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   The authors developed a new latent trait model for polytomous data. A unique 
feature of this model is that it explains the psychological process through which a subject 
reaches correct or wrong responses. This model is an integration of two parts. One 

part discriminates states of knowledge, namely, it classifies them into three categories, 
i.e., a) complete knowledge, b) partial knowledge, and c) complete ignorance. Another 
feature of the model is that we have two different kinds of manifest data, i.e. confidence 
data and correct/wrong responses. The subject is required to choose whether he is 
confident of his answer or not. In this paper, we make use of confidence data as 
auxiliary information in making effective estimation of parameters. Then the new 
model was applied to mathematics test data of high school students.
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1. Problem 

   The purpose of this paper is to develop a new item response model which 

explains the psychological process through which a subject reaches correct or 

wrong responses. 

   As is often pointed out, the high speed of recent computers has made it possible 

for psychometricians to deal with more complex statistical models. This increase 

of freedom of the model so that it could be used to explain cognitive aspects of item 

responses. If the model is appropriate and the parameters are not so lengthy as to 

decrease stability of parameter estimation, the model should be effective in report

ing the characteristics of both test items and subjects. That is, we want to make 

the number of parameters as small as possible, yet large enough to fit the model to 

psychological reality. 
   Recently there have been quite a number of psychometric articles which make 

use of complex statistical models to reflect cognitive process involved in problem 

solving. Interested readers should refer to chapter 8 of "Educational Measure
ment, Third Edition" (Linn, 1989) and "Test Theory for a New Generation" (Freder

iksen, Mislevy, and Bejar, 1993). These two books provide good information for 

this kind of psychometric literature. We do not intend to survey this area, but we 

reivew several reserch efforts which have similar objectives as this paper. Tatsu

oka (1985) has studied performance on mathematics items in terms of the applica

tion of correct and incorrect rules, locating response vectors in a two dimensional 

space, where the first dimension is an index of lack of fit from the model. Fischer



(1973) proposed the linear logistic latent trait model (LLTM) which replaces the 
item difficulty parameters by the function of the complexity factors. Whitely (1980) 

developed the MultiComponent Latent Trait Model (MLTM) which models all 

cognitive components required for reaching correct answer. Embretson (1984) 

presented a more general model (which is called GLTM) that includes both features 
of the LLTM and MLTM. Embretson (1985) offers a model for alternative strat

egies in situations where subtask results can be observed in addition to the overall 

correctness or incorrectness of an item. Mislevy (1987) proposed a family of 

multiple-strategy IRT models that apply when each subject belongs to one of a 

number of exhaustive and mutually-exclusive classes that correspond to item

solving strategies, and within each class, a standard IRT model applies. 

Yamamoto (1993) offered HYBRID model which combines IRT and Latent Class 

Model to express different classes of the subjects' competency. 

   In this paper, the authors propose a different item response model depending on 

different states of knowledge. A unique feature of this model is that this model 

explains a psychological process through which a subject reaches a certain 

response. Another feature of the model is that we have two different kinds of 

manifest data, which are confidence data as well as correct/wrong responses. 

That is, the subject is required to choose whether he is confident in his answer or 

not. Evel (1968) proposed a method to eliminate the effect of guessing by using 

confidence data. In this paper, we make use of confidence data as auxiliary infor

mation in making effective estimation of parameters. 

   The following section gives a general description of the model.

2. Model 

   The model first distinguishes the subject's states of knowledge into three 

categories. 

   A subject may have perfect knowledge to solve a particular item. Or, he may 

only have partial knowledge, in which case, his knowledge may be ambiguous, and 

he may need to depend on some arbitrary heuristic rule to reach the answer. Or, 

he may not know at all how to solve the problem. These three categories are 

referred to as a) complete knowledge, b) partial knowledge, and c) complete 

ignorance. Next, the proposed model describes the probability of his being correct 

in his answer for each of three different states of knowledge. 

   If the subject has complete knowledge or knows the way to infer logically the 

answer from his knowledge, he could reach the correct answer without hesitation. 

When he has partial knowledge, whether his answer to the paticular item is correct 

or not is an uncertain event, which we can predict only statistically using a certain 
model as a function of the subject's true competency. In this paper, we employ a 

traditional two-parameter logistc model for this purpose. 

   When the subject is completely ignorant, the probability of his constructing a



correct answer is zero, or in the case of multiple-choice test, this probability may 

be one over the number of choice categories of the item. 

