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1. Introduction 

In recent years, learning assistance has been gaining more attention in the education field. 

Because over-instruction or under-instruction can lead to ineffective knowledge 

development, determining the amount of support that a learner needs has been a major 

challenge for educators. Vygotsky (1962) introduced the Zone of Proximal Development 

(ZPD) for problem solving, where a learner cannot solve difficult tasks alone but can do 

so with an expert’s help, thereby promoting learner development [1][2]. Using the ZPD 

concept, Wood et al. (1976), Collins (1989), and Bruner (1996) have shown that when 

learners face higher-level tasks, the teachers should provide moderate support depending 

on the learner’s ability through the process of “scaffolding” [3][4][5]. Scaffolding is a 

process where the learners obtain support to solve tasks that are beyond their capability 

when solving by themselves. In the scaffolding process, the learner’s knowledge will be 

measured, and after the teacher’s assistance, the performance of the learners will be 

estimated. In other words, to effectively assist the learner, their knowledge and their 

performance must be accurately estimated. 

To estimate the learner’s knowledge, Ueno and Matsuo [6] and Ueno and Miyazawa 

[7][8] proposed the use of Item Response Theory (IRT). IRT is one of the test theories 

that can be used to estimate the learner’s ability based on past learning data and can also 

be used to predict the response of the learner by calculating the probability of getting a 

correct answer based on the learner’s estimated ability [9]. However, IRT assumes that 

each task is dependent on a static learner’s ability, meaning that the learner’s ability does 

not change during the learning process, which might lead to inaccurate prediction of the 

learner’s response.  
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To handle the change in the learner's ability during the learning process, Tsutsumi et al. 

(2019) [10][11] proposed the Hidden Markov Item Response Theory (HMIRT) model, 

which treats the learner's ability as a time-series. HMIRT assumes that at some point 

during the learning process, the learner will gradually forget about past tasks. HMIRT 

uses the Sliding Window method to model the learner forgetting about the earlier tasks. 

HMIRT also assumes that the learner’s ability to perform each task does not change before 

the point at which the learner forgets, meaning that these tasks will be dependent on one 

value for the learner’s ability, the same as in the traditional IRT. After a learner increases 

his/her ability due to the learning effect, the learner's ability will be updated and used in 

the next task. To handle this process, HMIRT introduces two new parameters: the window 

size parameter is a fixed number used to control how many of the previous tasks affect 

the estimation of the learner’s current ability, and the variance parameter is a fixed number 

used to control the magnitude of change in the learner’s ability at each time point. This 

model fixes the problem of static ability in the traditional IRT model, leading to more 

accurate estimation of learner’s ability and therefore performance.  

It has been shown that HMIRT estimates the learner’s ability better than the traditional 

IRT [10][11]. However, HMIRT’s constant window size might not guarantee an accurate 

estimation of learner’s ability. Another limitation of HMIRT is the fixed variance 

parameter. Setting a fixed variance parameter limits the change in the learner’s ability at 

each time state. If the variance parameter is small, the learner’s ability will not change 

much. If the variance parameter is large, the learner’s ability will change too much. 

Because the content of each task varies, the degree of understanding gained by completing 

each task must also be different. Therefore, accurate prediction cannot be guaranteed 

when using a fixed variance parameter. To solve these problems, we propose the Auto-
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Fluctuation Window Size of Hidden Markov Item Response Theory Model. In this model, 

the window size and variance parameters are time series rather than fixed values so that 

the parameters can change at each time point. With this proposed model, we expected a 

more flexible and more accurate estimation of learner’s ability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

2. Item Response Theory 

To effectively support the learner’s development, learner performance prediction is 

needed. To predict a learner's performance, Item Response Theory (IRT)[9][12] has been 

used. IRT is one of the test theories based on mathematical models and has been used 

widely in computer testing. It has the following advantages: 

1. It is possible to assess ability while minimizing the effect of the heterogeneous 

or aberrant items, which has a low estimation accuracy. 

