC algorithm (Tsamardinos et al., 2006),
and RAI algorithm (Yehezkel & Lerner, 2009) have been proposed. However, these
algorithms use the χ2 test, the G2 test, and a conditional mutual information measure
as CI tests, and do not have asymptotic consistency as defined below.

Definition 2.3 When the number of data is N → ∞, if a CI test determines true
conditional independence with probability 1.0 for any variable, then the CI test has
asymptotic consistency for independence.

On the other hand, Steck et al. (2002) proposed a CI test using the Bayes factor,
which defines the ratio of BDeu scores of the independent model and the dependent
model between two variables. As an example, in a Bayesian network of two variables
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X and Y , where Z is a set of common parent variables of X and Y , a dependent
model is G1 and a independent model is G2, and they are shown in (a) and (b) of
Figure 2.2, respectively. When the Bayes factor is BF(X, Y | Z), the Log Bayes factor
can be expressed as

log BF(X, Y | Z) = log P (D | G1, α)
P (D | G2, α)

, (2.7)

where, P (D | G1, α) and P (D | G2, α) use BDeu from Equation (5).
In the CI test using Bayes factor, the choice between (a) and (b) in Figure 2.2 is

determined by whether a log Bayes factor is greater than 0. However, Steck et al.
(2002) used it only for theoretical analysis and not for the Bayesian network learning.
On the other hand, Natori et al. (2015, 2017) showed that the CI test using Bayes
factor have asymptotic consistency for independence.

Theorem 2.4 When the number of data is N →∞,

(1) If X and Y given Z are not the conditionally independent in the true structure,
then log BF (X, Y | Z) > 0 with probability 1.0.

(2) If X and Y given Z are the conditionally independent in the true structure,
log BF (X, Y | Z) < 0 with probability 1.0.

The proof of Theorem 2.4 is shown in (Natori, Uto, & Ueno, 2017).

3.2 RAI algorithm with transitivity

As mentioned above, the speed of constraint-based learning depends on the number
of CI tests. In general, the number of CI tests can be reduced by removing edges
early in the learning process. For this purpose, the following transitivity method has
been proposed.

Theorem 2.5 Let G be DAG, and for X, Y ∈ V, Y is a non-descendant of X. If
A ∈ V \ ({X, Y } ∪Pa(X, G) ∪W) then,

IG(X, Y | Pa(X, G))→ IG(X, A | Pa(X, G)) or IG(A, Y | Pa(X, G)), (2.8)

where, W is a variable set consisting of a set of common child variables of X and Y

and their descendants.
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The proof of Theorem 2.5 is shown in (Honda et al., 2019). From Theorem 2.5,
the conditional independence of any two variables guarantees at least one of their
conditional independence from the other. Therefore, we can enumerate the edges that
are guaranteed to have at least one conditional independence from the conditional
independence between the two variables. By prioritizing CI test of enumerated edges,
the edges can be removed earlier. Honda et al. (2019) reduced the number of CI
tests by incorporating the transitive edge removal method into the RAI algorithm
using Bayes factor, and achieved large structure learning with 3500 variables. In this
paper, we use Honda’s method to achieve structural learning of BNC on a larger than
before.
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Chapter 3

Proposed Method

An ANB was treated as a discriminative model, but Sugahara et al. (2018) and
Sugahara & Ueno (2020) proposed a method for exact learning of the ANB as a
generative model. Furthermore, they showed that high classification accuracy can
be achieved using the learned ANB structure. In the constraint-based approach, it is
also possible to learn the ANB structure by setting constraints on the initial structure
and the scope of CI test execution. In this section, we first describe an algorithm for
learning ANB structures based on the Honda’s method. Furthermore, we show that
the proposed method has asymptotic consistency as defined below.

Definition 3.1 When the number of data is N → ∞, if the structure estimated
by a structure learning method is a almost sure convergence to the I-map with the
smallest number of parameters in the ANB (called I-map ANB), then the method has
asymptotic consistency for the ANB structure.

1. Learning ANB using RAI algorithm
First, we introduce the basic operation of Honda’s method (Honda et al., 2019). Let
graph be G = (V, E), where V is a set of variables in G and E is a set of edges in
G. And, G has both directed and undirected edges. Also, let Gex = (Vex , Eex) be a
subgraph partitioned by the RAI algorithm.

(1) Input a complete undirected graph Guc and the data D.

(2) When X and Y are determined to be the conditionally independent by the CI
test of each order, the edges between X and Y are removed. And, immediately
after the deletion of edges by the CI test after the first order, we remove the
edges based on transitivity.
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Algorithm 1 CI test for ANB
1: function CI-test(nz, Gs, Gex, X0, D)

nz: order of CI tests
Gs = (Vs, Es): input graph
Gex: set of subgraphs
Gall = (V, E): output graph obtained by CI tests and direction
X0: class variable

// remove edges by CI tests
2: for Gex = (Vex, Eex) ∈ Gex do
3: for X ∈ Vs, Y ∈ Vex do
4: for Z ⊆ Pap(X, Gs) ∪Pa(X, Gex) \ {Y } do
5: if |Z| = nz − 1 and log BF(X, Y | Z ∪ {X0}) < 0 then
6: Eall ← Eall \ {EXY } ▷ EXY : edge between X and Y

　　　　　　　 //remove edges by transitivity
7: TRANSITIVE CUT(Gs, Gall, X, Y, Z, X0, D)
8: end if
9: end for

10: end for
11: end for
12: for X ∈ Vs, Y ∈ Vs do
13: for Z ⊆ Pap(X, Gs) ∪Pa(X, Gex) \ {Y } do
14: if |Z| = nz − 1 and log BF(X, Y | Z ∪ {X0}) < 0 then
15: Eall ← Eall \ {EXY }, Es ← Es \ {EXY }
　　　　　 //remove edges by transitivity

16: TRANSITIVE CUT(Gs, Gall, X, Y, Z, X0, D)
17: end if
18: end for
19: end for
20: return (Gs, Gall)
21: end function

(3) Apply the orientation rule to the graph obtained in (2).

(4) Partition the graph into the subgraphs Gex based on the direction.

