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1. Introduction

In recent years, learning assistance has been gaining more attention in the education field.
Because over-instruction or under-instruction can lead to ineffective knowledge
development, determining the amount of support that a learner needs has been a major
challenge for educators. Vygotsky (1962) introduced the Zone of Proximal Development
(ZPD) for problem solving, where a learner cannot solve difficult tasks alone but can do
so with an expert’s help, thereby promoting learner development [1][2]. Using the ZPD
concept, Wood et al. (1976), Collins (1989), and Bruner (1996) have shown that when
learners face higher-level tasks, the teachers should provide moderate support depending
on the learner’s ability through the process of “scaffolding” [3][4][5]. Scaffolding is a
process where the learners obtain support to solve tasks that are beyond their capability
when solving by themselves. To provide optimal help for scaffolding learners, Ueno and
Matsuo [6] proposed a scaffolding system that predicts the learner’s performance. In other
words, to effectively assist the learner, their knowledge and their performance must be

accurately estimated.

To estimate the learner’s knowledge, Ueno and Matsuo [6] and Ueno and Miyazawa
[7]1[8] proposed the use of Item Response Theory (IRT). IRT is one of the test theories
that can be used to estimate the learner’s ability based on past learning data and can also
be used to predict the response of the learner by calculating the probability of getting a
correct answer based on the learner’s estimated ability [9]. However, IRT assumes that
each task is dependent on a static learner’s ability, meaning that the learner’s ability does
not change during the learning process, which might lead to inaccurate prediction of the

learner’s response.



To handle the change in the learner's ability during the learning process, Tsutsumi et al.
(2019) [10][11] proposed the Hidden Markov Item Response Theory (HMIRT) model,
which treats the learner's ability as a time-series. HMIRT assumes that at some point
during the learning process, the learner will gradually forget about past tasks. HMIRT
uses the Sliding Window method to model the learner forgetting about the earlier tasks.
HMIRT also assumes that the learner’s ability to perform each task does not change before
the point at which the learner forgets, meaning that these tasks will be dependent on one
value for the learner’s ability, the same as in the traditional IRT. After a learner increases
his/her ability due to the learning effect, the learner's ability will be updated and used in
the next task. To handle this process, HMIRT introduces two new parameters: the window
size parameter is a fixed number used to control how many of the previous tasks affect
the estimation of the learner’s current ability, and the variance parameter is a fixed number
used to control the magnitude of change in the learner’s ability at each time point. This
model fixes the problem of static ability in the traditional IRT model, leading to more

accurate estimation of learner’s ability and therefore performance.

It has been shown that HMIRT estimates the learner’s ability better than the traditional
IRT [10][11]. However, HMIRT s constant window size might not guarantee an accurate
estimation of learner’s ability. Another limitation of HMIRT is the fixed variance
parameter. Setting a fixed variance parameter limits the change in the learner’s ability at
each time state. If the variance parameter is small, the learner’s ability will not change
much. If the variance parameter is large, the learner’s ability will change too much.
Because the content of each task varies, the degree of understanding gained by completing

each task must also be different. Therefore, accurate prediction cannot be guaranteed



when using a fixed variance parameter. To solve these problems, we propose the Auto-
Fluctuation Window Size of Hidden Markov Item Response Theory Model. In this model,
the window size and variance parameters are time series rather than fixed values so that
the parameters can change at each time point. With this proposed model, we expected a

more flexible and more accurate estimation of learner’s ability.



2. ltem Response Theory

To effectively support the learner’s development, learner performance prediction is
needed. To predict a learner's performance, Item Response Theory (IRT)[9][12] has been
used. IRT is one of the test theories based on mathematical models and has been used
widely in computer testing. It has the following advantages:

1. It is possible to assess ability while minimizing the effect of the heterogeneous

or aberrant items, which has a low estimation accuracy.

2. The learners’ responses to different items can be assessed on the same scale.

3. Missing data can be readily estimated.
In the IRT model, one of the most used models is the two-parameter logistic model (2PL).
In the dichotomous response, x;; denotes the response of the learner j(1,..,n) to i-th

item as:

1: correct response for i-th item

0: incorrect response for i-th item

With the learner’s ability variable 6;, 2PL can be expressed by:

1
1+ exp{—1.7ai(9j - bi)}

P(in = 1|9j,ai,bi) = (1)
where the item parameter a; and b; is called the discrimination parameter and
difficulty parameter, respectively, 6; is the latent ability variable of learner j. The item

parameter a;, b; was estimated in advance from the training data.



