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 要  旨 

近年，大規模公開オンライン講座を始めとする e ラーニングシステムが大きな注目を集

めている．しかし，多くの e ラーニングシステムは動的に学習者の知識状態を推定し，学

習者に適応した支援をすることができていない．そのため，学習者の知識状態を推定する

モデルの開発が大きな課題となっている．学習者の知識状態を推定する手法の一つに隠

れマルコフ項目反応理論(HMIRT)が存在する．HMIRT は一般の項目反応理論（IRT）を

時系列に拡張したモデルであり，以下の二つのパラメータを持つ．1)知識状態が過去の学

習データにどれだけ依存するかを決定できるウィンドウサイズパラメータ．2)学習者の

知識状態の変動幅を決定する分散パラメータ．既存の HMIRT では，これらのパラメー

タが全ての時点に共通する，あらかじめ決定された固定パラメータであった．しかしなが

ら，知識状態が過去の学習データにどの程度依存するかは取り組む項目によって異なる

ため，ウィンドウサイズパラメータを固定することで知識状態の推定精度が損なわれて

いる恐れがある．さらに，分散パラメータを固定することで，学習者の知識状態の変動が

全ての時点で一定となることもモデルの表現力を制限している． 

本研究では，これらの問題点を解決するために，ウィンドウサイズパラメータを各時点で

変動できるよう拡張した HMIRT モデルを提案する．具体的には，貪欲法を用いて各項

目ごとに最適なウィンドウサイズパラメータを推定する． 

評価実験では，実データを用いて従来の HMIRT モデルと提案モデルについて，未知の

課題への反応予測精度を比較した．その結果，提案手法は既存手法と比較して高精度に未

知の課題を予測できることが明らかとなり，ウィンドウサイズパラメータを各時点で変

動させることが有効であることが示された． 
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1. Introduction 

In recent years, learning assistance has been gaining more attention in the education field. 

Because over-instruction or under-instruction can lead to ineffective knowledge 

development, determining the amount of support that a learner needs has been a major 

challenge for educators. Vygotsky (1962) introduced the Zone of Proximal Development 

(ZPD) for problem solving, where a learner cannot solve difficult tasks alone but can do 

so with an expert’s help, thereby promoting learner development [1][2]. Using the ZPD 

concept, Wood et al. (1976), Collins (1989), and Bruner (1996) have shown that when 

learners face higher-level tasks, the teachers should provide moderate support depending 

on the learner’s ability through the process of “scaffolding” [3][4][5]. Scaffolding is a 

process where the learners obtain support to solve tasks that are beyond their capability 

when solving by themselves. To provide optimal help for scaffolding learners, Ueno and 

Matsuo [6] proposed a scaffolding system that predicts the learner’s performance. In other 

words, to effectively assist the learner, their knowledge and their performance must be 

accurately estimated. 

To estimate the learner’s knowledge, Ueno and Matsuo [6] and Ueno and Miyazawa 

[7][8] proposed the use of Item Response Theory (IRT). IRT is one of the test theories 

that can be used to estimate the learner’s ability based on past learning data and can also 

be used to predict the response of the learner by calculating the probability of getting a 

correct answer based on the learner’s estimated ability [9]. However, IRT assumes that 

each task is dependent on a static learner’s ability, meaning that the learner’s ability does 

not change during the learning process, which might lead to inaccurate prediction of the 

learner’s response.  
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To handle the change in the learner's ability during the learning process, Tsutsumi et al. 

(2019) [10][11] proposed the Hidden Markov Item Response Theory (HMIRT) model, 

which treats the learner's ability as a time-series. HMIRT assumes that at some point 

during the learning process, the learner will gradually forget about past tasks. HMIRT 

uses the Sliding Window method to model the learner forgetting about the earlier tasks. 

HMIRT also assumes that the learner’s ability to perform each task does not change before 

the point at which the learner forgets, meaning that these tasks will be dependent on one 

value for the learner’s ability, the same as in the traditional IRT. After a learner increases 

his/her ability due to the learning effect, the learner's ability will be updated and used in 

the next task. To handle this process, HMIRT introduces two new parameters: the window 

size parameter is a fixed number used to control how many of the previous tasks affect 

the estimation of the learner’s current ability, and the variance parameter is a fixed number 

used to control the magnitude of change in the learner’s ability at each time point. This 

model fixes the problem of static ability in the traditional IRT model, leading to more 

accurate estimation of learner’s ability and therefore performance.  