(5) Recursively invokes the RAI on each subgraph.
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The CI test using Bayes factor asymptotically determines true conditional indepen-
dence, and Honda’s method asymptotically converges to the true structure (Honda
et al., 2019). We now explain how to learn the ANB using Honda’s method de-
scribed above. In the above algorithm, we implement the ANB learning using the
RAI algorithm by modifying the initial graph in step (1) and the CI test in step (2).
Algorithm1 shows the CI test using Bayes factor in the RAI algorithm.

First, in step (1), the initial graph to be input is not the complete undirected
graph of all variable sets, but the complete undirected graph of all feature variable
sets. Next, in step (2), since the feature variables always have the class variable as
a parent in the ANB, we add a constraint to perform CI tests between two variables
given X0. Let input graph be G = (Vs, Es). In addition, let Adj(X , G) be a set
of adjacent variables of X in G, and Ch(X , G) is a set of child variables of X in
G. Then, Pap(X , G) = Adj(X , G) \ Ch(X , G), and Pa(X , G) is the set of parent
variables of the variable X in G. Also, Pa(X , G) = ∪G∈GPa(X , G), where G is a set
of graph. The function CI test removes the edge EXY between X and Y for the set
of variables Vs in the input graph when X and Y are determined to be conditionally
independent in the CI test of each order. In the ANB, the class variables and the
feature variables are always connected, so the class variable X0 is always included
in the conditional part when conducting the CI test. In other words, perform the
CI test between X and Y given Z ∪ {X0} (lines 5 and 14). Also, call the function
TRANSITIVE CUT immediately after the edge are removed according to the CI test
(lines 7 and 16). This function removes the edges by transitivity. The details are
shown in Algorithm 2. In the function TRANSITIVE CUT, the CI test is performed
on a set of variables A detected by transitivity from the conditional independence
estimated by the CI test, and as before, the class variable X0 is always included in
the conditional part. By making these changes, a PDAG consisting of a set of feature
variables is output. Finally, a PDAG with the ANB structure is output by connecting
edges from the class variables to all feature variables.

2. I-map ANB with minimum number of parameters
In this section, we show that the proposed method has asymptotic consistency for the
ANB structure. First, we prove the following three Lemmas. Let V = {X0, X1, ..., Xn}
be a set of variables, and X0 is a class variable, and X1, ..., Xn is feature variables.
Let G∗ = (V, E∗) be a true Bayesian network structure and GANB = (V, EANB) is
the ANB structure learned by the proposed algorithm.
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Algorithm 2 Edge cutting with transitivity for ANB
1: function TRANSITIVE CUT(Gs, G, X, Y, Z, X0, D)

Gs = (Vs, Es):autonomous sub-structure
G = (V, E): entire structure
X, Y, Z: two variables X, Y and a set of variables Z such that IP (X⊥Y |Z)
X0: class variable

2: A← Adj(X, G) ∩Adj(Y, G) \ (Ch(X, G) ∩Ch(Y, G) ∪ Z ∪ {X0})
3: for A ∈ A do
4: if log BF(X, A | Z ∪ {X0}) < 0 then
5: Es ← Es \ {EAY }, E← E \ {EAY }
6: else
7: E← E \ {EXA} ▷ EXA: edge between X and A

8: end if
9: if log BF(A, Y | Z ∪ {X0}) < 0 then

10: if A ∈ Vs and Y ∈ Vs then
11: Es ← Es \ {EAY }, E← E \ {EAY }
12: else
13: E← E \ {EAY }
14: end if
15: end if
16: end for
17: return (Gs, G)
18: end function

Lemma 3.1 When the number of data N → ∞, for ∀X, Y ∈ V, if EXY ∈ E∗ then
EXY ∈ EANB.

Proof: If EXY ∈ E∗, then ∀Z ⊆ V\{X, Y }, DP (X, Y |Z). Thus, ∀Z ⊆ V\{X, Y, X0},
DP (X, Y |Z ∪ {X0}). From Theorem 2.4, the CI test performed by the proposed
algorithm does not detect the independence between X and Y , so the edge EXY is
not removed. Therefore, EXY ∈ EANB. □

Lemma 3.2 When the number of data N → ∞, for ∀X, Y, Z ∈ V, if G∗ has head-
to-head X → Z ← Y，then EXY ∈ EANB or GANB has head-to-head X → Z ← Y .

Proof: It is divided into the case where Z is the class variable and the other cases.

1. the case Z = X0:
∀Z ⊆ V \ {X, Y, X0}, DP (X, Y |Z ∪ {X0}), because G∗ has head-to-head X →
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X0 ← Y . From Theorem 2.4, the CI test performed by the proposed algo-
rithm does not detect independence between X and Y , so the edge EXY is not
removed. Therefore, EXY ∈ EANB.

2. the case Z ̸= X0: It is divided into the case where X or Y is the class variable
and the other cases.

(a) the case X = X0 or Y = X0：
From the ANB assumption, the class variable is the parent of all feature
variable, so EXY ∈ EANB.

(b) the case X ̸= X0 and Y ̸= X0:
The cases are divided into the following contrary events.

i. the case ∃Z ⊆ V \ {X, Y, Z, X0}, IP (X, Y |Z ∪ {X0}) :
From Theorem 2.4, the proposed algorithm detects independence and
removes the edge EXY by the CI test. X and Y given Z are depen-
dent because G∗ has head-to-head X → Z ← Y . Therefore, by the
orientation rule, GANB has head-to-head X → Z ← Y .

ii. the case ∀Z ⊆ V \ {X, Y, Z, X0}, DP (X, Y |Z ∪ {X0}) (3.1) :
X and Y given Z are dependent because G∗ has head-to-head X →
Z ← Y . Thus, ∀Z ⊆ V \ {X, Y, Z, X0}, DP (X, Y |Z ∪ {Z, X0}). From
this and equation (3.1), ∀Z ⊆ V \ {X, Y, X0}, DP (X, Y |Z ∪ {X0}).
From Theorem 2.4, the CI test performed by the proposed algorithm
does not detect independence between X and Y , so the edge EXY is
not removed. Therefore, EXY ∈ EANB.

From (1) and (2), for ∀X, Y, Z ∈ V, if G∗ has head-to-head X → Z ← Y , then
EXY ∈ EANB or GANB has head-to-head X → Z ← Y . □

Lemma 3.3 When the number of data N → ∞, for ∀X, Y, Z ∈ V, if G∗ has head-
to-tail X → Z → Y or tail-to-tail X ← Z → Y , then EXY ∈ EANB or GANB has
head-to-tail X → Z → Y or tail-to-tail X ← Z → Y .