In this model, because all of the items depend on one prior distribution of ability variable,
the estimation of the ability variable is less affected by the prior distribution but is easily
affected by the learning process. Therefore, the over-training occurs and the ability

variable might be overly estimated or underestimated.

In order to avoid the over-training, Tsutsumi et al. [10][11] proposed the Hidden Markov
model, which changes the learner’s ability to time-series where the current ability variable
depends on the value of previous ability variable. With this model, the accuracy of the

learner’s ability estimation has been improved.

Fig 1 Traditional Item Response Theory model.



3. Hidden Markov Item Response Theory

The Hidden Markov Item Response Theory (HMIRT) model is an extension of the IRT
model that replaces the fixed value for the learner’s ability 8; with the time-series 6;;,
where the change in ability at time ¢ depends on the value of the ability variable 6;;_,
at time t — 1 according to a Hidden Markov process. Here, the number of task items
used in the ability estimation at time t has been set, denoted by L. HMIRT assumes that
the value of the ability variable does not change for items i = 1, ..., L, which means that
these initial items will depend on the same ability value (as in the IRT model). When the
item i > L, the ability variable 6;, will change based on 6;,_;. The variance parameter
& must be estimated to control the transition (amount of variation) of the ability variable

6;; between each time state.

The transition model for the ability variable 6;.(t =1,..,1 —L) uses the sliding
window method [13][14]. The sliding window is a method of determining the number of
hidden variables that will affect the ability estimation when shifting by the set window
size. When the current item i > L, the ability estimation is conducted by shifting the

window along the items one at a time (Figure 2).

Fig 2 Representation of Hidden Markov Item Response Theory model.



In this model, the number of items that depends on one ability variable in each learning
process is defined by the window size parameter L. The learning process at time t is as

follows:

t=1: i=2,.L+1 )

When L is small, only the learner's most recent history will influence their estimated

ability 6;,. If L is larger, additional task items will factor into the ability estimation.

This model was originally developed for the dynamic assessment system, which gives
hints to the learners when they cannot solve the task. In this research, we generalize the
model so that it can work without the hint. The probability P;;. of a correct answer for

task item i being provided by learner j based on their ability 6;. at time ¢ is as

follows:
Fuje = : )
1+ exp (—ai(é?jt — bl-))
where
0 ~ N(6¢-1,6) (4)
8,0 ~ N(0,1) (5)

& s the variance parameter, which controls how much the estimated ability can change
during each learning session. In this model, the window size parameter L and the variance

parameter & perform important roles in the prediction of the learner’s performance.
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Figure 3 shows the response prediction accuracy for each Window Size of the dataset
Foundation of Programming 1 (Ueno,2004) [15]. From Fig.3, we can see that the response
prediction accuracy of HMIRT where the Window Size is two gets the highest value. On

the other hand, the traditional IRT (Window Size is seven) gets the lowest accuracy.

However, from Figure 4, when we look at each task separately, we can see that when the
Window Size is two do not guarantee the highest response prediction accuracy for all the
tasks. From the result shows in Fig.4, we can say that HMIRT’s fixed window size may
not guarantee an accurate estimation of learner’s ability, since the previous tasks that
contribute to the ability estimation at each time state can vary for the current task.
Moreover, setting a fixed variance parameter limits the range of transition of the learner’s
ability at each time state. To solve this problem, the Auto-Fluctuation Window Size of

Hidden Markov Item Response Theory model has been proposed.



4. Auto-Fluctuation Window Size HMIRT

In the previous researches [10][11], it has been shown that the response prediction of
HMIRT is more accurate than that of traditional IRT. Fig.3 shows that the highest average
response prediction accuracy is when the window size equals two. However, by observing
the response prediction accuracy rate for each task in Fig.4, we found that the window
size equals two does not guarantee to obtain the highest response prediction accuracies at
each task. With this fact, we can assume that in some cases, changing the window size
can lead to a more accurate estimation of learner’s ability. Moreover, the fixed variance
parameter in HMIRT limits the range of transition of the learner’s ability at each time
state. Because the content of each task varies, the degree of understanding gained during
that task must also be different. Therefore, making the variance parameter changeable at
each time point can lead to a more accurate learner’s ability estimation. To handle the
changes in the window size and variance parameters at each time state, we propose the

Auto-Fluctuation Window Size HMIRT (AFHMIRT) model.