It has been shown that HMIRT estimates the learner’s ability better than the traditional 

IRT [10][11]. However, HMIRT’s constant window size might not guarantee an accurate 

estimation of learner’s ability. Another limitation of HMIRT is the fixed variance 

parameter. Setting a fixed variance parameter limits the change in the learner’s ability at 

each time state. If the variance parameter is small, the learner’s ability will not change 

much. If the variance parameter is large, the learner’s ability will change too much. 

Because the content of each task varies, the degree of understanding gained by completing 

each task must also be different. Therefore, accurate prediction cannot be guaranteed 
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when using a fixed variance parameter. To solve these problems, we propose the Auto-

Fluctuation Window Size of Hidden Markov Item Response Theory Model. In this model, 

the window size and variance parameters are time series rather than fixed values so that 

the parameters can change at each time point. With this proposed model, we expected a 

more flexible and more accurate estimation of learner’s ability. 
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2. Item Response Theory 

To effectively support the learner’s development, learner performance prediction is 

needed. To predict a learner's performance, Item Response Theory (IRT)[9][12] has been 

used. IRT is one of the test theories based on mathematical models and has been used 

widely in computer testing. It has the following advantages: 

1. It is possible to assess ability while minimizing the effect of the heterogeneous 

or aberrant items, which has a low estimation accuracy. 

2. The learners’ responses to different items can be assessed on the same scale. 

3. Missing data can be readily estimated. 

In the IRT model, one of the most used models is the two-parameter logistic model (2PL). 

In the dichotomous response, 𝑥𝑗𝑖 denotes the response of the learner 𝑗(1, . . , 𝑛) to 𝑖-th 

item as: 

 

 

 

With the learner’s ability variable 𝜃𝑗 , 2PL can be expressed by: 

 

𝑃(𝑥𝑗𝑖 = 1|𝜃𝑗 , 𝑎𝑖, 𝑏𝑖) =
1

1 + 𝑒𝑥𝑝{−1.7𝑎𝑖(𝜃𝑗 − 𝑏𝑖)}
 

 

where the item parameter 𝑎𝑖  and 𝑏𝑖  is called the discrimination parameter and 

difficulty parameter, respectively, 𝜃𝑗  is the latent ability variable of learner 𝑗. The item 

parameter 𝑎𝑖, 𝑏𝑖 was estimated in advance from the training data. 

1: correct response for 𝑖-th item 

0: incorrect response for 𝑖-th item 
𝑥𝑗𝑖 = 

(1) 
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In this model, because all of the items depend on one prior distribution of ability variable, 

the estimation of the ability variable is less affected by the prior distribution but is easily 

affected by the learning process. Therefore, the over-training occurs and the ability 

variable might be overly estimated or underestimated.  

In order to avoid the over-training, Tsutsumi et al. [10][11] proposed the Hidden Markov 

model, which changes the learner’s ability to time-series where the current ability variable 

depends on the value of previous ability variable. With this model, the accuracy of the 

learner’s ability estimation has been improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1 Traditional Item Response Theory model. 
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3. Hidden Markov Item Response Theory  

The Hidden Markov Item Response Theory (HMIRT) model is an extension of the IRT 

model that replaces the fixed value for the learner’s ability 𝜃𝑗  with the time-series 𝜃𝑗𝑡, 

where the change in ability at time 𝑡 depends on the value of the ability variable 𝜃𝑗𝑡−1 

at time 𝑡 − 1 according to a Hidden Markov process. Here, the number of task items 

used in the ability estimation at time 𝑡 has been set, denoted by L. HMIRT assumes that 

the value of the ability variable does not change for items 𝑖 = 1,… , L, which means that 

these initial items will depend on the same ability value (as in the IRT model). When the 

item 𝑖 > L, the ability variable 𝜃𝑗𝑡  will change based on 𝜃𝑗𝑡−1. The variance parameter 

𝛿 must be estimated to control the transition (amount of variation) of the ability variable 

𝜃𝑗𝑡  between each time state. 

The transition model for the ability variable 𝜃𝑗𝑡(𝑡 = 1,… , 𝐼 − 𝐿)  uses the sliding 

window method [13][14]. The sliding window is a method of determining the number of 

hidden variables that will affect the ability estimation when shifting by the set window 

size. When the current item 𝑖 > L, the ability estimation is conducted by shifting the 

window along the items one at a time (Figure 2). 