Proof: It is divided into the case where Z is the class variable and the other cases.

1. the case Z = X0: ∃Z ⊆ V \ {X, Y, X0}, IP (X, Y |Z ∪ {X0}) because G∗ has
head-to-tail X → X0 → Y or tail-to-tail X ← X0 → Y . From Theorem 2.4,
the proposed algorithm detects independence and removes the edge EXY with
probability 1.0 by the CI test when N → ∞. From the ANB assumption,
the class variable is the parent of all feature variable. therefore, GANB has
tail-to-tail X ← X0 → Y .
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2. the case Z ̸= X0:
It is divided into the case where X or Y is the class variable and the other cases.

(a) the case X = X0 or Y = X0:
From the ANB assumption, the class variable is the parent of all feature
variable, so EXY ∈ EANB．

(b) the case X ̸= X0 and Y ̸= X0:
The cases are divided into the following contrary events.

i. the case ∃Z ⊆ V \ {X, Y, Z, X0}, IP (X, Y |Z ∪ {Z, X0}):
From Theorem 2.4, the proposed algorithm detects independence and
removes the edge EXY with probability 1.0 by the CI test when N →
∞. X and Y not given Z are dependent because G∗ has head-to-
tail X → Z → Y or tail-to-tail X ← Z → Y . Therefore, by the
orientation rule, GANB has head-to-tail X → Z → Y or tail-to-tail
X ← Z → Y .

ii. the case ∀Z ⊆ V \ {X, Y, Z, X0}, DP (X, Y |Z ∪ {Z, X0}) (3, 2):
X and Y not given Z are dependent because G∗ has head-to-tail X →
Z → Y or tail-to-tail X ← Z → Y . Thus, ∀Z ⊆ V \ {X, Y, Z, X0},
DP (X, Y |Z,∪{X0})．From this and equation (3,2), ∀Z ⊆ V\{X, Y, X0},
DP (X, Y |Z∪{X0}). From Theorem 2.4, the CI test performed by the
proposed algorithm does not detect independence between X and Y ,
so the edge EXY is not removed. Therefore, EXY ∈ EANB.

From (1) and (2), for ∀X, Y, Z ∈ V, EXY ∈ EANB or GANB has head-to-tail X →
Z → Y or tail-to-tail X ← Z → Y . □
From the above three Lemmas, we prove the following.

Theorem 3.1 When the number of data N → ∞, The structure GANB learned by
the proposed algorithm is a almost sure convergence for the I-map ANB.

Proof: For Lemma 3.1，3.2，3.3, GANB satisfies each of the three conditions in
Theorem 2.3 with probability 1.0 when N → ∞. Therefore, the structure GANB

learned by the proposed algorithm is the almost sure convergence to the I-map ANB.
□

Furthermore, as the following theorem shows, GANB is almost sure convergence
to the I-map ANB with the minimum number of parameters.

Theorem 3.2 The proposed algorithm has asymptotic consistency for the ANB struc-
ture.

21



Proof: From Theorem 3.1, when N → ∞, GANB is the almost sure convergence
to I-map ANB. From Theorem 2.4, when N → ∞, the CI test of the proposed
algorithm detects true conditional independence with probability 1.0, so all edges
between variables that are truly conditionally independent given X0 are removed.
Thus, GANB has the smallest number of edges in the I-map ANB when N → ∞.
Therefore, GANB is the almost sure convergence to the I-map ANB with the minimum
number of parameters. □
Therefore, we can expect that the proposed algorithm can achieve the same level of
accuracy as the exact learning ANB in a shorter computation time.

On the other hand, if we assume the ANB, the number of parameters increases
compared to the GBN because it forces the subtraction of edges from the class vari-
ables to the feature variables. In this case, the convergence to the true value of the
joint probability distribution represented by the estimation structure should theoret-
ically be slower than that of the GBN. However, the GBN is known to have unstable
estimation accuracy when the number of parent variables of the class variable is large,
as the prior distribution parameter of the class variable increases exponentially (Sug-
ahara, Uto, & Ueno, 2018; Sugahara & Ueno, 2020). By assuming the ANB, the
number of parameters becomes redundant, but the number of the parent variables of
the class variables is suppressed and the prior distribution can be estimated robustly,
which is expected to improve the classification accuracy.
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Chapter 4

Experiments

1. Comparsion with BNC
In this section, we conduct the following evaluation experiments to show the effective-
ness of the proposed method. First, we show that the proposed method can learn a
larger network than the exact learning approach by simulation experiment. Next, we
compare the classification accuracy of the proposed method and other BNC learning
methods using real data.

In this section, we compare the following six methods.

• Naive Bayes

• TAN: learning TAN method by maximizing log likelihood.

• exact-GBN: Exact learning GBN method by maximizing BDeu.

• exact-ANB: Exact learning ANB method by maximizing BDeu.

• RAI-GBN: Learning GBN using the Honda’s method

• RAI-ANB: Learning GBN using the proposed method

In this paper, the proposed method is RAI-ANB. the TAN was learned using the
Friedman’s method (Friedman et al., 1997). The exact-GBN and the exact-ANB
were learned using the exact learning method (Silander & Myllymäki, 2006) with
BDeu. The value of the pseudo-sample (hyperparameter) for the BDeu score and the
Bayes factor was set to 1.0 to maximize the posterior variance as suggested by Ueno
(2010, 2011). In all methods, all parameters of the BNC after the structure learning
were estimated by EAP. The computational environment for each method is shown
in Table 1.
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Table 4.1: Computational environment
Naive Bayes

CPU 2.10GHz 8-Cores Intel XEON
System Memory 128GB
OS OS ubuntu 16.04.4 lts
Software Python

TAN，exact-GBN，exact-ANB
CPU 2.10GHz 8-Cores Intel XEON
System Memory 128GB
OS OS ubuntu 16.04.4 lts
Software JAVA

RAI-GBN，RAI-ANB
CPU 2.10GHz 8-Cores Intel XEON
System Memory 128GB
OS OS ubuntu 16.04.4 lts
Software MATLAB

1.1 Experiments using random networks

In this section, we perform simulation experiment using random networks to show
that the proposed method can learn larger networks than the exact learning approach.
Random networks are generated using the BNGenerator, which uses a Markov chain
Monte Carlo method to randomly generate networks from a uniform distribution(Ide
& Cozman, 2002; Ide, Cozman, & Ramos, 2004). In this section, the number of
variables is set to {5, 10, 20, 50, 100, 200, 500, 1000} and the maximum order of each
network is set to 5. In addition, we generate 10000 data from the generated networks,
and calculate the computation time for each method by learning the structure of each
network. However, we set a time limit of 6 hours and terminated the learning process
if the time exceeded the limit.