The AFHMIRT model replaces the fixed values for the window size parameter L and
variance parameter & with the time-series window size L, and variance parameter &,
where t is the time state of the learning process. The model then estimates the window
size L, and the variance &, that maximize the response prediction accuracy for each
task. In the response prediction process of the HMIRT model, the system first estimates
the item parameters, then estimates the learner’s ability for all of the time states 8;, then
finally calculates the response prediction accuracy. Because we want to find the optimal
window size and variance for each item, we need to calculate the response prediction

accuracy of each item. To be more precise, the proposed model will estimate the item
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parameters and the learner’s ability for only the current time state, then calculate the
response prediction accuracy for one item at a time while adjusting the window size and
the variance to find the optimal window size for that item. When adjusting the window
size and the variance, the model needs to re-estimate the item parameters and the learner’s
ability because these changes affect the calculation of the likelihood that will be used in
parameter estimation. After re-estimating the parameters, the response prediction

accuracy is re-calculated. The learning process at each time state can be written as

follows:
(
=0: i=1,..,L,
t=1: i=2.,L+1 (6)
Lt—I—Lt: i=1-1L,..,I

Figure 5 is an example of how the model will look when obtaining the optimal window

size parameter for each item. For a 7-item model, L,={2,2,2,3,3,2}.

Response pattern Xji

[~
S
%]

Ability 6

Fig. 5 Example of an Auto-Fluctuation Window Size HMIRT model
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5. Parameter Estimation

One of the popular methods for estimating item parameters for the IRT model is to use
the expectation-maximization (EM) and Newton-Raphson algorithms to estimate the
marginal maximum likelihood (MML). The other method is maximum a posteriori
(MAP) estimation. For both MML and MAP estimation, when the method is applied in a
simple model such as a two-parameter logistic model or a grade response model, or when
the dataset is large, the parameter estimation will be stable and accurate. On the other
hand, when dealing with a complex model or when the dataset is small, the accuracy of
the parameter estimation will be decreased. In recent years, the use of the Markov Chain
Monte Carlo (MCMC) method to estimate the expected a posteriori (EAP) for parameter
estimation has become more common. The MCMC method generates a random sample
from the parameter’s posterior distribution and uses the generated sample to estimate the
parameter’s expected value. In this research, we decided to use the MCMC method for
parameter estimation because this method is better suited to the limited dataset and more
complex model. In MCMC, there are many methods of generating a random sample; in
this research, we use Metropolis-Hastings within a Gibbs algorithm. With the parameter
0 = {610, ., 0L} a ={ay, .,a;},b ={by,..,b;} and the prior distribution
9(6;¢|8:), g(a;), g(b;), given the response pattern X, the posterior distribution of the
parameters can be expressed as follows:

p(0,a,b|X) x

L(X16,a,b)g(a)g(b)g(8)

[H Lﬁl(Put)’“”(l Py) ]

t=0 i=t+1

]_[g(aog(b )] ]_[l_[g(

()
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where

Loga; ~ N(0.0,0.2)

b;~N(0.0,1.0)

80 ~ N(0.0,1.0)

0jc ~ N(8jc-1,6:) (8)
Let 6'; be the current parameter value for 6;. = (6;o, ..., 6j;-) and 6; be anew
proposal for the parameter obtained by the following:

6, ~ N(6'j1—1,0.01) (9)

The acceptance rate for the parameter sampling is then as shown below:

I L(X;160';,a’,b)T1:z5 9(0';0)’

The same formula is applied for parameter sampling of a; and b;. .