 

 

 

 

 

 

 
Fig 2 Representation of Hidden Markov Item Response Theory model. 
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In this model, the number of items that depends on one ability variable in each learning 

process is defined by the window size parameter L. The learning process at time 𝑡 is as 

follows: 

{
 
 

 
 𝑡 = 0: 𝑖 = 1, … , 𝐿

𝑡 = 1: 𝑖 = 2,… , 𝐿 + 1
⋮

𝑡 = 𝐼 − 𝐿:
⋮

𝑖 = 𝐼 − 𝐿, … , 𝐼

 

When L is small, only the learner's most recent history will influence their estimated 

ability 𝜃𝑗𝑡 . If L is larger, additional task items will factor into the ability estimation. 

This model was originally developed for the dynamic assessment system, which gives 

hints to the learners when they cannot solve the task. In this research, we generalize the 

model so that it can work without the hint. The probability 𝑃𝑖𝑗𝑡 of a correct answer for 

task item 𝑖  being provided by learner 𝑗  based on their ability 𝜃𝑗𝑡  at time 𝑡  is as 

follows:  

𝑃𝑖𝑗𝑡 =
1

1 + 𝑒𝑥𝑝 (−𝑎𝑖(𝜃𝑗𝑡 − 𝑏𝑖))
 

where 

𝜃𝑗𝑡  ~ 𝑁(𝜃𝑗𝑡−1, 𝛿) 

𝜃𝑗0 ~ 𝑁(0,1) 

𝛿 is the variance parameter, which controls how much the estimated ability can change 

during each learning session. In this model, the window size parameter L and the variance 

parameter 𝛿 perform important roles in the prediction of the learner’s performance.  
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Fig. 3 Response prediction accuracy for each Window Size of 

Foundation of Programming 1 (7 tasks, 148 learners, 𝜹=0.7). 

Fig. 4 Response prediction accuracy for each Window Size at 

each task  Foundation of Programming 1 (7 tasks, 148 

learners, 𝜹=0.7). 
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Figure 3 shows the response prediction accuracy for each Window Size of the dataset 

Foundation of Programming 1 (Ueno,2004) [15]. From Fig.3, we can see that the response 

prediction accuracy of HMIRT where the Window Size is two gets the highest value. On 

the other hand, the traditional IRT (Window Size is seven) gets the lowest accuracy. 

However, from Figure 4, when we look at each task separately, we can see that when the 

Window Size is two do not guarantee the highest response prediction accuracy for all the 

tasks. From the result shows in Fig.4, we can say that HMIRT’s fixed window size may 

not guarantee an accurate estimation of learner’s ability, since the previous tasks that 

contribute to the ability estimation at each time state can vary for the current task. 

Moreover, setting a fixed variance parameter limits the range of transition of the learner’s 

ability at each time state. To solve this problem, the Auto-Fluctuation Window Size of 

Hidden Markov Item Response Theory model has been proposed. 
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4. Auto-Fluctuation Window Size HMIRT 

In the previous researches [10][11], it has been shown that the response prediction of 

HMIRT is more accurate than that of traditional IRT. Fig.3 shows that the highest average 

response prediction accuracy is when the window size equals two. However, by observing 

the response prediction accuracy rate for each task in Fig.4, we found that the window 

size equals two does not guarantee to obtain the highest response prediction accuracies at 

each task. With this fact, we can assume that in some cases, changing the window size 

can lead to a more accurate estimation of learner’s ability. Moreover, the fixed variance 

parameter in HMIRT limits the range of transition of the learner’s ability at each time 

state. Because the content of each task varies, the degree of understanding gained during 

that task must also be different. Therefore, making the variance parameter changeable at 

each time point can lead to a more accurate learner’s ability estimation. To handle the 

changes in the window size and variance parameters at each time state, we propose the 

Auto-Fluctuation Window Size HMIRT (AFHMIRT) model.  

