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Abstract

Maximum likelihood (ML) method for estimating param-

eters of Bayesian networks (BNs) is efficient and accurate

for large samples. However, ML suffers from overfitting

when the sample size is small. Bayesian methods, which

are effective to avoid overfitting, have difficulties for deter-

mining optimal hyperparameters of prior distributions with

good balance between theoretical and practical points of

view when no prior knowledge is available.

In this paper, we propose an alternative estimation

method of the parameters on BNs. The method uses a prin-

ciple, with roots in statistical thermal physics, of minimizing

free energy. We propose an explicit model of the temper-

ature, which should be properly estimated. We designate

the model “data temperature”. In assessments of classi-

fication accuracy, we show that our method yields higher

accuracy than that of the Bayesian method with normally

recommended hyperparameters. Moreover, our method ex-

hibits robustness for the choice of introduced hyperparam-

eters.

1. Introduction

Bayesian networks (BNs) [14], which are probabilistic

models, are well suited for representing knowledge under

uncertainty. They can often be expressed in compact forms

and can be interpreted as causal models. They are therefore

used in various fields and applications such as expert sys-

tems, user modeling, and computational biology. In fact,

BNs are expressed as directed acyclic graphs (DAGs) in

which random variables and their dependencies are respec-

tively associated with nodes and directed edges. Qualitative

relationships are expressed as their structures and quanti-

tative relationships are expressed as their parameters. The

parameters of BNs are conditional probabilities assigned to

nodes, into which joint probability is decomposed. In this

paper, we concentrate our efforts on parameter learning of

BNs in cases where no prior knowledge is available.

The maximum likelihood (ML) method is often used for

estimating conditional probabilities. However, when train-

ing data are few, the estimated parameters of BNs with

ML are likely to fall into overfitting to the data. Bayesian

methods, which involve prior distributions, are effective to

avoid this problem. For expressing the prior distributions

of discrete variables, the Dirichlet distribution function is

usually used [6]. This prior has hyperparameters, which

means prior imaginary instances (we designate it as α con-

sistently in this paper). Some studies have used hyperpa-

rameters such as α = 1 (meaning uniform prior distribu-

tions) or α = 0.5 (meaning non-informative prior distribu-

tions) [3, 19] when no prior knowledge exists. However,

it remains controversial to decide hyperparameters of prior

distributions theoretically. Furthermore, from a practical

perspective, Yang and Chang reported that α = 10 is best

for learning BNs [21]. Therefore, it seems difficult to find

optimal α consistently from both perspectives.

Another approach to avoid overfitting to data is incorpo-

ration of proper entropy into estimators of the parameters.

One effective idea for treating entropy is using the principle

of minimum (Helmholtz’s) free energy (MFE), which has

its roots in statistical thermal physics. The free energy F ,

if described in the manner of physics, consists of (internal)

energy U , entropy H , and (inverted) temperature β. In fact,

β balances the contributions of U and H to the free energy.

In recent years, the MFE principle and similar concepts

have been used in wide areas of computer science. How-

ever, to our knowledge, the meaning of temperature has not

been established yet. Consequently, β is treated in various

ways at this stage: annealing parameters ([15], [20]), fixed

parameters ([1], [12], [22]), or optimizable parameters in
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each dataset ([10]). The pre-fixed method seems to have a

poor foundation and the optimizing method using held-out

data is not efficient in computational cost and not effective

for very small data size. Consequently, universal or robust

values of β have not been reported to date.

Differently from the approach described above, we take

model-based approaches for the β. For that purpose, a hy-

perparameter is introduced for β. Using this approach, we

intend to explore robust estimation methods against the hy-

perparameter for BNs. In this paper, we propose a meaning

of β in the MFE principle by combining thermal fluctua-

tion with probabilistic fluctuation, and an explicit model of

β as a result of our interpretation of the role of β. Then we

assessed our method with respect to accuracies and robust-

ness in relation to classification tasks using real world data

in comparison to ML and the Bayesian method.