   Now, let us express our model mathematically. We use P( ) as probability 

measure and p( ) as probability density function or probability mass function, and 

the other notations are listed below ; 

    i : the i -th subject, 

    j : the j -th item, 

   ~i; : latent dummy variable indicating the state of knowledge of the i-th subject 
on the j -th item, i. e.,

     1 complete knowledge 

S i; = 2 partial knowledge 

     3 complete ignorance,

 xi; : a manifest dummy variable indicating whether the subject gets the correct 

     answer (xi; =1) or not (xi; =0 ), 

 yi; : a manifest variable indicating whether the i-th subject is confident of his 
     answer for the j-th item (yi; =1), or not (yi; = 0), 

 Oi : a latent continuous variable of true competency of the i -th subject. 

Thus, the probability of correct response is expressed as a function of ei by a law 

of total probability as follows ; 

3 

          P(xi;=1 I ei)= E P(xi;=1 I ~i,i=k, Oi)P($i;=k I Of). (1) 
                                        k=1 

   As was discussed above, we assume 

                      P(xi;=11 $i;=1)=1, (2) 

and 

                        P(xi;=11 Si;=3)=0. (3) 

   For the state of partial knowledge, as was mentioned above, we assume the 
usual two-parameter logistic model to express the relationship between the proba
bility of correct response and the competency. That is,

P(xi;=1I ~i;=2)= 1                 l+exp( -1 .7a;(ei-b;)) (4)

   For multiple-choice tiems, the equation (3) could be modified as follows ; 

                    P(xi;=1I ~i;=3)=1/m, (5) 

where m is the number of alternatives, 

and

P(xi;=1 i;=2)=c;+ 1-c;                   l+
exp(-1.7a;(Oi-b;))' (6)

where c; is a guessing parameter. The state of knowledge relevant to the paticular



j-th item may well be dependent on Oi, and we assume it can be represented by the 
Masters' model (Masters, 1982, 1985) ; 

            P(Ei.7=11Oi)=(exp((01-d;1)+(Oi-d;2)))/Y'i.l, (7) 
           P($i 21 Oi)=(exp((O1-d;1))10ii, (8) 
           P(Eij=3 I Oi)=1/`b , (9) 

where, Oi;=l+exp(ei-d;1)+exp((ei-d;1)+(ei-dj2)). 
   The auxiliary information yi; can be used to identify the latent class $i; through 

the use of the Bayes Theorem. That is, after we obtain the data yi;, the probability 
of each latent class show a change as follows ; 

          P(~if=kI yip, O1)ccP(yij I $ii=k, 6i)P($i,=kI OA (10) 

   We assume that 

                 P(yi;=1 I $ij=1, 6i)=1(for vOi), (11) 
                 P(yi,=11 ~i;=3, Oi)=0(for vOi). (12) 

For the case of ~i; = 2, so that the number of parameters should not increase, we 
assume the probability of the i -th subject's responding "confident" can be expressed 
as

P(yi,=1 I ~i,i=2, ei) P(E =1 I Oi)                 P($ i;=1 I Oi)+P($i;=3 1 0i) (13)

   When we observe yi, = 1, then the possibility of $i; = 3 vanishes, and the possibil

ity of Ei; = 2 remains only partially depending on (13). 

   Finally, the data generating model of xi;'s with yi j's and all the parameters 

given is as follows ; 

3 

     P(xi.i I yi.i, ai, bi, Oi, ~i,i)= Z P(xij I ~i,j=k, O1)P($i,j=k I yi.i, Of ). (14) 
                                               k=1 

The auxiliary information yi;'s are used here to identity the latent class for each 

subject.

3. Estimation 

   When the data xi;'s and yij's are given, the likelihood for the parmameters is 

given as 

            Q(a, b, d1, d2, B I x, y)=IIII ITi;)1_Xi' (15) 

    where a= (a,, a2, •••, ap)t, 

                                   b=(b1, b2, •", bp)t, 

                               di=(d11, d12, dlp)t, 

                                d2=(d21, d22, d2p)t, 

                                    e=(e1, e2, ..., en)t,



and 

                            7rz;=P(xzJ I y,j, Oi ) 

   We obtain the maximum likelihood estimate by numerically maximizing the 

log likelihood. The first derivatives of the log likelihood and the Hessian matrix 

are given in the Appendix 1. The numerical optimization algorithm is as follows ; 

Step 1 : The initial estimates for 0, a, b, d, and d2 are given by the heuristic 

      method as explained below. 

Step 2 : With 0, a, and b, optimize d, and d2. 

Step 3 : With d, and d2 given, optimize a and b. 

Step 4 : With a, b, d, and d2 given, optimize O . 

Step 5 : Repeat Step (2) through Step (4) till the estimates converge. 