(10)

In this research, we set the MCMC maximum chain length to 40,000 iterations. To
eliminate the effect of the initial value, we set a burn-in period of 20,000 iterations. After
the burn-in period, a sample is collected for an interval of 1000 iterations, and the average
is taken to be the EAP estimation value. Pseudo-code for the parameter estimation is

shown in Algorithm 1.
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Algorithm 1 Parameter Estimation with MCMC

Given maximum chain length S,burn-in B,interval E
Initialize MCMC sample A « @
Initialize 6°,a°, b°
for s=1to S do
for je{1,..,]} do
Sample 67 ~ N(6771,0.01)
Accept 67 with the probability a(6;|6;)
end for
forie{t+1,..,t+1+L;} do
Sample a;j ~ N(a;™*,0.01)
Accept a;] with the probability a(a;|a;)
Sample b7 ~ N(bi~%,0.01)
Accept b with the probability a(b;|b;)
end for
if s> Band s%E =0 then
A « (6°%,a° b%)
end if
end for
return average of A

From Fig.4, we can see that the response prediction accuracy at each task is not sorted by
the Window Size. To estimate the window size parameter L, that maximizes the
response prediction accuracy, we propose the use of the linear search algorithm. The
linear search algorithm is a method for finding an element within a list. It sequentially
checks each element of the list until a match is found or the whole list has been searched.
The optimal variance parameter §; is also obtained by linear search algorithm for § =
{0.1, ...,1.0}, then taking the variance with the maximum response prediction accuracy.
The process of estimating the window size parameter L, and variance parameter &;

with the linear search algorithm is shown in Algorithm 2:

14



Algorithm 2 Window Size and Variance Parameter Estimation with Linear Search

Given Task number |
Initialize Window Size L,,variance &;
for i=0 to I do
for l=21to I do
for 6 € {0.1,...,1.0} do

Calculate response prediction accuracy with [ and &
L; < 1 with maximum response prediction accuracy

&; < & with maximum response prediction accuracy
end for

end for
end for
return L;, &;

15




6. Experiment

To evaluate the estimates of learner’s ability produced by the proposed model, the
learner’s ability parameter was estimated, then used to predict the learner's response.
After obtaining the predicted response, the response prediction accuracy was calculated
using the real test data, and the results were compared with those of the HMIRT model
and traditional IRT model. The data used in this study consisted of a number of learning
tasks within three courses:

1) Foundation of programming 1 (7 tasks, 148 learners)

2 Foundation of programming 2 (18 tasks, 75 learners)

3) Information Society and Information Ethics (13 tasks, 23 learners)
These data are taken from the SAMURAI e-learning system for university students
(Ueno,2004) [15]. We performed 10-fold cross-validation in the experiment to reduce
over-fitting and generalize the response prediction accuracy.
In addition, to evaluate the proposed model, the F-Measure and the Area under the curve
(AUC) were calculated.

The setting for the HMIRT model is as below[10][11].

1) Foundation of programming 1: window size equals 2, ¢ equals 0.7
2) Foundation of programming 2: window size equals 3, 6 equals 0.4

3) Information Society and Information Ethics: window size equals 2, ¢
equals 1.0
For the traditional IRT model, the window size is equal to the task number, 6 is equal

to those of the HMIRT model.
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6.1. Response Prediction Accuracy

After obtaining the learner’s ability, the response for each item can be predicted by
calculating the probability of the learning getting the correct answer using equation (1)

and then setting the response as follows:

0: incorrect if the probability is less than 0.5

Predicted response _ o
1: correct if the probability is more than 0.5

After obtaining the predicted response for each item, it is checked against the real
response data, and overall response prediction accuracy is calculated by taking the
average accuracy of all of the items. Here, the first item’s response will not be used to
calculate the average prediction due to the fact that the learner must first undertake the

first task before the system can use their response for the later tasks.

Table 1 shows that the response prediction accuracy of the proposed model is better than
those of both the HMIRT model and the traditional IRT model for all three datasets.
Figures 6-8 show the graphs of the prediction accuracies of all three models for each item
in each of the three datasets. From these graphs, we can see that the predictions for the
earlier time states tend to be the same for all three models, especially for a small dataset,
but the model predictions gradually diverge as the learning progresses. For the Foundation
of Programming 1 dataset (Fig. 6), the response prediction accuracy of the proposed
model is slightly better than those of the other models for item 2 and exactly the same as
the other models for item 3. From item 4 onward, the proposed model clearly performs
better than the IRT model and slightly better than HMIRT. For the Foundation of
Programming 2 dataset (Fig. 7), due to the large size of the dataset, the response prediction

accuracy of the proposed model is clearly better from the beginning than both the HMIRT

17



model and IRT model. On the other hand, for the smaller Information Society and
Information Ethics dataset (Fig. 8), the response prediction accuracy of the proposed
model is exactly the same as the other two models from the beginning until item 8.
Beginning at item 9, the prediction accuracies of the proposed model and HMIRT are
better than that of the IRT model, and from item 11 onward, the proposed model performs
better than HMIRT.