This paper is organized as follows: After a brief descrip-

tion of the background of BNs and their parameter learning,

we provide an overview of free energy and a definition of it

for estimating the parameters. Our concept of temperature

in data science and an explicit model are introduced in Sec-

tion 3. Some experiments are conducted for investigating

the effectiveness of our method in Section 4. Finally, dis-

cussions of the results are presented in Section 5.

2. Background

2.1. Bayesian networks

In fact, BNs are directed acyclic graph (DAG) represen-

tations of joint probability distributions of a set of n random

variables {X1, . . . ,Xn}, which is decomposed into prod-

ucts of conditional probabilities of Xi given its parent set

Pa(Xi) as

P (X1, . . . ,Xn) =
n

∏

i=1

P (Xi |Pa(Xi)). (1)

A random variable is defined as a node Xi in the graph and

its parents are defined as nodes, from which edges extend

to Xi. In BNs, each node is conditionally independent of

its non-descendants given its parents. To use BNs effec-

tively, we must be careful to decompose the joint proba-

bilities correctly into products of conditional probabilities,

and be careful to determine the conditional probabilities.

The former means that it is necessary to construct a correct

structure; the latter underscores the necessity of estimating

correct conditional probabilities. Both are designed using

expert knowledge or trained using algorithms. In the next

subsection, we explain the method of parameter learning of

BNs.

2.2. Parameter learning of BNs

For learning parameters of BNs, two methods are often

used: maximum likelihood (ML) and Bayesian methods.

We assume a complete dataset with no missing data val-

ues. Applying Lagrangian multipliers to the log likelihood

function with multipliers to constrain the parameters to a

normalized probability distribution, it is easy to show that

ML estimators of conditional probabilities (we also express

them as {θ}) are

θijk := P (xk
i |π

j
i ) =

Nijk
∑ri

k′=1
Nijk′

, (2)

where i is an index of X , j is an index of parent nodes’

configurations, ri is the number of states of the Xi, k and k′

are Xi’s state (k, k′ ≤ ri), and Nijk is the number of cases

in the dataset in which Xi = xk
i , given the condition that

Pa(Xi) = π
j
i [9].

When we use Bayesian statistics on discrete random

variables, the estimators are often obtained using a poste-

rior mean or by maximizing a posterior, where the Dirich-

let distributions and their hyperparameters (smoothing pa-

rameters) {α} are usually used. According to Bayesian

statistics [6], a posterior probability density function ρ(θ|d)
given data d is expressed as follows from Bayes’ theorem:

ρ(θ|d) ∝ ρ(θ)f(d|θ), where f(d|θ) is the likelihood func-

tion and ρ(θ) is a prior distribution. In discrete variables, the

likelihood function is the multinomial distribution function.

Prior and posterior functions are both written as Dirich-

let distributions when ρ(θ) and ρ(θ|d) are both represented

as natural conjugate family distributions of the likelihood

function. Then we obtain the BN parameters by taking the

posterior mean of the Dirichlet distributions as

θijk := P (xk
i |π

j
i ) =

αijk + Nijk
∑ri

k′=1
(αijk′ + Nijk′)

. (3)

As expressed in equation (3), it is clear that the hyperparam-

eters, α, play a role in avoiding overfitting because α can

contribute to some extent when the data size is not large.

However, because of the lack of intelligible meaning of α
in a case without prior knowledge about the data, α is often

assigned manually to various values including α = 1 that

means uniform prior distributions and α = 0.5 that means

non-informative prior distributions [3, 19].

3. The proposed method

We minimize the free energy with finite temperature for

estimating proper parameters of BNs instead of maximizing

likelihood or maximizing expected values of the Bayesian

posterior distributions. For presenting the approach, we

must properly define entropy, energy, and temperature. We
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particularly regard temperature as important: it decides the

degree of contribution of entropy to the free energy.

3.1. The minimum free energy principle

In statistical physics, the Helmholtz free energy F of a

system is defined using internal energy U , entropy H , and

the (inverted) temperature β0 (= 1/temperature) as

F := U −
H

β0

, (4)

where (inverted) temperature β0, which is a parameter, bal-

ances contributions of U and H to F . According to the

principle of MFE, given some temperature β0, the stable

state of the system is realized to minimize F .

