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Abstract 

This paper proposes a construction method of Student 
models for Intelligent Tutoring Systems(1TSs) by using 
information criteria. This proposal provides a method to 
aiitornatically construct the optimum Student niodel ,from 
data. The main problem when the traditiorial itformatron 
criteria are eniploved to constrr~t  a model is that large 
amount of data, which are di‘cult to obtain in actrial 
school situations, need to be obtained. This puper 
proposes a new criterion for using a smaller amoirnt oj 
data by utilizing a teacher’s expert knowledge. 
Concretely, I )  the general predictive distributiori is 
derived, arid 2 )  the determination method of the hyper 
parameters by using a teacher’s expert knowledge is 
proposed. Finally, some Monte Carlo experiments 
comparing some irlforrnatiori criteria (ABIC, SIC, MDL, 
and the exact predictive distribution) are performed. The 
results show that the proposed method provides the best 
pe flormance. 

1. Introduction 

Over the last few years, a method of reasoning using 
probabilities[ 1],[2] variously called Bayesian networks, 
belief networks, causal networks, and so o n ,  has become 
popular within the Intelligent Tutoring System 
community. For example, in [ 3 ] ,  the knowledge states 
diagnosis system is based on belief networks and decision 
theory. In [4],[5], [6],[7] ,@]besides the diagnosis system, 
updating is concerned with the expected changes in 
student knowledge due to tutoring. 

However, these methods subjectively constructed the 
student model structure without using students’ response 
data. If the students’ response data is available, then it  
helps our decision making for the student model 
construction. This paper proposes a construction method 
of Student models for Intelligent Tutoring Systems (ITSs) 
by using information criteria. The main problem when the 
traditional information criteria are employed to construct a 
model is that large amount of data, which are difficult to 
obtain in actual school situations, need to be obtained. 
This paper proposes a new criterion for using a smaller 
amount of data by utilizing a teacher’s expert knowledge. 
Concretely, 1 )  the general predictive distribution is 
derived, and 2) the determination method of the hyper 
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parameters by using a teacher’s expert knowledge is 
proposed. Finally, some Monte Carlo experiments 
comparing some information criteria (ABIC, BIC, MDL, 
and the exact predictive distribution) are performed. The 
results show that the proposed method provides the best 
performance. 

2. Representation of the student model by 
the Belief networks 

In this paper, the student model is defined by 
belief networks. Let x = x , , x ~ , A  , x ,,, 1 be a set of 
N variables which represent students’ knowledge states; 
each can take r, states in the set { 1,A , q  } .  X, = k is 

written when it is observed that variable xi takes k . 

p ( x  = k I y = j , ( )  is used to denote the probability of 

a person with background knowledge 5 for the 
observation x = k , given the observation y = j . A 
student model is represented as a pair of knowledge 
structure S and a set of conditional probability parameters 
0 ,  (3, 0 ) . An example of knowled, De structure S in 
the domain “the solution of the linear equation” in a junior 
high school is shown in Figure.1. Here, A - B  
indicates that we have to acquire knowledge A in order to 
acquire knowledge B. The nodes which depends on the 
target node are called “parent nodes” of the target node. 
In addition, a set of problems which correspond to the 
nodes has to be prepared. If a student provides a correct 

ncgau~c  numberr and ncgdtivc tiumbcr, 
1 

Figure.] An example of Student model represented by 
belief networks 



answer to i-th problem, xi = 1 (he has i-fh 

knowledge) ,otherwise, xi = 0 . A joint probability 
distribution over the network is shown by 

P (1 )  

where n i  (x , ,x , ,A ,xY, } is a set of parents 

nodes that renders xi and {xi x2 ,A xq, } conditionally 

independent. In particular, S is a directed acyclic graph 
such that ( 1 )  each variable corresponds to a node in S,  and 
(2) the parents of the node corresponding to Xi are the 

nodes corresponding to the variables in n ,  . 
The next section will propose a method to automatically 
construct the student model structure from the students' 
response data. 