2. The learners’ responses to different items can be assessed on the same scale. 

3. Missing data can be readily estimated. 

In the IRT model, one of the most used models is the two-parameter logistic model (2PL). 

In the dichotomous response, 𝑥𝑗𝑖 denotes the response of the learner 𝑗(1, . . , 𝑛) to 𝑖-th 

item as: 

 

 

 

With the learner’s ability variable 𝜃𝑗, 2PL can be expressed by: 

 

𝑃(𝑥𝑗𝑖 = 1|𝜃𝑗 , 𝑎𝑖 , 𝑏𝑖) =
1

1 + 𝑒𝑥𝑝{−1.7𝑎𝑖(𝜃𝑗 − 𝑏𝑖)}
 

 

where the item parameter 𝑎𝑖  and 𝑏𝑖  is called the discrimination parameter and 

difficulty parameter, respectively, 𝜃𝑗 is the latent ability variable of learner 𝑗. The item 

parameter 𝑎𝑖, 𝑏𝑖 was estimated in advance from the training data. 

In this model, because all of the items depend on one prior distribution of ability 

1: correct response for 𝑖-th item 

0: incorrect response for 𝑖-th item 
𝑥𝑗𝑖 = 

(1) 
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variable, the estimation of the ability variable is less affected by the prior distribution but 

is easily affected by the learning process.  Therefore,  the over-training  occurs 

and the ability variable might be overly estimated or underestimated.  

In order to avoid the over-training, Tsutsumi et al. [10][11] proposed the Hidden Markov 

model, which changes the learner’s ability to time-series where the current ability variable 

depends on the value of previous ability variable. With this model, the accuracy of the 

learner’s ability estimation has been improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1 Traditional Item Response Theory model 
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3. Hidden Markov Item Response Theory  

The Hidden Markov Item Response Theory (HMIRT) model is an extension of the IRT 

model that replaces the fixed value for the learner’s ability 𝜃𝑗 with the time-series 𝜃𝑗𝑡, 

where the change in ability at time 𝑡 depends on the value of the ability variable 𝜃𝑗𝑡−1 

at time 𝑡 − 1 according to a Hidden Markov process. Here, the number of task items 

used in the ability estimation at time 𝑡 has been set, denoted by L. HMIRT assumes that 

the value of the ability variable does not change for items 𝑖 = 1, … , L, which means that 

these initial items will depend on the same ability value (as in the IRT model). When the 

item 𝑖 > L, the ability variable 𝜃𝑗𝑡 will change based on 𝜃𝑗𝑡−1. The variance parameter 

𝛿 must be estimated to control the transition (amount of variation) of the ability variable 

𝜃𝑗𝑡 between each time state. 

The transition model for the ability variable 𝜃𝑗𝑡(𝑡 = 1,… , 𝐼 − 𝐿)  uses the sliding 

window method [13][14]. The sliding window is a method of determining the number of 

hidden variables that will affect the ability estimation when shifting by the set window 

size. When the current item 𝑖 > L, the ability estimation is conducted by shifting the 

window along the items one at a time (Figure 2). 

 

 

 

 

 

 

 
Fig 2 Representation of Hidden Markov Item Response Theory model. 
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In this model, the number of items that depends on one ability variable in each learning 

process is defined by the window size parameter L. The learning process at time 𝑡 is as 

follows: 

{
 
 

 
 

𝑡 = 0:
𝑡 = 1:

⋮

𝑡 = 𝐼 − 𝐿:

𝑖 = 1,… , 𝐿
𝑖 = 2,… , 𝐿 + 2

⋮

𝑖 = 𝐼 − 𝐿,… , 𝐼

 

When L is small, only the learner's most recent history will influence their estimated 

ability 𝜃𝑗𝑡. If L is larger, additional task items will factor into the ability estimation. 