The results are shown in Figure 4.1. The horizontal axis represents the number
of variables and the vertical axis represents the computation time (in seconds). From
Figure 4.1, we can see that the computation time increases as the number of variables
increases, except for Naive Bayes. Next to Naive Bayes, the computation time for
TAN is short. This is because TAN can be computed in polynomial time (Friedman
et al., 1997; Madden, 2009). Next, in both exact-GBN and exact-ANB, the networks
with more than 50 variables did not finish training in time. On the other hand, the
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Figure 4.1: Relationship between the number of variables and computation time

constraint-based methods, RAI-GBN and RAI-ANB, were able to learn the structure
of networks with 1000 variables. Besides, the proposed method, RAI-ANB, completes
the structure learning in a shorter time than RAI-GBN. This is because RAI-GBN
judges the independence among all variables, while RAI-ANB only needs to judge the
independence among feature variables. These results show that the proposed method
can learn larger networks than the exact learning approach. In addition, we showed
that the proposed method has a shorter computation time than RAI-GBN.

1.2 Experiments using real data

In this section, we compare the classification accuracy and computation time using
real data to demonstrate the significance of the proposed method. First, we compare
the classification accuracy of small networks to compare the proposed method with
the exact learning approach. Next, we compare the classification accuracies of the
large networks that cannot be exact learning. In this experiment, we used the datasets
registered in the UCI repository (Lichman, 2013). The continuous quantities in each
dataset were discretized into binary values around a median. For each method and
dataset, we obtain the average classification accuracy using 10-fold cross validation.
In order to show the significance of the proposed method, the p-value is obtained
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Table 4.2: Accuracies of respective classifiers for small networks
dataset variables number of data classes

Naive
Bayes TAN

exact-
GBN

exact-
ANB

RAI-
GBN

RAI-
ANB

1 Balance 5 625 3 0.9168 0.8640 0.9168 0.9168 0.6352 0.9168
2 banknote 5 1372 2 0.8433 0.8819 0.8812 0.8812 0.8776 0.8812
3 Hayes-Roth 5 132 3 0.8484 0.6808 0.5610 0.8484 0.5132 0.8484
4 iris 5 150 3 0.7133 0.8267 0.8267 0.8200 0.8133 0.8267
5 lenses 5 24 3 0.6833 0.6833 0.8500 0.6833 0.8500 0.6833
6 Car 7 1728 4 0.8583 0.9381 0.9415 0.9421 0.8137 0.9410
7 liver 7 345 2 0.6461 0.6402 0.6200 0.6402 0.5830 0.6634
8 monk1 7 432 2 0.7500 1.0000 1.0000 1.0000 0.7500 1.000
9 mux6 7 64 2 0.5762 0.6357 0.5500 0.5762 0.3262 0.5333
10 led7 8 3200 10 0.7294 0.7306 0.7294 0.7294 0.7056 0.7294
11 HTRU2 9 17898 2 0.8966 0.9141 0.9112 0.9141 0.9027 0.9084
12 Nursery 9 12960 3 0.9033 0.9250 0.9340 0.9181 0.8921 0.9356
13 pima 9 768 9 0.7031 0.7175 0.7279 0.7175 0.7122 0.7032
14 post 9 87 5 0.6764 0.5986 0.7125 0.6764 0.7125 0.6764
15 Breast Cancer 10 277 2 0.7443 0.7187 0.7295 0.7119 0.6972 0.7192
16 Breast Cancer Wisconsin 10 683 2 0.9752 0.9649 0.9752 0.9752 0.9254 0.9752
17 cmc 10 1473 3 0.4657 0.4704 0.4548 0.4677 0.4358 0.4752
18 glass 10 214 6 0.5524 0.5431 0.5656 0.6361 0.5890 0.6087
19 shuttle-small 10 5800 6 0.9384 0.9566 0.9693 0.9716 0.9659 0.9707
20 threeOf9 10 512 2 0.8144 0.8477 0.8865 0.8673 0.7071 0.8399
21 TicTac 10 958 2 0.6919 0.7567 0.8319 0.8549 0.6992 0.7546
22 magic 11 19020 2 0.7482 0.7768 0.7873 0.7874 0.7801 0.7700
23 Flare 11 1389 9 0.7804 0.7948 0.8431 0.8229 0.8431 0.8236
24 heart 14 270 2 0.8259 0.8259 0.8259 0.8185 0.7815 0.8370
25 wine 14 178 3 0.9330 0.9275 0.9327 0.9216 0.8938 0.9330
26 cleve 14 296 2 0.8410 0.8338 0.7900 0.8344 0.7798 0.8308
27 australian 15 690 2 0.8290 0.8348 0.8536 0.8246 0.8551 0.8377
28 crx 15 653 2 0.8393 0.8531 0.8592 0.8531 0.8639 0.8531
29 EEG 15 14980 2 0.5778 0.6305 0.6814 0.6864 0.6411 0.6697
30 Congressional 17 232 2 0.9092 0.9478 0.9652 0.9478 0.9652 0.9522
31 zoo 17 101 5 0.9800 0.9600 0.9400 0.9600 0.9000 0.9800
32 pendigits 17 10992 10 0.8032 0.8504 0.9289 0.9278 0.8790 0.9085
33 letter 17 20000 26 0.4466 0.4868 0.5761 0.5935 0.5448 0.5609
34 ClimateModel 19 540 2 0.9222 0.9315 0.9000 0.8426 0.8963 0.9222
35 ImageSegmentation 19 2310 7 0.7290 0.7515 0.8156 0.8225 0.7758 0.8039
36 lymphography 19 148 4 0.8386 0.7648 0.7586 0.8186 0.7033 0.8386
37 vehicle 19 846 4 0.4339 0.5722 0.5732 0.6241 0.5543 0.5793
38 hepatitis 20 80 2 0.8625 0.8375 0.5875 0.6250 0.7375 0.8625
39 german 21 1000 2 0.7430 0.7310 0.7210 0.7380 0.6830 0.7390
40 bank 21 30488 2 0.8544 0.8774 0.8956 0.8949 0.8939 0.8907
41 waveform-21 22 5000 3 0.7886 0.7896 0.7846 0.7966 0.7336 0.7826
42 Mushroom 22 5644 2 0.9957 1.0000 0.9949 1.0000 1.0000 1.0000
43 spect 23 263 2 0.8013 0.8128 0.7450 0.8164 0.7946 0.8051