Table 1: Average response prediction accuracy.

Dataset Proposed Model HMIRT IRT
Foundation of programming 1 78.30% 75.26% 69.84%
Foundation of programming 2 81.69% 76.17% 71.26%

Information Society and
90.00% 87.91% 85.00%

Information Ethics

Table 2: F-measurement, Area Under the Curve (AUC)

Dataset Proposed Model HMIRT IRT

Foundation of | Average F-Measure 77.43% 68.15% 61.48%

programming

1 Average AUC 75.54% 68.83% 64.94%

Foundation of | Average F-Measure 74.52% 65.55% 55.74%

programming

2 Average AUC 713.22% 64.96% 58.57%

18
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Programming 1 (7 tasks, 148 learners).
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6.2. Window Size Parameter

Figures 9-11 show how the window size changed during the learning process. Fig. 9
shows that for the Foundation of Programming 1 dataset, the window size tended to
change only a small amount in the early time states, with larger changes later on. This can
be related to the response prediction accuracy in Fig. 6, where the response prediction
accuracy of the proposed model only changes slightly compared with the response
prediction accuracy of the HMIRT model in the first 3 tasks. Fig. 10 clearly shows the
changes in the window size parameter for each item in the Foundation of Programming 2
dataset. The response prediction accuracy of this dataset (Fig. 7) also shows that the
proposed model has a better response prediction accuracy. However, in Fig. 11, where the
size of the Information Society and Information Ethics dataset is small, the window size

does not change for any time state.

w
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Fig. 9 Window size of Foundation of Programming 1
(7 tasks, 148 learners).
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6.3. Variance Parameter

Figures 12-14 show how the variance parameter was set for each item. Fig. 12 shows that
the variance begins high, then gradually decreases. This means that for the Foundation of
Programming 1 dataset, the learner’s ability will likely change by some large amount at
first, then as the learning progresses, the changes in the learner’s ability will be smaller.
In Fig. 13, showing the Foundation of Programming 2 dataset, the variance of the
proposed model starts off quite low, then increases as the learning progresses. The
variance peaks at item 11, then starts to fall until the end of the learning process. In Fig.
14, representing the Information Society and Information Ethics dataset where the dataset
size is small, the variance of the proposed model is exactly the same as that of the HMIRT
model from the beginning to item 10. This can be related to the predictions of this dataset
(Fig. 8), as the predictions of the proposed model are exactly the same as those of the
HMIRT model from the beginning until item 10. However, from item 11 onward, by
decreasing the variance, the response prediction accuracy of the proposed model is now

better than that of HMIRT.
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Fig. 12 Variance of Foundation of Programming 1
(7 tasks, 148 learners).
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Ethics (13 tasks, 23 learners).
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7. Conclusion

In this research, we proposed a new method to estimate the learner’s ability from the
learning data, then used the estimated ability to predict the response for future tasks. The
proposed model, AFHMIRT, generalizes the Hidden Markov Item Response Theory and
replaces the fixed values of the window size and variance parameters with time-series so
that the parameters can fluctuate as learning progresses. In addition, we also proposed
using a linear search algorithm to estimate the window size parameter. From the results
of the experiment, we demonstrated that modeling the window size and variance
parameters as time-series rather than fixed values resulted in a better response prediction
accuracy. Moreover, the responses were predicted by the proposed model for one item at
a time, whereas the HMIRT model predicts the responses for all items at once. This made
the proposed model’s predictions more precise. However, the proposed model has a
disadvantage with respect to estimation time. As described in Section 4, the proposed
model needs to re-estimate the item parameter for all possible window size or the
variances to obtain the optimal value, which requires a lot of time to run, especially for

larger datasets. Improving the estimation time will be considered in future tasks.
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