The AFHMIRT model replaces the fixed values for the window size parameter L and 

variance parameter 𝛿 with the time-series window size 𝐿𝑡 and variance parameter 𝛿𝑡 

where 𝑡 is the time state of the learning process. The model then estimates the window 

size 𝐿𝑡 and the variance 𝛿𝑡 that maximize the response prediction accuracy for each 

task. In the response prediction process of the HMIRT model, the system first estimates 

the item parameters, then estimates the learner’s ability for all of the time states 𝜽𝑗 , then 

finally calculates the response prediction accuracy. Because we want to find the optimal 

window size and variance for each item, we need to calculate the response prediction 

accuracy of each item. To be more precise, the proposed model will estimate the item 
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parameters and the learner’s ability for only the current time state, then calculate the 

response prediction accuracy for one item at a time while adjusting the window size and 

the variance to find the optimal window size for that item. When adjusting the window 

size and the variance, the model needs to re-estimate the item parameters and the learner’s 

ability because these changes affect the calculation of the likelihood that will be used in 

parameter estimation. After re-estimating the parameters, the response prediction 

accuracy is re-calculated. The learning process at each time state can be written as 

follows: 

{
 
 

 
 𝑡 = 0: 𝑖 = 1, … , 𝐿0

𝑡 = 1: 𝑖 = 2,… , 𝐿1 + 1
⋮

𝑡 = 𝐼 − 𝐿𝑡:
⋮

𝑖 = 𝐼 − 𝐿𝑡 , … , 𝐼

 

 

Figure 5 is an example of how the model will look when obtaining the optimal window 

size parameter for each item. For a 7-item model, 𝐿𝑡={2,2,2,3,3,2}. 
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Fig. 5 Example of an Auto-Fluctuation Window Size HMIRT model 
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5. Parameter Estimation 

One of the popular methods for estimating item parameters for the IRT model is to use 

the expectation-maximization (EM) and Newton-Raphson algorithms to estimate the 

marginal maximum likelihood (MML). The other method is maximum a posteriori 

(MAP) estimation. For both MML and MAP estimation, when the method is applied in a 

simple model such as a two-parameter logistic model or a grade response model, or when 

the dataset is large, the parameter estimation will be stable and accurate. On the other 

hand, when dealing with a complex model or when the dataset is small, the accuracy of 

the parameter estimation will be decreased. In recent years, the use of the Markov Chain 

Monte Carlo (MCMC) method to estimate the expected a posteriori (EAP) for parameter 

estimation has become more common. The MCMC method generates a random sample 

from the parameter’s posterior distribution and uses the generated sample to estimate the 

parameter’s expected value. In this research, we decided to use the MCMC method for 

parameter estimation because this method is better suited to the limited dataset and more 

complex model. In MCMC, there are many methods of generating a random sample; in 

this research, we use Metropolis-Hastings within a Gibbs algorithm. With the parameter 

𝜃 = {𝜃10, … , 𝜃𝑗𝐼−𝐿}, 𝑎 = {𝑎1, … , 𝑎𝐼}, 𝑏 = {𝑏1, … , 𝑏𝐼}  and the prior distribution 

𝑔(𝜃𝑗𝑡|𝛿𝑡), 𝑔(𝑎𝑖), 𝑔(𝑏𝑖), given the response pattern 𝑋, the posterior distribution of the 

parameters can be expressed as follows:  

𝑝(𝜃, 𝑎, 𝑏|𝑋) ∝ 

𝐿(𝑋|𝜃, 𝑎, 𝑏)𝑔(𝑎)𝑔(𝑏)𝑔(𝜃) 

= [∏ ∏ (𝑃𝑖𝑗𝑡)
𝑥𝑖𝑗
(1 − 𝑃𝑖𝑗𝑡)

1−𝑥𝑖𝑗

𝐿+𝑡+1

𝑖=𝑡+1

𝐼−𝐿

𝑡=0

] [∏𝑔(𝑎𝑖)𝑔(𝑏𝑖)

𝐼

𝑖=1

] [∏∏𝑔(𝜃𝑗𝑡)

𝐽

𝑗=1

𝐼−𝐿

𝑡=0

] 

(7) 

 

 

(7) 
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where 

 Log 𝑎𝑖 ∼ 𝑁(0.0, 0.2) 

𝑏𝑖~𝑁(0.0, 1.0) 

𝜃𝑗0 ∼ 𝑁(0.0, 1.0) 

𝜃𝑗𝑡 ∼ 𝑁(𝜃𝑗𝑡−1, 𝛿𝑡) 

Let 𝜃′𝑗 be the current parameter value for 𝜃𝑗𝑡 = (𝜃𝑗0, … , 𝜃𝑗𝐼−𝐿) and 𝜃𝑗  be a new 

proposal for the parameter obtained by the following: 

𝜃𝑗 ∼ 𝑁(𝜃′𝑗𝑡−1, 0.01) 