We use this principle for the parameter learning. We de-

note random variables as X , which are assumed to be dis-

crete variables. For a definition of entropy terms, we adopt

Shannon’s entropy using probability distributions P (X) as

H(X) := −
∑

x

P (X = x) log P (X = x). (5)

We assume that the system variable is a probability distri-

bution. We define U as the Kullback-Leibler (KL) diver-

gence, which represents the similarity or distortion between

the hidden true distribution and the distribution estimated

using the ML method because we incorporate the ML prin-

ciple under a large sample limit. Hence, the internal energy

is defined as

U(X) := D(P (X) || P̂ (X))

=
∑

x

P (X = x) log
P (X = x)

P̂ (X = x)
, (6)

where P̂ (X) is the probability distribution estimated using

the ML method and P (X) is the true probability distribu-

tion. It is noteworthy that estimations obtained by minimiz-

ing the KL divergence in equation (6) are equivalent to ML

estimations.

The probability distribution parameterized by β0 is

the solution of the minimization with a constraint as
∑

X=x P (X = x) = 1. Therefore, it is solved using La-

grangian multipliers. The Lagrangian L is expressed as

L = F + λ(
∑

x

P (x) − 1)

=
1 + β0

β0

∑

x

P (x) log P (x) −
∑

x

P (x) log P̂ (x)

+ λ(
∑

x

P (x) − 1), (7)

where λ is the Lagrange multiplier. For later convenience,

we define a parameter β transformed from the β0, as

β :=
β0

β0 + 1
. (8)

In relation to that expression, if β0 → 0, then β → 0
(high temperature limit); if β0 → ∞, then β → 1
(low temperature limit). We designate the β temperature

later. Then the solution is derived from the partial deriva-

tive: ∂L/∂P (x) = 0. Therefore, the estimated parameter

Pβ(X) is expressed in the form of Boltzmann’s law, which

is well known in statistical physics, as

Pβ(X = x) =
exp(−β(− log P̂ (X = x)))

∑

x′ exp(−β(− log P̂ (X = x′)))
. (9)

Practically, we use the equivalent form

Pβ(X = x) =
P̂ β(X = x)

∑

x′ P̂ β(X = x′)
, (10)

where P̂ is the relative frequency, i.e. the ML estimator.

These formulas ((9) or (10)) have been reported elsewhere,

including [10, 20]. However, the combination of the ex-

plicit definitions of U such as eq. (6) and the transformation

in eq. (8) have not been reported in the literature, which can

more easily lead us to intuitive comprehension of the role of

minimizing the free energy and temperature β in data sci-

ence. Therefore, we can proceed to modeling β. In closing

of this subsection, it is also noteworthy that the principle of

minimizing free energies can be regarded as an extension of

minimizing KL divergences between true distributions and

ML-estimated distributions by defining a tempered KL di-

vergence denoted as tKL, which is defined as follows:

tKL := F =
∑

x

P (x) log
P (x)1/β

P̂ (x)
. (11)

3.2. Introducing “Data Temperature”

From the definitions of U , H , and F given above, it is

apparent that parameter estimators by MFE tend to be ML

estimators at low temperature (large β) and tend to be dom-

inated by the entropy at high temperature (small β). On

the other hand, from the view of data science, we hope to

realize ML-like estimators for large samples and to avoid

overfitting for small samples. We therefore relate tempera-

ture to the number of samples as follows. Large sample size

corresponds to low temperature, and small sample size cor-

responds to high temperature. In other words, probabilistic

fluctuation, which is large for small data size, is regarded

as thermal fluctuation, which is large for high temperature,

and vice versa in our approach. We designate this concept

“data temperature”.
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Based on the assumption of the relationship described