This model was originally developed for the dynamic assessment system, which gives 

hints to the learners when they cannot solve the task. In this research, we generalize the 

model so that it can work without the hint. The probability 𝑃𝑖𝑗𝑡 of a correct answer for 

task item 𝑖  being provided by learner 𝑗  based on their ability 𝜃𝑗𝑡  at time 𝑡  is as 

follows:  

𝑃𝑖𝑗𝑡 =
1

1 + 𝑒𝑥𝑝 (−𝑎𝑖(𝜃𝑗𝑡 − 𝑏𝑖))
 

where 

𝜃𝑗𝑡  ~ 𝑁(𝜃𝑗𝑡−1, 𝛿) 

𝜃𝑗0 ~ 𝑁(0,1) 

𝛿 is the variance parameter, which controls how much the estimated ability can change 

during each learning session. In this model, the window size parameter L and the variance 

parameter 𝛿 perform important roles in the prediction of the learner’s performance.  

However, HMIRT’s assumption that the window size is fixed may not guarantee an 

(3) 

 

(4) 

 (5) 

 

(2) 
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accurate estimation of learner’s ability, since the previous tasks that contribute to the 

ability estimation at each time state can vary for the current task. Moreover, setting a fixed 

variance parameter limits the range of transition of the learner’s ability at each time state. 

To solve this problem, the Auto-Fluctuation Window Size of Hidden Markov Item 

Response Theory model has been proposed. 
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4. Auto-Fluctuation Window Size HMIRT 

In previous research [10][11], it has been shown that the response prediction of HMIRT 

is more accurate than that of traditional IRT. However, by observing the prediction 

accuracy rate for each item, we found that some of the predictions of traditional IRT, 

specifically those where the window size parameter L is equal to the item number, are 

more accurate than those in HMIRT. With this fact, we can assume that in some cases, 

changing the window size can lead to a more accurate estimation of learner’s ability. 

Moreover, the fixed variance parameter in HMIRT limits the range of transition of the 

learner’s ability at each time state. Because the content of each task varies, the degree of 

understanding gained during that task must also be different. Therefore, making the 

variance parameter changeable at each time point can lead to a more accurate learner’s 

ability estimation. To handle the changes in the window size and variance parameters at 

each time state, we propose the Auto-Fluctuation Window Size HMIRT (AFHMIRT) 

model.  

The AFHMIRT model replaces the fixed values for the window size parameter L and 

variance parameter 𝛿 with the time-series window size 𝐿𝑡 and variance parameter 𝛿𝑡 

where 𝑡 is the time state of the learning process. The model then estimates the window 

size 𝐿𝑡 and the variance 𝛿𝑡 that maximize the response prediction accuracy for each 

item. In the response prediction process of the HMIRT model, the system first estimates 

the item parameters, then estimates the learner’s ability for all of the time states 𝜽𝑗, then 

finally calculates the prediction accuracy. Because we want to find the optimal window 

size and variance for each item, we need to calculate the prediction accuracy of each item. 

To be more precise, the proposed model will estimate the item parameters and the 
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learner’s ability for only the current time state, then calculate the response prediction 

accuracy for one item at a time while adjusting the window size and the variance to find 

the optimal window size for that item. When adjusting the window size and the variance, 

the model needs to re-estimate the item parameters and the learner’s ability because these 

changes affect the calculation of the likelihood that will be used in parameter estimation. 

After re-estimating the parameters, the response prediction accuracy is re-calculated. The 

learning process at each time state can be written as follows: 

{
 
 

 
 

𝑡 = 0:
𝑡 = 1:

⋮

𝑡 = 𝐼 − 𝐿𝑡:

𝑖 = 1,… , 𝐿0
𝑖 = 2,… , 𝐿1 + 2

⋮

𝑖 = 𝐼 − 𝐿𝑡, … , 𝐼

 

Figure 3 is an example of how the model will look when obtaining the optimal window 

size parameter for each item. For a 7-item model, 𝐿𝑡={2,2,2,3,3,2}. 