   The initial estimates in step (1) are given as follows ; 

                         a;= pj2),/2 , (16)                            (1 -p; 

                      b;= 1 log l a, , (17) 
                               a; a; 

                        d,;=log 1-a,; , (18) 
                                      a,; 

a 
                      d2;=log 1 a2; , (19) 

                  9z=log (1 acrz) , (20) 

   where, p,;, indicates the four-fold point correlation coefficient between the test 

score Ep+,xz; and the learner's response x1;. And a; _ En=,xz;/n, a,; _ E n=,z, t;/n, 

                                                              1 and a2Z;=Ent=,z2z;z2z; n, and at= ; n=,xi;p. Here, z,i;= 1 if both xz =1 and yt;=

otherwise Z,,, = 0. Also, z2i3 =1 if xZ; =1 or yzJ =1, and otherwise z2 z; = 0. 

   The criterion for convergence is to stop the iteration steps when the maximum 

difference between the current estimate and that of the preceeding iteration is less 

than or equal to .001. 

   As is well known in mathematical statistics, the asymptotical variance and 

covariance matrix for maximum likelihood-estimation is given by the Fisher's 

information matrix. The Fisher's information matrix can be approximated by the 

Hessian matrix evaluated at the converged values.

4. Application 

   To demonstrate the feasibility and applicability of the model and estimation 

procedure, we applied the model to the following real data. We administered a 12 

mathematics test items to 114 high school students. The items are given in 

Appendix 2.



     Table 1 

Estimated Parameters

   Fig. 1 contrasts the usual item characteristic curve (ICC) and P (x ii =1 I ~Z; = 2 ) 

(i.e., item characteristic curve for the latent class of partial knowledge). The ICC 
for the latent class is steeper than that for a whole population. The difference 

tends to be larger when the size of the second latent class is smaller. Fig. 1 shows 

P ( ii = k 10), i, e., the probability of each latent class conditional on a particular 0. 

Table 1 shows the data (observed percentages of correct answer and confident 

response) and the estimate of the parameters with their approximate standard 

errors in parenthesis. 

   Table 1 also shows the data for subjects, t , and the average of the probabilities 

of belonging to each latent class, which is given by

P(~ii =k)= 1 P(Si>=k I .v=>, 0 ).               p
,=1

(21)



Fig. 1 Estimated item response curves

   With these estimates, we can investigate the item characteristics in more detail. 

For example, we can learn in which items the subjects tend to have more confidence. 

Or, we can learn the performance of those who have only partial knowledge. 

   Also, with additional information provided by confidence data, we can expect 

more accurate estimation of the subjects' competence.



                          Appendix 1 

The first derivatives and Hessian Matrix 

   To make the description compact, let f, z, u, ¢, and 0 be difined as follows ; 

            f=P(x12; I y2;, aj, b;, Oil ~2;), 

           __ 1               1
+exp(-1.7a;(92-b;)) ' 

           u=l+exp(82-d2;)+exp((O1-d1;)+2(82-d2;)), 

           ¢=1+exp(et-d1j)+exp((B2-d1;)+(62-d2;)), 
            =1+exp((92-d1;)+ (92-d2;)) . 

   The first derivatives are given below. 

    of __ OW-1) _ (1-0) 7rO exp(O1-d2;)_ 7rcb     ad 
1; `/~ ,~ 2 0 + u2 u ' 

     of __ c(1-2G) _ (1-0) _ -7rO exp(O1-d2;)-2exp(392-d1;-2d2;)_ 7r0 
    ad2 02 0 u2 u ' 

     of __ 1.77x2(82-bj)exp(20i-d1;-d2;-1.7a;(62-b3))     a
s u ' 

     of __ -1.7,r2ajexp(20i-d1;-d2;-1.7a;(62-b;))    ab 
u 

   Hessian matrices are shown below. 

    a2f _ _ 22G(1-4) (30-2)(1-0) 
   a2 d1;  03 + 02 

        + (0-1) + 2,rcb3exp(2(O1-d2;))          0 
u 

           3Z02exp
~(62-d2;) + u 

    a2f  2cbexp(-2d1;-2d2;+d82) 
   a2d       2j 0 3 

        _ 2exp(482 ~2d1;-2d2;)  (1-00)+ )%)+ (1 -SG) 

        + 2,r¢exp(2 ~ (                     (O1-d2;))  37r02expO1-d2,) + u 

     a2f _ -1.7,r2exp(282-d1;-d2;-1.7a;(B2-b;)) 
     a2a u 

          + 2.98a;z (O -b;)2exp(201-d1;-d2;-1.7a;(82-b;)) 
                             P ' 

     a2f __ -2.98a2.ir2exp(2O -d1;-d2;-3.4a;(O,-b;)) 
    alb u



                          Appendix 2 

Items in mathematics test
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