between data size and β, we can express β explicitly as

some monotonic function of the number of samples, which

enables us to leverage the “data temperature” concept ef-

fectively. Although the exact mode of measuring β is left

open, some clues for modeling β exist. First, β approaches

1 such that estimators approach ML estimators when the

data size is large, whereas β approaches 0 such that esti-

mators are uniform for internal states when the data size is

small. The larger the data size N is, the smaller the differ-

ence coefficient of β for N seems to be. On the other hand,

the smaller N is, the larger the difference coefficient seems

to be. Therefore, a reasonable model would be a convex

upward function that fulfills the boundary conditions de-

scribed above. Next, the necessary data size seems to be

dependent on the degrees of freedom of the random vari-

ables X . In other words, the more degrees of freedom the

random variables have, the larger the data size we would

need to regard the estimators as near-ML estimators. Then,

γ and Nc are introduced for separating effects of X’s de-

grees of freedom from the β. γ is a function of the degrees

of freedom, and Nc is a decoupling constant, which is in-

troduced as a hyperparameter for β, and is expected to play

some role other than that related to γ.

Then, we create a model of β as following a simple

monotone function of data size N , γ, and Nc:

β := 1 − exp

(

−
N

γNc

)

. (12)

Three examples of the proposed function are shown in

Fig. 1, which are the cases in which γ is assumed to be 1
for simplicity and Nc = 1, 2, 5.

0

0.5

1

0 2 4 6 8 10

B
e

ta

N

Nc=1
Nc=2
Nc=5

Figure 1. Examples of the proposed exponen

tial function. γ = 1 and Nc = 1, 2, 5.

According to the description given above, the function

γ must necessarily be decided. The simplest form of γ is

one’s own degrees of freedom,

γ := |X| − 1, (13)

where |X| is denoted as a number of states of a random

variable X . We designate it as the “linear-state model”.

However, we consider that this model might be an approx-

imate model under the limit of uniform distributions over

the internal states. In practice, because data distributions

have some bias, fewer data are necessary than in the uni-

form distributions. Therefore, we consider another model

of γ that is denoted as effective degrees of freedom, which

is suppressed, because of the explanation given above, as

the following:

γ := log(|X|). (14)

We consider that this form of γ is an approximate expres-

sion of effective degrees of freedom. We denote the expres-

sion in equation (14) as a “log-state model”. We designate

these parameter learning methods as MFE with explicit β
(MFE-EB ) methods.

The relation between the temperature and data size can

provide a perspective to unify the maximum likelihood and

the maximum entropy principles under the minimum free

energy principle with varying data size because the equation

(9) is the same form of the ME principle; also, β can be

regarded as an associated constraint condition. Therefore,

this estimation method bears some resemblance to the ME

concept, where β is a constraint condition.

Finally, it is straightforward to extend the above method

to cases of multivariate systems by proper indexing for joint

states. Therefore, Boltzmann’s law, corresponding to eq.

(9), becomes

Pβ(X = x) =
exp(−β(− log P̂ (X = x)))

∑

x
′ exp(−β(− log P̂ (X = x′)))

, (15)

where X is denoted as a multivariate set, and x is a joint

state of X .

3.3. Estimating conditional probabilities

In a BN that has discrete variables, conditional proba-

bility tables are often assumed to be independent in each

conditioning event [17]. Using this local independent as-

sumption, we naturally extend the form of β to local forms,

which we attach to each node and configuration of its par-

ent set. Consequently, in BNs, the free energy is defined in

each node and configuration. Therefore, more detailed con-

trol of entropy is possible in conditional probabilities than

in multivariate joint probabilities.

In fact, Nij is defined as Nij =
∑

k′ Nijk′ if the same

indices i, j, k and notation Nijk described in Section 2 are

used. In addition, βij is definable in an exponential function

as

βij = 1 − exp

(

−
Nij

γiNc

)

, (16)

where we can adopt the “linear-state model”, as

γi := |Xi| − 1, (17)
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or the “log-state model”, as

γi := log(|Xi|). (18)

Finally, the parameters of BNs, θijk, are expressed as the

following.

θijk =
exp(−βij |MLLijk |)

∑

k′ exp(−βij |MLLijk′ |)
=

θ̂β
ijk

∑

k′ θ̂β
ijk′

(19)

Therein, MLLijk is defined as an expression using ML es-

timators θ̂ijk: MLLijk = log θ̂ijk ≤ 0.