classification accuracy average 0.7770 0.7927 0.7985 0.8071 0.7583 0.8086
p-value 0.00004 0.00126 0.46812 0.46812 0.00004 -

calculation time (s) average 0.00 2.58 1790.93 500.76 11.94 1.57
standard error 0.00 0.16 895.76 252.69 9.55 0.6.2

by the multiple comparison using a Hommel’s test (Hommel, 1988), and the average
computation time for structure learning is obtained for each method and each dataset.
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Table 4.3: The number of Max parents of respective classifiers for small networks
dataset

Naive
Bayes TAN

exact-
GBN

exact-
ANB

RAI-
GBN

RAI-
ANB

1 Balance 1 2 1 1 1 1
2 banknote 1 2 4 4 3.9 4
3 Hayes-Roth 1 2 3 1 1.8 1
4 iris 1 2 2 2 2.7 2
5 lenses 1 2 1.3 1.1 2 1.1
6 Car 1 2 2 2 3 2
7 liver 1 2 2 2 1.5 2
8 monk1 1 2 3 3 1 2
9 mux6 1 2 5.8 1 0.7 1
10 led7 1 2 1 1 1.8 1
11 HTRU2 1 2 3 4 5 4
12 Nursery 1 2 4 3 3 3
13 pima 1 2 2 2 2.1 2.3
14 post 1 2 0.2 1 0.3 1
15 Breast Cancer 1 2 1 2 1 2
16 Breast Cancer Wisconsin 1 2 1 1 1.1 1
17 cmc 1 2 2 2.5 2 2.1
18 glass 1 2 2.9 3 2 2.3
19 shuttle-small 1 2 5 5 5 3.7
20 threeOf9 1 2 5 2.7 4.4 2
21 TicTac 1 2 3 3 1.7 2
22 magic 1 2 4 4 4 5
23 Flare 1 2 2 3 1.6 3
24 heart 1 2 2 2 2 2
25 wine 1 2 2.2 2.1 3.2 2.1
26 cleve 1 2 2 2 2 2
27 australian 1 2 2.4 2.9 2 2.3
28 crx 1 2 3 2.2 1.6 2
29 EEG 1 2 5 5 4.9 5.3
30 Congressional 1 2 3.5 4 2.3 3
31 zoo 1 2 4.9 4.9 3.7 3
32 pendigits 1 2 5.5 5.6 8 5.9
33 letter 1 2 6 5 7.6 5.3
34 ClimateModel 1 2 14 14.1 3.1 1
35 ImageSegmentation 1 2 4.1 4 6 5
36 lymphography 1 2 8.7 9.9 2.1 2.3
37 vehicle 1 2 4.2 4.1 3.5 3.6
38 hepatitis 1 2 10.4 11.4 2.4 2.9
39 german 1 2 2 3 2 3
40 bank 1 2 5 6 5.4 5.4
41 waveform-21 1 2 4 4 5 3.7
42 Mushroom 1 2 2.4 7.6 4.8 4.8
43 spect 1 2 2.7 3 2.6 3.2

1.2.1 Classification accuracy in small networks

In this section, we compare the classification accuracy of BNCs learned by each
method using datasets to which the exact learning approach can be applied. For
this experiments, we used 43 datasets with 5 to 23 variables. Table 4.2 shows the
classification accuracy of each method for each dataset. In ”classification accuracy”
shown at the bottom of Table 4.2, ”average” is the average classification accuracy
of each method for all datasets, and ”p-value” is the p-value obtained by multiple
comparison. In ”computation time” is the average computation time for structure
learning of each method for all datasets. ”standard error” is the standard error of
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Table 4.4: The number of edges used to estimate the class variable of respective
classifiers for small networks

dataset
Naive
Bayes TAN

exact-
GBN

exact-
ANB

RAI-
GBN

RAI-
ANB

1 Balance 4 7 4 4 1 4
2 banknote 4 7 7 10 6.8 9.8
3 Hayes-Roth 4 7 3 4 1.7 4
4 iris 4 7 4.1 7 3.1 5.2
5 lenses 4 7 2.1 4.1 2 4
6 Car 6 11 7 9 3 6
7 liver 6 11 3.8 10.6 1.1 9
8 monk1 6 11 3 8 1 6
9 mux6 6 11 5.8 6 0.4 6
10 led7 7 13 7 7 5.1 7
11 HTRU2 8 15 12.5 20 5 18
12 Nursery 8 15 8 13 3 8
13 pima 8 15 4.2 15 2.2 12.4
14 post 8 15 0 8 0 8
15 Breast Cancer 9 17 1 13 0.1 11.1
16 Breast Cancer Wisconsin 9 17 8.9 9 1 9
17 cmc 9 17 1.7 16.1 1 13.2
18 glass 9 17 4.3 15.5 3.1 13
19 shuttle-small 9 17 15 23.8 4.4 22
20 threeOf9 9 17 9.7 13.4 4.5 9
21 TicTac 9 17 7.4 18.9 1 12.3
22 magic 10 19 20.4 30 13 26.8
23 Flare 10 19 1 18.9 0.9 17.4
24 heart 13 25 6.6 18.4 2 17.1
25 wine 13 25 9.5 19 3.2 16
26 cleve 13 25 7.5 18.3 2 16.3
27 australian 14 27 6.2 24.1 3.6 20.2
28 crx 14 29 5.3 23.9 2.5 21.2
29 EEG 14 27 34.2 57.5 11.8 48.6
30 Congressional 16 31 7.1 37.1 3.4 27.7
31 zoo 16 31 9.4 36.9 3.9 24.9
32 pendigits 16 31 63.4 66.5 9.2 60.5
33 letter 16 31 41.4 57.9 17.7 51.1
34 ClimateModel 18 35 32.1 69.7 3 18
35 ImageSegmentation 18 35 31.5 48 5.8 38.5
36 lymphography 18 35 16.6 36.7 1.8 23.6
37 vehicle 18 35 14.3 50.8 6.3 41.1
38 hepatitis 19 37 31.6 78.1 1.4 28.2
39 german 20 39 4.1 33.3 1 28.8
40 bank 20 39 13.1 63.9 5.8 47.6
41 waveform-21 21 41 39.8 60.3 5.9 42.9
42 Mushroom 21 41 6.7 83 17.1 61.3
43 spect 22 43 9.3 49.2 2.1 44.8