The acceptance rate for the parameter sampling is then as shown below:  

𝛼(𝜃𝑗|𝜃𝑗
′) = min(

𝐿(𝑋𝑗|𝜃𝑗 , 𝑎
′, 𝑏′)∏ 𝑔(𝜃𝑗𝑡)

𝐼−𝐿
𝑡=0

𝐿(𝑋𝑗|𝜃′𝑗, 𝑎′, 𝑏′)∏ 𝑔(𝜃′𝑗𝑡)
𝐼−𝐿
𝑡=0

, 1) 

The same formula is applied for parameter sampling of 𝑎𝑖 and 𝑏𝑖. .  

In this research, we set the MCMC maximum chain length to 40,000 iterations. To 

eliminate the effect of the initial value, we set a burn-in period of 20,000 iterations. After 

the burn-in period, a sample is collected for an interval of 1000 iterations, and the average 

is taken to be the EAP estimation value. Pseudo-code for the parameter estimation is 

shown in Algorithm 1. 
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Algorithm 1 Parameter Estimation with MCMC 

Given maximum chain length S,burn-in B,interval E 

Initialize MCMC sample 𝐴 ← ∅ 

Initialize 𝜃0, 𝑎0, 𝑏0 

for 𝑠 = 1 to 𝑆 do 

    for 𝑗 ∈ {1,… , 𝐽} do 

        Sample 𝜃𝑗
𝑠 ∼ 𝑁(𝜃𝑗

𝑠−1, 0.01) 

        Accept 𝜃𝑗
𝑠 with the probability 𝛼(𝜃𝑗|𝜃𝑗

′) 

    end for 

for 𝑖 ∈ {𝑡 + 1,… , 𝑡 + 1 + 𝐿𝑡} do 

        Sample 𝑎𝑖
𝑠 ∼ 𝑁(𝑎𝑖

𝑠−1, 0.01) 

        Accept 𝑎𝑖
𝑠 with the probability 𝛼(𝑎𝑖|𝑎𝑖

′) 

Sample 𝑏𝑖
𝑠 ∼ 𝑁(𝑏𝑖

𝑠−1, 0.01) 

        Accept 𝑏𝑖
𝑠 with the probability 𝛼(𝑏𝑖|𝑏𝑖

′) 

    end for 

    if 𝑠 ≥ 𝐵 𝑎𝑛𝑑 𝑠%𝐸 = 0 then 

            𝐴 ← (𝜃𝑠, 𝑎𝑠, 𝑏𝑠) 

    end if 

end for 

return average of A 

 

From Fig.4, we can see that the response prediction accuracy at each task is not sorted by 

the Window Size. To estimate the window size parameter 𝐿𝑡  that maximizes the 

response prediction accuracy, we propose the use of the linear search algorithm. The 

linear search algorithm is a method for finding an element within a list. It sequentially 

checks each element of the list until a match is found or the whole list has been searched. 

The optimal variance parameter 𝛿𝑡 is also obtained by linear search algorithm for 𝛿 =

{0.1, … ,1.0}, then taking the variance with the maximum response prediction accuracy. 

The process of estimating the window size parameter 𝐿𝑡  and variance parameter 𝛿𝑡 

with the linear search algorithm is shown in Algorithm 2: 
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Algorithm 2 Window Size and Variance Parameter Estimation with Linear Search 

Given Task number I 

Initialize Window Size 𝐿𝑡,variance 𝛿𝑡 

for 𝑖 = 0 to 𝐼 do 

    for 𝑙 = 2 to 𝐼 do 

        for 𝛿 ∈ {0.1, … ,1.0} do 

            Calculate response prediction accuracy with 𝑙 and 𝛿 

𝐿𝑡 ← 𝑙 with maximum response prediction accuracy 

𝛿𝑡 ← 𝛿 with maximum response prediction accuracy 

        end for 

    end for 

end for 

return 𝐿𝑡, 𝛿𝑡 
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6. Experiment 

To evaluate the estimates of learner’s ability produced by the proposed model, the 

learner’s ability parameter was estimated, then used to predict the learner's response. 