4. Experiments

In the experiments described in this section, we inves-

tigate whether the MFE-EB method can avoid overfitting

in practice to the same degree that the Bayesian method

can when the available data size is small. Furthermore,

we compare robustness of our method against hyperparam-

eters to that of the Bayesian method. For this purpose, we

use UCI repository data [13] and the classification accuracy

of Bayesian network classifiers (BNCs) under a pre-trained

network structure to evaluate the parameter estimation ac-

curacy because the classification accuracy depends on pa-

rameter estimation accuracy in such situations.

4.1. Bayesian network classifiers

In fact, BNCs are restricted models of BNs, which are

often used in classification tasks. The BNCs have one

class variable and other variables, and predict the class la-

bel with given evidence to the other attributes. Friedman

et al. observed that, in many benchmark datasets, unre-

stricted BNs underperform Naive Bayes classifiers (NBs),

which are strongly restricted BNs [5]. We use Naive Bayes

type models for evaluation of our method. For this work,

we adopted generally augmented Naive Bayes classifiers

(GANs), which have an unrestricted network in attributes,

except for class variables [2, 5]. This type of network is

useful because it reportedly achieves the highest accuracies

in many datasets among NBs, BNs, and GANs [2]. This

type of network is shown in Fig. 2 as an example, where Xc

denotes a class node and Xi (i = 1, 2, . . . , 10) are other at-

tributes. In addition, an unrestricted structure is introduced

among the attributes ({X1,X2, . . . ,X10}).

In this paper, to execute structural learning of GANs, we

used the PC algorithm [18], which is a representative algo-

rithm of constraint-based search method for structure learn-

ing of BNs, and which usually uses χ2-tests or mutual in-

formation tests for identifying conditional independence re-

lationships among variables. We modified the PC algorithm

for application to BNCs according to the methodologies of

Xc

X1

X2
X3

X4

X5

X6

X7 X8

X9 X10

XcXc

X1X1

X2X2
X3X3

X4X4

X5X5

X6X6

X7X7 X8X8

X9X9 X10X10

Figure 2. Example of a generally augmented

Naive Bayes classifier (GAN).

Cheng and Greiner [2]: (1) replacing every mutual informa-

tion test between attributes X,Y ∈ X: I(X;Y ) with a con-

ditional mutual information test I(X;Y |Xc); (2) replacing

every conditional mutual information test I(X;Y |Z) with

I(X;Y |Z,Xc), where Z ⊂ X \ Xc; (3) adding the class

node Xc as a parent of every other attribute, where the con-

ditional independence of X and Y given subsets Z is mea-

sured using conditional mutual information in our experi-

ments, as the following.

I(X;Y |Z) =
∑

x,y,z

P (x, y,z) log
P (x, y |z)

P (x |z)P (y |z)
(20)

Actually, X and Y are conditional independent given the

condition set Z if I(X;Y |Z) is smaller than a certain

threshold value ǫ > 0. The threshold values are decided

respectively for each dataset by limiting each network to

a maximum of five parents per variable. In addition, the

graphs produced by the PC algorithm are partially directed

acyclic graphs (PDAGs). Therefore, we oriented the undi-

rected edges to avoid cyclic graphs and to reduce the num-

ber of parameters.

4.2. Evaluation using UCI data

We selected seven datasets from the UCI machine learn-

ing repository. These datasets were formatted and dis-

cretized by Greiner1 using the Fayyad and Irani method [4]

except for the Car and Nursery datasets, which were pre-

discretized. In choosing the datasets, we selected datasets

with numerous cases to train the structure of GANs as pre-

cisely as possible because the effect of parameter estima-

tion is expected to be separated from that of the correct-

ness of structural inference. It can occur that the structures

1available from his site:

http://www.cs.ualberta.ca/ greiner/ELR/
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Table 1. Description of datasets used for the

experiments.

Dataset Attributes Classes Instances

Train Test

1 Car 6 4 1000 500

2 Chess 36 2 2130 1066

3 Letter 16 26 15000 5000

4 Nursery 8 5 8640 4320

5 Satimage 36 6 4435 2000

6 Segment 19 7 1540 770

7 Shuttle-small 9 7 3866 1934

are designed by prior knowledge but the parameters are not

pre-estimated in real applications such as user modeling. A

brief description of the datasets is presented in Table 1 2.