the computation time of each method. Next, we introduce four metrics to compare
each method. Table 4.3 shows the average of a Max parents of each method for each
dataset. Max parents is the average of the maximum number of parent variables that
a variable in the structure learned by each method in the 10-fold cross-validation
method, and the higher the value of Max parents, the more complex the structure
(Ling & Zhang, 2003). Table 4.4 shows the average number of edges involved in the
estimation of the class variable for each method for each dataset. The higher the
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value, the more complex the structure of the Markov blanket of the class variable has
been learned.

First, Naive Bayes and TAN limit the number of parent variables taken by feature
variables, so Max Parents are fixed at 1 and 2. Naive Bayes does not require struc-
tural learning, so the computation time is 0. In addition, TAN can be computed in
polynomial time, so its computation time is shorter than other methods (Friedman
et al., 1997; Madden, 2009).

Next, we compared the proposed method with exact-ANB and found that the
classification accuracy of the proposed method was comparable to that of exact-
learned ANB, although we could not show any significant difference. However, exact-
ANB requires more computation time than the proposed method. Also, from Table
4.4, the number of edges involved in the estimation of the class variable of the proposed
method is smaller than that of exact-ANB for all datasets, which means that the
proposed method tends to learn a sparser structure than exact-ANB. On datasets No.
31, 36, and 38, the classification accuracy of the proposed method is higher than that
of exact-ANB. Table 4.2 shows that the number of these data is small. In addition,
Table 4.3 and Table 4.4 show that the number of edges involved in the estimation of
Max parents and the class variable in the exact-ANB is smaller than the proposed
method. Because of the small number of data and the complex structure learned, the
exact learning approach is considered to have low classification accuracy for the class
variables. On the other hand, the proposed method tends to learn a sparser structure
than the exact laerning approach, so it is thought that the classification accuracy did
not decrease much even though the number of data was small.

Comparing RAI-GBN and RAI-ANB, assuming ANB in the structure improves
the classification accuracy as well as the exact learning approach; RAI-GBN has
the lowest classification accuracy among the compared methods. This is due to the
accuracy of the CI test; the CI test using Bayes factor may remove wrong edges when
the number of data is small. This may result in learning networks with small Markov
blankets of class variables. In fact, Table 4.4 shows that the number of edges involved
in the estimation of the class variables is smaller than the other methods, and that the
proposed method learns the structure where the class variable and feature variables
are almost independent in No. 9, 14, and 15. In contrast, the proposed method has
all feature variables as children, so the number of Markov blankets is always the same
as the number of the feature variables, and the classification accuracy is improved
by inferring using all feature variables. In addition, since the proposed method only
performs CI test among feature variables, it takes less computational time than RAI-
GBN, which performs CI test among all variables.
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Table 4.5: Accuracies of respective classifiers for huge networks

dataset variables num of data classes
Naive
Bayes TAN

RAI-
GBN

RAI-
ANB

1 kr-vs-kp 37 3196 2 0.8774 0.9240 0.9402 0.9524
2 Connect-4 43 67557 3 0.7213 0.7643 0.7467 0.7938
3 Flowmeters D 44 180 4 0.8389 0.8389 0.8389 0.8500
4 movement libras 91 360 15 0.5028 0.5389 0.2278 0.5333
5 dota2 117 102944 2 0.5981 0.5810 0.5564 0.5957
6 Musk1 167 478 2 0.6517 0.7566 0.5756 0.7986
7 Musk2 167 6598 2 0.7445 0.8406 0.9047 0.9615
8 Epileptic Seizure 179 11500 5 0.2344 0.3650 0.1187 0.3808
9 mfeat-fac 219 2000 10 0.3520 0.4590 0.3310 0.4650
10 semeion 257 1600 10 0.8550 0.8719 0.3521 0.8776
11 madelon 501 2000 2 0.5905 0.5270 0.5740 0.5905
12 HART 563 10929 12 0.7967 0.8685 0.8456 0.8805
13 HAR 563 10929 6 0.7633 0.8797 0.8657 0.8987
14 Parkinson’s Disease 755 756 2 0.7182 0.7898 0.7419 0.7964
15 MNIST 785 70000 10 0.8258 0.8911 0.9482 0.9493
16 MicroMass 1301 360 10 0.9472 0.9472 0.8756 0.9556

classification accuracy average 0.6886 0.7402 0.6527 0.7675
p-value 0.0080 0.0060 0.0022 -

calculation time (s) average 0.0 545.7 3647.2 565.7
standard error 0.0 434.6 1966.1 220.9

1.2.2 Classification accuracy in large networks

In this section, we describe an evaluation experiment using a large dataset that cannot
be handled by the exact learning approach. Using 15 datasets with 36-1300 variables,
we compare the classification accuracies of BNCs learned by the traditional method
with those learned by the proposed method. The exact learning approach is excluded
from the comparison because it is not applicable. As in previous section, Table 4.5
shows the average and p-value of the classification accuracy, and the average and the
standard error of the computation time for each method on each dataset.