After obtaining the predicted response, the response prediction accuracy was calculated 

using the real test data, and the results were compared with those of the HMIRT model 

and traditional IRT model. The data used in this study consisted of a number of learning 

tasks within three courses: 

(1) Foundation of programming 1 (7 tasks, 148 learners) 

(2) Foundation of programming 2 (18 tasks, 75 learners) 

(3) Information Society and Information Ethics (13 tasks, 23 learners) 

These data are taken from the SAMURAI e-learning system for university students 

(Ueno,2004) [15]. We performed 10-fold cross-validation in the experiment to reduce 

over-fitting and generalize the response prediction accuracy.  

In addition, to evaluate the proposed model, the F-Measure and the Area under the curve 

(AUC) were calculated. 

The setting for the HMIRT model is as below[10][11]. 

(1) Foundation of programming 1: window size equals 2, δ equals 0.7  

(2) Foundation of programming 2: window size equals 3, δ equals 0.4 

(3) Information Society and Information Ethics: window size equals 2, δ 

equals 1.0 

For the traditional IRT model, the window size is equal to the task number, δ is equal 

to those of the HMIRT model. 
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6.1. Response Prediction Accuracy 

After obtaining the learner’s ability, the response for each item can be predicted by 

calculating the probability of the learning getting the correct answer using equation (1) 

and then setting the response as follows: 

 

 

After obtaining the predicted response for each item, it is checked against the real 

response data, and overall response prediction accuracy is calculated by taking the 

average accuracy of all of the items. Here, the first item’s response will not be used to 

calculate the average prediction due to the fact that the learner must first undertake the 

first task before the system can use their response for the later tasks. 

Table 1 shows that the response prediction accuracy of the proposed model is better than 

those of both the HMIRT model and the traditional IRT model for all three datasets. 

Figures 6–8 show the graphs of the prediction accuracies of all three models for each item 

in each of the three datasets. From these graphs, we can see that the predictions for the 

earlier time states tend to be the same for all three models, especially for a small dataset, 

but the model predictions gradually diverge as the learning progresses. For the Foundation 

of Programming 1 dataset (Fig. 6), the response prediction accuracy of the proposed 

model is slightly better than those of the other models for item 2 and exactly the same as 

the other models for item 3. From item 4 onward, the proposed model clearly performs 

better than the IRT model and slightly better than HMIRT. For the Foundation of 

Programming 2 dataset (Fig. 7), due to the large size of the dataset, the response prediction 

accuracy of the proposed model is clearly better from the beginning than both the HMIRT 

0: incorrect if the probability is less than 0.5 

1: correct if the probability is more than 0.5  

 

Fig. 27 Prediction accuracy of Foundation of 

Programming 1 (7 tasks, 148 learners)0: 

incorrect if the probability is less than 0.5 

1: correct if the probability is more than 0.5  

 

Fig. 28 Prediction accuracy of Foundation of 

Programming 1 (7 tasks, 148 learners). 
 

Fig. 29 Prediction accuracy of Foundation of 

Programming 2 (18 tasks, 77 learners)Fig. 30 

Prediction accuracy of Foundation of 

Programming 1 (7 tasks, 148 learners)0: 

incorrect if the probability is less than 0.5 

1: correct if the probability is more than 0.5  

 

Fig. 31 Prediction accuracy of Foundation of 

Programming 1 (7 tasks, 148 learners)0: 

incorrect if the probability is less than 0.5 

1: correct if the probability is more than 0.5  

 

Fig. 32 Prediction accuracy of Foundation of 

Programming 1 (7 tasks, 148 learners). 
 

Fig. 33 Prediction accuracy of Foundation of 

Programming 2 (18 tasks, 77 learners)Fig. 34 

Prediction accuracy of Foundation of 

Programming 1 (7 tasks, 148 learners). 
 

Fig. 35 Prediction accuracy of Foundation of 

Programming 2 (18 tasks, 77 learners). 
 

Fig. 36 Prediction accuracy of Information 

Predicted response    
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model and IRT model. On the other hand, for the smaller Information Society and 

Information Ethics dataset (Fig. 8), the response prediction accuracy of the proposed 

model is exactly the same as the other two models from the beginning until item 8. 

Beginning at item 9, the prediction accuracies of the proposed model and HMIRT are 

better than that of the IRT model, and from item 11 onward, the proposed model performs 

better than HMIRT. 

Table 1: Average response prediction accuracy. 