First, structure learning was conducted using the PC

algorithm. Next, parameter learning was conducted us-

ing the ML with eq. (2), Bayesian with eq. (3), and

MFE-EB with eq. (16), eq. (19) and eq. (17) or eq.

(18) processes. In contrast to structure learning, we used

small samples that had been selected randomly from each

dataset. Those sample sizes are selected to present large

deviations of accuracy in some Bayesian hyperparameters

from that in ML under the limit sample size 100 (Letter,

1000; Chess/Nursery/Satimage, 250; Car/Segment/Shuttle-

small, 100). The Dirichlet hyperparameters are the same,

αijk = α, because of the lack of prior knowledge about

datasets. We compared their accuracy to that of ML to

confirm the effectiveness of the Bayes and the MFE-EB.

For avoiding zero probability, which generates contradic-

tion when testing data have evidence that did not emerge in

training data, we added a small positive number (0.0001) to

all conditional frequencies.

We adopted α = 0.5, 1, 10 because α = 1 is the fa-

mous Laplace method, and α = 0.5 and α = 10 are rec-

ommended from theoretical [3, 19] and practical [21] per-

spectives. On the other hand, we examined some values for

Nc because no knowledge about it exists. We show accu-

racies of BNCs with parameters estimated using ML, the

Bayesian, and maximum values of the MFE-EB (“linear-

state” and “log-state”), as shown in Table 2. It is clear that

the MFE-EB methods have effects of avoiding overfitting to

small data size because of controlling entropy according to

the available data size, as well as the Bayesian does. More-

over, regarding comparison with the Bayesian with recom-

mended hyperparameters and with MFE-EB, the latter is

superior with respect to maximum values of accuracy and

variances. It seems to leverage likelihood and entropy more

effectively than that of the Bayesian-Dirichlet method.

2The Car dataset was split into 1000 training samples and 500 test sam-

ples using random selection.

Next, we evaluate the robustness of the MFE-EB against

various values of the hyperparameter Nc. Figures 3 and 4

show that the accuracies against the various values of Nc,

which are both plotted in differences of accuracies from

that by ML. Actually, MFE-EB seems to show good per-

formance in common Nc ∼ 1 for a linear model, and in

common Nc ∼ 2 for a log model in every dataset. For a

more precise description, Table 3 shows the effective range

over which the classification accuracy is greater than 95%

of the maximum accuracy for each dataset, where “*” sig-

nifies minimum or maximum values of hyperparameters in

the range of the experiments. In both the linear-state and

log-state model, the range in which good performance is

shown has some overlap among all datasets. It can be said

that the hyperparameter Nc has good common ranges of

(1 ≤ Nc ≤ 1.5) in linear-state MFE-EB, and ranges of

(2 ≤ Nc ≤ 4) in log-state MFE-EB. Therefore, MFE-EB

can be said to be a robust estimation method of parame-

ters in BNs. These results are expected to result from the

adopted functional form of β, where β approaches 1 rapidly

with increasing the number of samples. In addition, the

MFE-EB might be expected to have universal ranges of hy-

perparameters. Moreover, our MFE-EB method seems to be

attractive in the sense that there is room for improvement of

the function of β.

5. Discussion

The ML, the Bayesian, and the MFE-EB are all called

generative methods, although discriminative methods have

recently received significant attention in parameter learn-

ing of BNCs [7, 8, 11, 16]. Their approaches are aimed

at improving the classification accuracies of BNCs given

some restricted structures. They are not intended to esti-

mate hidden true probabilistic distributions correctly. How-

ever, their studies suggest some insights about both struc-

ture and parameter learning of BNCs. Jing et al. found that,

when the structure is incorrect, their discriminative meth-

ods outperform their generative counterparts [11]. Shen et

al. showed that, the better the structures, the smaller the

advantage of their discriminative method over the ML in

classification tasks [16]. Their results imply that, in dis-

criminative method, the parameters are trained to compen-

sate incompleteness of structure in BNs (BNCs). There-

fore, we consider that the hyperparameters in the generative

methods can have equivalent effects. Table 2 shows that,

for some datasets, the accuracies trained using the Bayesian

method seem to be slightly superior to those using the MFE-

EB methods. We consider that the results are attributable

to the incompleteness of structure in BNCs. In such situa-

tions, the Bayes estimators can compensate for the incom-

pleteness because α contributes to the parameters to some

degree, even in situations with not a few data, whereas the
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Table 2. Accuracies [%] of each method.