From Table 4.5, the classification accuracy of the proposed method was the high-
est. The classification accuracy of the proposed method is significantly higher than
Naive Bayes, TAN, and RAI-GNB at the 5% level of significance. Furthermore, the
proposed method was able to learn the BNC with large networks that cannot be
learned by dynamic programming. Similar to the results of computation time for
small networks, the computation time of the proposed method is shorter than that
of RAI-GBN and longer than that of Naive Bayes and TAN. The reason for this is as
described in the previous section.
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Table 4.6: The number of Max parents of respective classifiers for huge networks

datset
Naive
Bayes TAN

RAI-
GBN

RAI-
ANB

1 kr-vs-kp 1 2 6 6.2
2 Connect-4 1 2 5.1 5.5
3 Flowmeters D 1 2 3.6 4
4 movement libras 1 2 2.5 3.1
5 dota2 1 2 3.4 4
6 Musk1 1 2 4.7 5
7 Musk2 1 2 9.3 10.3
8 Epileptic Seizure 1 2 3 3
9 mfeat-fac 1 2 5.1 5.1
10 semeion 1 2 5 4
11 madelon 1 2 3.5 4.4
12 HAPT 1 2 5.8 5
13 HAR 1 2 6.5 6.8
14 Parkinson’s Disease 1 2 5 6
15 mnist 1 2 8.6 8.5
16 MicroMass 1 2 6.8 4.4

The classification accuracy of Naive Bayes and TAN is lower than that of the
proposed method for most of the datasets. This is due to the fact that Naive Bayes and
TAN have limited Max parents as can be seen in Table 4.6. As the number of variables
increases, the number of variables that may influence each other increases, and thus
a small Max parents may lead to a decrease in classification accuracy. However,
dataset No. 4 has the highest classification accuracy in Naive Bayes, and dataset No.
5 has the highest classification accuracy in TAN. This can be attributed to the small
correlation between the variables. Looking at Table 4.7, we can see that the number
of edges involved in the estimation of class variables for RAI-GBN datasets 4 and 5 is
2.4 and 14.3, which is very small. This indicates that the Markov blanket of the class
variable is small, and most of the feature variables are not involved in the estimation
of the class variable. Looking at the number of edges involved in the estimation of the
class variable in RAI-ANB, the value of No. 4 is close to that of TAN, and the value of
No. 5 is smaller than that of TAN and close to that of Naiva Bayes. This means that
RAI-ANB estimates a sparse structure similar to Naive Bayes and TAN. Therefore,
the classification accuracy of these datasets was high because the true structure was
close to Naive Bayes and TAN in the ANB candidate space.

Comparing RAI-GBN and RAI-ANB, the classification accuracy of the proposed
method is higher on all datasets. Table 4.7 shows that for datasets 4, 6, 8, 11, and
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Table 4.7: The number of edges used to estimate the class variable of respective
classifiers for huge networks

dataset
Naive
Bayes TAN

RAI-
GBN

RAI-
ANB

1 kr-vs-kp 36 71 46.1 116.2
2 Connect-4 42 83 43.1 115
3 Flowmeters D 43 85 13.1 83.2
4 movement libras 90 179 2.4 187.4
5 dota2 116 231 14.3 209.9
6 Musk1 166 331 1.1 513.1
7 Musk2 166 331 61.6 1026.9
8 Epileptic Seizure 178 355 0 387
9 mfeat-fac 216 431 19.5 561.3
10 semeion 256 511 15.3 753.3
11 madelon 500 999 3 533.5
12 HAPT 561 1121 164.7 1524.6
13 HAR 561 1121 204.9 1625.8
14 Parkinson’s Disease 753 1505 2.5 1973.2
15 mnist 784 1567 2218.0 3253.2
16 MicroMass 1300 2599 169.8 1940.4

14, the number of edges involved in the estimation of class variables for RAI-GBN is
very small, which may indicate undertraining due to CI testing. On the other hand,
since the proposed method assumes ANB structure, all feature variables are used for
class variable estimation, which may improve the classification accuracy.

2. Comparison with Other Classifiers
In the previous section, we showed that the proposed method has higher classification
accuracy than other BNC in large networks. In this section, we analyze the proposed
method by comparing its accuracy with classifiers other than BNC. The dataset used
for the experiments is the same as the one used in the previous section.

In this section, the following three methods are used as general classifiers.

• RF: random forest

• SVM: support vector machine

• MLP: deep neural network (Multilayer perceptron)
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Both of these methods are trained using scikit-learn (https://scikit-learn.org/stable/).
MLP is tuned using grid search with {10, 100, 1000} as the candidate number of hid-
den layers and {0.0001, 0.001, 0.01} as the candidate learning rate. The proposed
method, RAI-ANB, is tuned using grid search with {1, 5, 10, 20} as the candidate ESS
for structure learning and classification accuracy estimation. For each method and
each dataset, we obtain the average classification accuracy using 10-fold cross valida-
tion. The proposed method, RAI-ANB, is tuned using grid search with {1, 5, 10, 20}
as the candidate ESS for structure learning and classification accuracy estimation.
For each method and each dataset, we obtain the average classification accuracy us-
ing 10-fold cross validation. However, since the comparison method cannot deal with
input data containing missing values, they are removed from the dataset. To show
the significance of the proposed method, a multiple comparison using the Hommel
method, (Hommel, 1988), was performed to obtain the p-value. Table 4.8 shows
the classification accuracy and p-values of each method. In addition, the highest
classification accuracy of each method for each data set is shown in bold.

Table 4.8 shows that the classification accuracy of the proposed method is higher
than that of RF and SVM, but lower than that of MLP. In addition, the proposed
method failed to show significant differences against all the comparison methods. The
proposed method is a generative model that represents joint probability distributions,
while MLP is a functional discriminative model that takes features as inputs and
class variable values as outputs. As a result, the proposed Bayesian network classifier
was not superior to other classifiers in terms of accuracy. However, there is also an
advantage that the proposed method is a generative model. The proposed method is
a probabilistic model and has the advantage of being able to simultaneously estimate
the probability distribution itself. For example, while MLP is difficult to handle
missing values in input data, the proposed method can easily obtain the probability
distribution marginalized by the missing variables. Therefore, the proposed method is
more likely to show higher accuracy than MLP when classifying input data containing
missing values. In addition, since the proposed method can asymptotically calculate
the probability of class variables, it is easy to calculate the expected utility (loss)
function in decision-making problems, and thus easy to construct a decision-making
system. Furthermore, the proposed method has excellent explainability because it
can show the causal relationship between the feature variables.
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Table 4.8: Accuracies of respective classifiers
dataset variables num of data classes RF SVM MLP