 

 

 

(6) 

 

Fig. 3 Example of an Auto-Fluctuation Window Size HMIRT model 



11 

 

5. Parameter Estimation 

One of the popular methods for estimating item parameters for the IRT model is to use 

the expectation-maximization (EM) and Newton-Raphson algorithms to estimate the 

marginal maximum likelihood (MML). The other method is maximum a posteriori 

(MAP) estimation. For both MML and MAP estimation, when the method is applied in a 

simple model such as a two-parameter logistic model or a grade response model, or when 

the dataset is large, the parameter estimation will be stable and accurate. On the other 

hand, when dealing with a complex model or when the dataset is small, the accuracy of 

the parameter estimation will be decreased. In recent years, the use of the Markov Chain 

Monte Carlo (MCMC) method to estimate the expected a posteriori (EAP) for parameter 

estimation has become more common. The MCMC method generates a random sample 

from the parameter’s posterior distribution and uses the generated sample to estimate the 

parameter’s expected value. In this research, we decided to use the MCMC method for 

parameter estimation because this method is better suited to the limited dataset and more 

complex model. In MCMC, there are many methods of generating a random sample; in 

this research, we use Metropolis-Hastings within a Gibbs algorithm. With the parameter 

𝜃 = {𝜃10, … , 𝜃𝑗𝐼−𝐿}, 𝑎 = {𝑎1, … , 𝑎𝐼}, 𝑏 = {𝑏1, … , 𝑏𝐼}  and the prior distribution 

𝑔(𝜃𝑗𝑡|𝛿𝑡), 𝑔(𝑎𝑖), 𝑔(𝑏𝑖), given the response pattern 𝑋, the posterior distribution of the 

parameters can be expressed as follows:  

𝑝(𝜃, 𝑎, 𝑏|𝑋) ∝ 

𝐿(𝑋|𝜃, 𝑎, 𝑏)𝑔(𝑎)𝑔(𝑏)𝑔(𝜃) 

= [∏ ∏ (𝑃𝑖𝑗𝑡)
𝑥𝑖𝑗(1 − 𝑃𝑖𝑗𝑡)

1−𝑥𝑖𝑗

𝐿+𝑡+1

𝑖=𝑡+1

𝐼−𝐿

𝑡=0

] [∏𝑔(𝑎𝑖)𝑔(𝑏𝑖)

𝐼

𝑖=1

] [∏∏𝑔(𝜃𝑗𝑡)

𝐽

𝑗=1

𝐼−𝐿

𝑡=0

] 

where 
(7) 
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 Log𝑎𝑖 ∼ 𝑁(0.0, 0.2) 

𝑏𝑖~𝑁(0.0, 1.0) 

𝜃𝑗0 ∼ 𝑁(0.0, 1.0) 

𝜃𝑗𝑡 ∼ 𝑁(𝜃𝑗𝑡−1, 𝛿𝑡) 

Let 𝜃′𝑗 be the current parameter value for 𝜃𝑗𝑡 = (𝜃𝑗0, … , 𝜃𝑗𝐼−𝐿) and 𝜃𝑗 be a new 

proposal for the parameter obtained by the following: 

𝜃𝑗 ∼ 𝑁(𝜃′𝑗𝑡−1, 0.01) 

The acceptance rate for the parameter sampling is then as shown below:  

𝛼(𝜃𝑗|𝜃𝑗
′) = min (

𝐿(𝑋𝑗|𝜃𝑗 , 𝑎
′, 𝑏′)∏ 𝑔(𝜃𝑗𝑡)

𝐼−𝐿
𝑡=0

𝐿(𝑋𝑗|𝜃′𝑗 , 𝑎′, 𝑏′)∏ 𝑔(𝜃′𝑗𝑡)
𝐼−𝐿
𝑡=0

, 1) 

The same formula is applied for parameter sampling of 𝑎𝑖 and 𝑏𝑖. .  

In this research, we set the MCMC maximum chain length to 40,000 iterations. To 

eliminate the effect of the initial value, we set a burn-in period of 20,000 iterations. After 

the burn-in period, a sample is collected for an interval of 1000 iterations, and the average 

is taken to be the EAP estimation value. Pseudo-code for the parameter estimation is 

shown in Algorithm 1. 