Dataset ML Bayes (α = 0.5) Bayes (α = 1) Bayes (α = 10) MFE-EB (lin) MFE-EB (log)

Car 65.8 74.4 73.8 70.2 74.0 74.0

Chess 86.0 88.6 88.9 86.1 86.3 86.0

Letter 52.4 62.2 60.6 52.0 59.8 60.6

Nursery 66.2 75.3 76.5 77.5 76.7 76.7

Satimage 67.1 64.2 60.5 52.7 76.6 76.8

Segment 81.4 80.2 79.2 69.7 82.4 82.4

Shuttle-small 85.8 97.9 97.9 86.6 97.2 97.4

Ave.± σ 72.1±11.7 77.6±11.8 76.8±12.7 70.7±13.2 79.0±10.7 79.1±10.5

Table 3. Effective ranges of hyperparameters.

Dataset Linear-MFE (Nc) Log-MFE (Nc)

min max min max

Car 1.0 10* 2.0 10*

Chess 0.1* 10* 0.5* 10*

Letter 0.1* 10* 0.5* 10*

Nursery 1.0 10* 2.0 10*

Satimage 0.5 1.5 2.0 5.0

Segment 0.1* 10* 0.5* 10*

Shuttle-small 0.1* 2.0 0.5* 4.0

MFE-EB estimators cannot compensate because they are

closer to ML estimators than the Bayes because of the func-

tional form of β. Therefore, the MFE-EB method might be

less effective in multivariate systems that are not properly

inferred for their structures between variables, although the

method can be extended theoretically to the case of discrete

joint probability estimations.

It is worthwhile to discuss the possibility of improving

the MFE-EB method. The change of accuracy over the hy-

perparameters presents similar behaviors by the two mod-

els of γ. For example, in the Nursery dataset, values of

Nc in both models, for which the accuracies are high, are

larger than those in the other datasets. On the other hand,

in the Satimage dataset, both are smaller than those in the

other datasets. These results imply that the optimal ranges

of values in hyperparameters depend on the dataset proper-

ties. Therefore, we consider that it is possible to improve

MFE-EB by incorporating those properties of each dataset

into the function of β.

6. Conclusions

We explore a new parameter learning method of BNs.

The method is robust against hyperparameter setting. Then

we propose an alternative one based on the principle of min-

imum free energy (MFE), which is well known in statisti-

cal thermal physics. Our main conceptual contribution is

“data temperature”, which is generated by combining ther-

mal fluctuation with probabilistic fluctuation. Our explicit

model of the “data temperature” is assumed to have mono-
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Figure 3. MFEEB (“linearstate”) estimation:
differences in accuracy from ML [%].

tonic functions according to the available data size. The

approach enables treatment of the two major principles of

maximum likelihood and maximum entropy in a unified

manner in the MFE principle with varying data size. In

other words, this approach is based on optimizing the con-

tribution of entropy according to available data size, instead

of maximizing likelihood or maximizing expected values of

posterior probability distributions.

We showed that our method is robust in classification ac-

curacy for choice of hyperparameters. Furthermore, it is su-

perior to the Bayesian method with recommended Dirichlet

hyperparameters, although our explicit model of tempera-

ture is not sophisticated. Our method provides an effective
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tool for use as a parameter estimation method, especially

for small data size or sparse data.

In future work, it is necessary that this method be ex-

tended to treat prior knowledge. Moreover, it might be in-

teresting to search for equivalent prior distributions gener-

ating our estimator, and to extend our approach to various

parameter estimation methods.
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