RAI-
ANB

1 Balance 5 625 3 0.8289 0.9008 0.8565 0.9167
2 banknote 5 1372 2 0.8812 0.8819 0.9665 0.8812
3 Hayes-Roth 5 132 3 0.8022 0.8560 0.8970 0.8110
4 iris 5 150 3 0.8267 0.8133 0.8819 0.8267
5 lenses 5 24 3 0.7333 0.6500 0.7180 0.6333
6 Car 7 1728 4 0.9641 0.9688 0.9707 0.9398
7 liver 7 345 2 0.6146 0.6403 0.9919 0.6811
8 monk1 7 432 2 0.9560 0.9166 0.8106 1.0000
9 mux6 7 64 2 0.7976 0.5786 0.9241 0.8714
10 led7 8 3200 10 0.7288 0.7369 0.4922 0.7319
11 HTRU2 9 17898 2 0.9141 0.9112 0.9482 0.9084
12 Nursery 9 12960 3 0.9891 0.9860 0.8621 0.9398
13 pima 9 768 9 0.6875 0.6967 0.7302 0.7292
14 post 9 87 5 0.5736 0.7125 0.8394 0.6681
15 Breast Cancer 10 277 2 0.6534 0.7299 0.7510 0.7251
16 Breast Cancer Wisconsin 10 683 2 0.9664 0.9650 0.6325 0.9766
17 cmc 10 1473 3 0.4508 0.4895 0.7571 0.4807
18 glass 10 214 6 0.6214 0.5983 0.8074 0.6173
19 shuttle-small 10 5800 6 0.9721 0.9662 0.8500 0.9722
20 threeOf9 10 512 2 0.9824 0.8925 0.9115 0.9337
21 TicTac 10 958 2 0.9133 0.8831 0.8299 0.7798
22 magic 11 19020 2 0.7809 0.7807 0.8267 0.7803
23 Flare 11 1389 9 0.8179 0.8431 0.7313 0.8222
24 heart 14 270 2 0.7926 0.8407 0.7167 0.8222
25 wine 14 178 3 0.8935 0.9105 0.6561 0.9265
26 cleve 14 296 2 0.8339 0.8238 0.6518 0.8307
27 australian 15 690 2 0.8449 0.8609 0.8457 0.8464
28 crx 15 653 2 0.8638 0.8653 0.7877 0.8514
29 EEG 15 14980 2 0.7275 0.6955 1.0000 0.6834
30 Congressional 17 232 2 0.9524 0.9696 1.0000 0.9440
31 zoo 17 101 5 0.9700 0.9300 0.7881 0.9700
32 pendigits 17 10992 10 0.9406 0.9285 0.9998 0.9176
33 letter 17 20000 26 0.6471 0.5877 0.9408 0.5723
34 ClimateModel 19 540 2 0.9204 0.9148 0.7253 0.9241
35 ImageSegmentation 19 2310 7 0.8229 0.8134 0.6764 0.8139
36 lymphography 19 148 4 0.7910 0.7767 0.9705 0.8719
37 vehicle 19 846 4 0.6289 0.6348 0.8170 0.6015
38 hepatitis 20 80 2 0.8000 0.8375 1.0000 0.8750
39 german 21 1000 2 0.7330 0.7390 1.0000 0.7460
40 bank 21 30488 2 0.8803 0.8918 0.6205 0.8940
41 waveform-21 22 5000 3 0.7790 0.8132 0.8168 0.7922
42 Mushroom 22 5644 2 1.0000 1.0000 0.9203 1.0000
43 spect 23 263 2 0.8128 0.8021 0.9709 0.8207
44 kr-vs-kp 37 3196 2 0.9831 0.9384 0.9950 0.9524
45 Connect-4 43 67557 3 0.7901 0.7393 0.8097 0.7938
46 Flowmeters D 44 180 4 0.8778 0.8722 0.8833 0.8500
47 movement libras 91 360 15 0.6750 0.5361 0.7306 0.5333
48 dota2 117 102944 2 0.5314 0.5508 0.5425 0.5957
49 Musk1 167 476 2 0.7921 0.7604 0.8380 0.7986
50 Musk2 167 6598 2 0.9548 0.9406 0.9767 0.9615
51 Epileptic Seizure 179 11500 5 0.4207 0.4618 0.4692 0.3808
52 mfeat-fac 219 2000 10 0.4630 0.4245 0.4675 0.4650
53 semeion 257 1600 10 0.8789 0.9360 0.9272 0.8776
54 madelon 501 2000 2 0.5585 0.5860 0.5605 0.5905
55 HAPT 563 10929 12 0.8756 0.8866 0.9222 0.8805
56 HAR 563 10299 6 0.8880 0.9068 0.9316 0.8987
57 Parkinson’s Disease 755 756 2 0.8389 0.4061 0.9316 0.7964
58 MNIST 785 70000 10 0.9695 0.9731 0.9731 0.9493
59 MicroMass 1300 360 10 0.9333 0.9222 0.9722 0.9556

classification accuracy average 0.8054 0.7945 0.8275 0.8069
　　　　　 p-value 0.17619 0.17619 0.17619 -
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Chapter 5

Conclusion

In this paper, we extend Honda’s method to learning ANB, and propose a method
for learning larger BNC than before. We also proved that the proposed method has
asymptotic agreement for the ANB. Experiments on a benchmark dataset showed
that RAI-GBN has low classification accuracy due to the low accuracy of the CI test
when the number of data is small and the Markov blanket of the class variable is
small. On the other hand, the proposed method stabilizes the classification accuracy
by learning ANB, and the classification accuracy is almost same as that of the ex-
act learning approach. We also showed that the proposed method can learn large
networks with thousands of variables, which cannot be learned by the exact learn-
ing approach, and can achieve significantly higher classification accuracy than other
BNC methods. We also compared the classification accuracy of the proposed method
with that of common classifiers. As a result, the average classification accuracy of
the proposed method was higher than the average classification accuracy of Random
Forest and Support Vector Machine, but lower than the average classification accu-
racy of Deep Neural Network. However, the proposed method is a probabilistic model
and has many advantages over the deep neural network, such as explainability of the
model. For example, BNC is known to greatly improve the classification accuracy by
performing model averaging (Cheng et al., 2002). Recently, it has been reported that
the classification accuracy can be improved by combining ensemble learning (Aaomi,
Sugahara, & Ueno, 2020). By using these methods, the classification accuracy of the
proposed method is expected to be improved.

In addition to the above, other issues include the following. Large structure learn-
ing tends to reduce the accuracy of parameter classification and the reliability of CI
tests due to the sparsity of the data. To address this problem, Isozaki et al. (2008,
2009) have proposed a parameter estimation method based on Minimum Free En-
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ergy (MFE) and the CI test. By incorporating this MFE-based parameter estimation
method and the CI test, we expect to improve the learning and classification accuracy
in large structures.
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