Algorithm 1 Parameter Estimation with MCMC 

Given maximum chain length S,burn-in B,interval E 

Initialize MCMC sample 𝐴 ← ∅ 

Initialize 𝜃0 , 𝑎0, 𝑏0 

for 𝑠 = 1 to 𝑆 do 

    for 𝑗 ∈ {1,… , 𝐽} do 

        Sample 𝜃𝑗
𝑠 ∼ 𝑁(𝜃𝑗

𝑠−1, 0.01) 

        Accept 𝜃𝑗
𝑠  with the probability 𝛼(𝜃𝑗|𝜃𝑗

′) 

    end for 

for 𝑖 ∈ {𝑡 + 1,… , 𝑡 + 1 + 𝐿𝑡} do 

        Sample 𝑎𝑖
𝑠 ∼ 𝑁(𝑎𝑖

𝑠−1, 0.01) 

        Accept 𝑎𝑖
𝑠 with the probability 𝛼(𝑎𝑖|𝑎𝑖

′) 

(8) 

 

(9) 

 

(10) 
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Sample 𝑏𝑖
𝑠 ∼ 𝑁(𝑏𝑖

𝑠−1, 0.01) 

        Accept 𝑏𝑖
𝑠  with the probability 𝛼(𝑏𝑖|𝑏𝑖

′) 

    end for 

    if 𝑠 ≥ 𝐵 𝑎𝑛𝑑 𝑠%𝐸 = 0 then 

            𝐴 ← (𝜃𝑠, 𝑎𝑠, 𝑏𝑠) 

    end if 

end for 

return average of A 

 

To estimate the window size parameter 𝐿𝑡  that maximizes the response prediction 

accuracy, we propose the use of the greedy algorithm. The greedy algorithm is a problem-

solving paradigm where the local optimum choice is made in each stage with the 

expectation of finding the global optimum solution. The optimal variance parameter 𝛿𝑡 

is obtained by calculating the prediction for 𝛿 = {0.1,… ,1.0}, then taking the variance 

with the maximum prediction accuracy. The process of estimating the window size 

parameter 𝐿𝑡 and variance parameter 𝛿𝑡 with the greedy algorithm is as follows: 

1. For each item, calculate the response prediction accuracy with the initial values 

of the window size parameter 𝐿𝑡 and variance parameter 𝛿𝑡. 

2. Calculate and compare the response prediction accuracies with the window 

sizes 𝐿𝑡 − 1 and 𝐿𝑡 + 1.  

3. Select the best of the three prediction accuracy rates, then repeat step 2 by 

increasing or decreasing the window size 𝐿𝑡 depending on the selection; if the 

prediction accuracy with the window size 𝐿𝑡 − 1  is better, decrease the 

window size 𝐿𝑡 by 1, if the window size 𝐿𝑡 + 1 one is better, increase the 

window size 𝐿𝑡 by 1. Repeat until the prediction accuracy calculated using 𝐿𝑡 

is better than the accuracy rates calculated using 𝐿𝑡 − 1 and 𝐿𝑡 + 1.  

4. The variance parameter 𝛿𝑡 is obtained by calculating the prediction for 𝛿 =
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{0.1,… ,1.0}, then taking the variance with the maximum prediction accuracy. 

5. Take the window size parameter and the variance parameter that result in the 

best prediction accuracy for the current item and set them as the initial values 

for the next item.  