Dataset Proposed Model HMIRT  IRT 

Foundation of programming 1 78.30% 75.26% 69.84% 

Foundation of programming 2 81.69% 76.17% 71.26% 

Information Society and 

Information Ethics 
90.00% 87.91% 85.00% 

 

Table 2: F-measurement, Area Under the Curve (AUC) 

Dataset  Proposed Model HMIRT IRT 

Foundation of 

programming 

1 

Average F-Measure 77.43% 68.15% 61.48% 

Average AUC 75.54% 68.83% 64.94% 

Foundation of 

programming 

2 

Average F-Measure 74.52% 65.55% 55.74% 

Average AUC 73.22% 64.96% 58.57% 
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Information 

Society and 

Information 

Ethics 

Average F-Measure 73.12% 58.23% 45.17% 

Average AUC 74.89% 56.68% 50.96% 
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Fig. 6 Prediction accuracy of Foundation of 

Programming 1 (7 tasks, 148 learners). 
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Fig. 7 Prediction accuracy of Foundation of 

Programming 2 (18 tasks, 77 learners). 

Fig. 8 Prediction accuracy of Information Society and 

Information Ethics (13 tasks, 23 learners). 
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6.2. Window Size Parameter 

Figures 9–11 show how the window size changed during the learning process. Fig. 9 

shows that for the Foundation of Programming 1 dataset, the window size tended to 

change only a small amount in the early time states, with larger changes later on. This can 

be related to the response prediction accuracy in Fig. 6, where the response prediction 

accuracy of the proposed model only changes slightly compared with the response 

prediction accuracy of the HMIRT model in the first 3 tasks. Fig. 10 clearly shows the 

changes in the window size parameter for each item in the Foundation of Programming 2 

dataset. The response prediction accuracy of this dataset (Fig. 7) also shows that the 

proposed model has a better response prediction accuracy. However, in Fig. 11, where the 

size of the Information Society and Information Ethics dataset is small, the window size 

does not change for any time state. 
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Fig. 9 Window size of Foundation of Programming 1  

(7 tasks, 148 learners). 
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Fig. 10 Window size of Foundation of Programming 2  

(18 tasks, 77 learners). 

Fig. 11 Window size of Information Society and Information Ethics 

(13 tasks, 23 learners). 
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6.3. Variance Parameter 

Figures 12–14 show how the variance parameter was set for each item. Fig. 12 shows that 

the variance begins high, then gradually decreases. This means that for the Foundation of 

Programming 1 dataset, the learner’s ability will likely change by some large amount at 

first, then as the learning progresses, the changes in the learner’s ability will be smaller. 

In Fig. 13, showing the Foundation of Programming 2 dataset, the variance of the 

proposed model starts off quite low, then increases as the learning progresses. The 

variance peaks at item 11, then starts to fall until the end of the learning process. In Fig. 

14, representing the Information Society and Information Ethics dataset where the dataset 

size is small, the variance of the proposed model is exactly the same as that of the HMIRT 

model from the beginning to item 10. This can be related to the predictions of this dataset 

(Fig. 8), as the predictions of the proposed model are exactly the same as those of the 

HMIRT model from the beginning until item 10. However, from item 11 onward, by 

decreasing the variance, the response prediction accuracy of the proposed model is now 

better than that of HMIRT. 
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Fig. 12 Variance of Foundation of Programming 1  

(7 tasks, 148 learners). 
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Fig. 13 Variance of Foundation of Programming 2  

(18 tasks, 77 learners). 

Fig. 14 Variance of Information Society and Information 

Ethics (13 tasks, 23 learners). 
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7. Conclusion 

In this research, we proposed a new method to estimate the learner’s ability from the 

learning data, then used the estimated ability to predict the response for future tasks. The 

proposed model, AFHMIRT, generalizes the Hidden Markov Item Response Theory and 

replaces the fixed values of the window size and variance parameters with time-series so 

that the parameters can fluctuate as learning progresses. In addition, we also proposed 

using a linear search algorithm to estimate the window size parameter. From the results 

of the experiment, we demonstrated that modeling the window size and variance 

parameters as time-series rather than fixed values resulted in a better response prediction 

accuracy. Moreover, the responses were predicted by the proposed model for one item at 

a time, whereas the HMIRT model predicts the responses for all items at once. This made 

the proposed model’s predictions more precise. However, the proposed model has a 

disadvantage with respect to estimation time. As described in Section 4, the proposed 

model needs to re-estimate the item parameter for all possible window size or the 

variances to obtain the optimal value, which requires a lot of time to run, especially for 

larger datasets. Improving the estimation time will be considered in future tasks. 
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