6. Repeat step 1 for the next item. 

A flowchart of the estimation of the window size and variance parameters is shown 

in Fig. 4. 
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false 

true 

𝑃𝑝𝑙𝑢𝑠 ≥ 𝑃𝑚𝑖𝑛𝑢𝑠 𝑃𝑚𝑖𝑛𝑢𝑠 > 𝑃𝑝𝑙𝑢𝑠  

Fig 4 Flowchart of window size and variance parameter estimation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For Each item 

Estimate parameters, calculate 

prediction accuracy 𝑃𝑖 

Estimate parameters for 𝐿𝑡 − 1 

and 𝐿𝑡 + 1, calculate prediction 

accuracies 𝑃𝑚𝑖𝑛𝑢𝑠 , 𝑃𝑝𝑙𝑢𝑠 

𝑃𝑖 ← 𝑃𝑝𝑙𝑢𝑠 

𝐿′ ← 𝐿𝑡 + 1 

 

𝑃𝑖 ← 𝑃𝑚𝑖𝑛𝑢𝑠  

𝐿′ ← 𝐿𝑡 − 1 

 

Estimate parameters, calculate 

prediction accuracy  

𝑃𝑖
′ ← max prediction accuracy 

𝑃𝑖
′ > 𝑃𝑖 

Greedy Choice 

For Each 𝛿 ∈ {0.1,0.2,… ,1.0} 

Estimate parameters, calculate prediction 

accuracy 

𝛿𝑡 ← 𝛿 with max prediction accuracy  

𝑃𝑖
′ ← max prediction accuracy 

 

Return 𝐿𝑡 , 𝛿𝑡, 𝑃𝑖  

Start 
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6. Experiment 

To evaluate the estimates of learner’s ability produced by the proposed model, the 

learner’s ability parameter was estimated, then used to predict the learner's response. After 

obtaining the predicted response, the prediction accuracy was calculated using the real 

test data, and the results were compared with those of the HMIRT model and traditional 

IRT model. The data used in this study consisted of a number of learning tasks within 

three courses: 

(1) Foundation of programming 1 (7 tasks, 148 learners) 

(2) Foundation of programming 2 (18 tasks, 75 learners) 

(3) Information Society and Information Ethics (13 tasks, 23 learners) 

These data are taken from the SAMURAI e-learning system for university students 

(Ueno,2004) [14]. We performed 10-fold cross-validation in the experiment to reduce 

over-fitting and generalize the prediction accuracy.  

 

6.1. Response Prediction Accuracy 

After obtaining the learner’s ability, the response for each item can be predicted by 

calculating the probability of the learning getting the correct answer using equation (1) 

and then setting the response as follows: 

 

 

After obtaining the predicted response for each item, it is checked against the real 

response data, and overall prediction accuracy is calculated by taking the average 

accuracy of all of the items. Here, the first item’s response will not be used to calculate 

0: incorrect if the probability is less than 0.5 

1: correct if the probability is more than 0.5  
Predicted response  
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the average prediction due to the fact that the learner must first undertake the first task 

before the system can use their response for the later tasks. 

Table 1 shows that the response prediction accuracy of the proposed model is better than 

those of both the HMIRT model and the traditional IRT model for all three datasets. 

Figures 5–7 show the graphs of the prediction accuracies of all three models for each item 

in each of the three datasets. From these graphs, we can see that the predictions for the 

earlier time states tend to be the same for all three models, especially for a small dataset, 

but the model predictions gradually diverge as the learning progresses. For the Foundation 

of Programming 1 dataset (Fig. 5), the prediction accuracy of the proposed model is 

slightly better than those of the other models for item 2 and exactly the same as the other 

models for item 3. From item 4 onward, the proposed model clearly performs better than 

the IRT model and slightly better than HMIRT. For the Foundation of Programming 2 

dataset (Fig. 6), due to the large size of the dataset, the prediction accuracy of the proposed 

model is clearly better from the beginning than both the HMIRT model and IRT model. 

On the other hand, for the smaller Information Society and Information Ethics dataset 

(Fig. 7), the prediction accuracy of the proposed model is exactly the same as the other 

two models from the beginning until item 8. Beginning at item 9, the prediction accuracies 

of the proposed model and HMIRT are better than that of the IRT model, and from item 

11 onward, the proposed model performs better than HMIRT. 
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Table 1: Average prediction accuracy. 

Dataset Proposed Model HMIRT  IRT 

Foundation of programming 1 78.30% 75.26% 69.84% 

Foundation of programming 2 81.69% 76.17% 71.26% 

Information Society and 

Information Ethics 
90.00% 87.91% 85.00% 

 

Table 2: F-measurement. 

Dataset  AFHMIRT HMIRT IRT 

Foundation of 

programming 

1 

F-Measure of correct 

response 
0.823504 0.7929848 0.7728592 

F-Measure of 

incorrect response 
0.725104 0.6462029 0.5614179 

Avareage F-Measure 0.774304 0.71959388  0.667138548 

Foundation of 

programming 

2 

F-Measure of correct 

response 
0.853826567 0.82707805 0.78244226 

F-Measure of 

incorrect response 
0.636743631 0.607326504 0.484960642 

Avareage F-Measure 0.745285099 0.717202277 0.633701451 

Information 

Society and 

Information 

Ethics 

F-Measure of correct 

response 
0.960675274 0.926978679 0.914302032 

F-Measure of 

incorrect response 
0.501904762 0.282857143 0.116450217 

Avareage F-Measure 0.731290018 0.604917911 0.515376124 
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Fig. 5 Prediction accuracy of Foundation of 

Programming 1 (7 tasks, 148 learners). 

Fig. 6 Prediction accuracy of Foundation of 

Programming 2 (18 tasks, 77 learners). 
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6.2. Window Size Parameter 

Figures 8–10 show how the window size changed during the learning process. Fig. 8 

shows that for the Foundation of Programming 1 dataset, the window size tended to 

change only a small amount in the early time states, with larger changes later on. This can 

be related to the prediction accuracy in Fig. 5, where the prediction accuracy of the 

proposed model only changes slightly compared with the prediction accuracy of the 

HMIRT model in the first 3 tasks. Fig. 9 clearly shows the changes in the window size 

parameter for each item in the Foundation of Programming 2 dataset. The prediction 

accuracy of this dataset (Fig. 6) also shows that the proposed model has a better prediction 

accuracy. However, in Fig. 10, where the size of the Information Society and Information 

Ethics dataset is small, the window size does not change for any time state. 
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Fig. 7 Prediction accuracy of Information Society and 

Information Ethics (13 tasks, 23 learners). 
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Fig. 8 Window size of Foundation of Programming 1  

(7 tasks, 148 learners). 

Fig. 9 Window size of Foundation of Programming 2  

(18 tasks, 77 learners). 
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6.3. Variance Parameter 

Figures 11–13 show how the variance parameter was set for each item. Fig. 11 shows that 

the variance begins high, then gradually decreases. This means that for the Foundation of 

Programming 1 dataset, the learner’s ability will likely change by some large amount at 

first, then as the learning progresses, the changes in the learner’s ability will be smaller. 

In Fig. 12, showing the Foundation of Programming 2 dataset, the variance of the 

proposed model starts off quite low, then increases as the learning progresses. The 

variance peaks at item 11, then starts to fall until the end of the learning process. In Fig. 

13, representing the Information Society and Information Ethics dataset where the dataset 

size is small, the variance of the proposed model is exactly the same as that of the HMIRT 

model from the beginning to item 10. This can be related to the predictions of this dataset 

(Fig. 7), as the predictions of the proposed model are exactly the same as those of the 
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Fig. 10 Window size of Information Society and Information Ethics 

(13 tasks, 23 learners). 
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HMIRT model from the beginning until item 10. However, from item 11 onward, by 

decreasing the variance, the prediction accuracy of the proposed model is now better than 

that of HMIRT. 
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Fig. 11 Variance of Foundation of Programming 1  

(7 tasks, 148 learners). 
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Fig. 12 Variance of Foundation of Programming 2  

(18 tasks, 77 learners). 

 

Fig. 13 Variance of Information Society and Information 

Ethics (13 tasks, 23 learners). 
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7. Conclusion 

In this research, we proposed a new method to estimate the learner’s ability from the 

learning data, then used the estimated ability to predict the response for future tasks. The 

proposed model, AFHMIRT, generalizes the Hidden Markov Item Response Theory and 

replaces the fixed values of the window size and variance parameters with time-series so 

that the parameters can fluctuate as learning progresses. In addition, we also proposed 

using a greedy algorithm to estimate the window size parameter. From the results of the 

experiment, we demonstrated that modeling the window size and variance parameters as 

time-series rather than fixed values resulted in a better prediction accuracy. Moreover, the 

responses were predicted by the proposed model for one item at a time, whereas the 

HMIRT model predicts the responses for all items at once. This made the proposed 

model’s predictions more precise. However, the proposed model has a disadvantage with 

respect to estimation time. As described in Section 4, the proposed model needs to re-

estimate the item parameter every time the window size or the variance changes, which 

requires a lot of time to run, especially for larger datasets. Improving the estimation time 

will be considered in future tasks. 

 

 

 

 

 

 

 

 



26 

 

8. Reference 

[1] L.S. Vygotsky, Thought and language,Harvard University Press,1962. 

[2] L.S. Vygotsky, Mind in society,Harvard University Press,1978. 

[3] D.Wood, J.S.Bruner, and G.Ross, ” The role of tutoring in problem solving.” ,Journal 

of child psychiatry and psychology, and allied disciplines, pp.89-100,1976. 

[4] A.Collins, "JS & Newman,SE(1989).Cognitive apprenticeship: teaching the craft of 

reading, writing and mathematics,” Resnick, LB Knowing, learning and instruction, 

pp.453–494, 1989. 

[5] J.Bruner, The Culture of Education, Harvard University Press, 1996, 1996. 

[6] 植野真臣, 松尾淳哉， "項目反応理論を用いて適応的ヒントを提示する足場

かけシステム", 電子情報通信学会論文誌 D, Vol.J98-D,No.1,pp.17-29,Jan.2015. 

[7] M. Ueno, and Y. Miyazawa, "Probability based scaffolding system with fading", 

Artificial Intelligencein Education - 17th International Conference, AIED 2015. pp.492-

503,2015. 

[8] M. Ueno, Y. Miyazawa: IRT-Based Adaptive Hints to Scaffold Learning in 

Programming, IEEE Transactions on Learning Technologies, IEEE computer Society, 

Vol.11, Issue 4, 415-428 (2018) 

[9] Baker,B,F, and Kim,S.: Item Response Theory: Parameter Estimation Techniques, 

Second Edition, NY:Marcel Dekker, Inc,2004(2004) 

[10] E. Tsutsumi, M. Uto，M. Ueno: "Bayesian Knowledge Tracing の一般化としての

隠れマルコフ IRT モデル"，人工知能学会 2019 年度人工知能学会全国大会（第

33 回),2019 

[11] 堤 瑛美子，宇都 雅輝，植野 真臣．”時系列学習データを用いた隠れマルコ

フ IRT による高精度パフォーマンス予測”,日本行動計量学会 第 47 回大会，2019 

[12] F.M. Lord, Applications of item response theory to practical testing problems, 



27 

 

Mahwah, NJ: Lawrence Erlbaum Associates, Inc,1980. 

[13] S.Impedovo, A. Ferrante and R Modugno,"HMM Based Handwritten Word 

Recognition System by Using Singularities," Document Analysis and Recognition, 2009. 

ICDAR ’09. 10th International Conference on,2009. 

[14] J.Ortiz,  A.G.Olaya and D. Borrajo,"A Dynamic Sliding Window Approach for 

Activity Recognition"UMAP’11 Proceedings of the 19th international conference on 

User modeling, adaption, and personalization,pp.219-230,2011. 

[15] M. Ueno, "Data mining and text mining technologies for collaborative learning in an 

ILMS Samurai", Proc. IEEE Int. Conf. Adv. Learning Technol., pp. 1052-1053, 2004. 

 

 