P ( X , , X I , A  , X , v  I S ) = n  p ( x , I n , , s ) '  
, = I  

3. Estimation of conditional parameters and 
posterior distribution 

This paper proposes a method to automatically construct 
the student model from the data. It is necessary to define 
the model in ( I )  as a statistical model in which parameters 
are estimated. Now, consider a database 
X = { x , , ~ ~  1, (s = 1,A , n, i = 1,A , N ,  k = 0,A , Y, - 1) , 

where x , , ~ ~  = 1 when the s-th student takes k-th 

knowledge states about the i-th node, otherwise x , , ; ~  = 0 .  
Let e,, be a conditional probability parameter of x i  = k 
when ni = j , then thc following likelihood function can 
be obtained. 

i = I )  
' = I  I = '  x n y x  

A =11 

where 
0 ,  = [t9,], 1, ( i  = l , A  .N. j = I , A  q , , k  = 0.1) , and 
it  is assumed that the prior distribution has a Dirichret 
distribution ,which is a conjecture distribution of (2). That 
is, 

,=I , = I  x r ( , * t , J ,  )'=U 

il = o  

where r() indicates Gamma function. Then, the 
following posterior distribution is obtained, 

I 

,v y ,  (E ' I  ' yl + ' I  ,,A - ' ) I 
p(X,0, I S , = X  x I x e,,, n',,& * %  - 1  

' = I  ' = I  x r(tl ' ,J, +n, ,A - I )  i=O 

i = o  

(4) 

Therefore, the following maximum a posterior estimator 
can be derived ; 

n' , j ,+n, ik  
n',, +ni 

B,, = 

1 I 

where Illij = n'ijk , nij = c nijk . 
k =O k=O 

Thus, the conditional probability parameters e,, and the 

posterior distribution p ( x ,  0, I s) can be estimated 

from (4) and (5) .  

4. Student models construction by using 
information criteria 

Let us consider a structure with just three nodes, then 
there are eight possible structures as shown in Figure 2. 
The problem is how to find the optimum structure of the 
student model. In this case, it is well known that 
information criteria are useful. Since Akaike's 
criterion[ lo], various criteria have been proposed. (For 
example, ABIC[lO], BIC[I 11, MDL[12], and so on). The 
student model construction problem in this paper employs 
Bayesian approach, i t  is considered that employing 
Bayesian information criteria, ABIC, BIC, MDL, and so 
on, is valid. 
ABIC is given by 

ABIC(mode1) = -21og p ( x ,  0, I s) +2K. (6) 
BIC and MDL have the same formulation by 
BIC(MDL) (model ) =-2Iog p ( x ,  0, I s) +2Klogn. (7) 
Finding the structure is completed by minimizing these 
criteria. However, these criteria are generally derived by 
approximating the posterior distribution or predictive 
distribution, then, it is considered to expect better results 
by deriving directly a criterion from the belief networks 
model. For this motivation, Cooper [9]  derived the 

Figure 2 .  Possible structures of the student models with 
three nodes 
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predictive distribution of the belief networks when the 
prior distribution has a unique distribution. This criterion 
is given by 

50 205 

It should be noted that the optimum structure is obtained 
by maximizing this criterion. The next interest is which 
criterion is best for the student model construction 
problem. Here, some Monte Carlo studies are 
demonstrated. For simplicity, Figure 1 is considered as 
the true model. The random data is generated from the 
Figure 1, and the sample sizes are 50, 100, 200, 300, 400, 
500. 600, 700, 800, 900, and 1000. 1000 realization for 
each sample size were generated. For each realization, the 
relative performances of the criteria mentioned before 
can be compared The results, the number of times when 
the criteria selects the true structure among 1000 iterations 
for each sample size are shown in Table 1 

75 18 
I O 0  
200 
300 

423 347 222 
486 64 1 487 
494 786 634 

600 487 972 835 
7 00 480 
800 458 988 

I 900 462 988 88 1 
1000 424 989 897 

From the table, BIC or MDL shows the best performances 
lor large sample sizes, and ABIC shows the best 
performance for small sample sizes. In an actual school 
situation, i t  is difficult to gather a large sample of data, in 
this sense, i t  is considered that ABIC provides the best 
performance. However, for a small sample (loo), ABIC 
selects the true structure with a probability of 0.42 at most. 
Then. this paper proposes more effective method to 
construct the student model in the next section. 

5. Student models construction by using 
teacher's expert knowledge 

5.1. The general predictive distribution 
All information criteria mentioned in section 4 assumes 
that the prior distribution, which reflects prior knowledge 
about the student model, has a uniform distribution. 
However, in education, most teachers have prior 
knowledge about the student model. The main idea of this 
paper is to develop an efficient information criterion by 

integrating a teacher's expert knowledge into the prior 
distribution. To realize this idea, an exact general 
predictive distribution with various prior distributions 
should be derived. From the assumptions in this paper, the 
general predictive distribution can be derived as follow: 
That is, from (4), the predictive distribution is given by 

It should be noted that the general predictive distribution 
has the hyper parameter . In fact, this hyper 

parameter acts the most important role. The predictive 
distribution converges to various information criteria by 
changing the value of the hyper parameter. When 
a',,k = 1 (the prior distribution has the unique distribution 

shown in Figure 3), the predictive distribution converges 
to Cooper's criterion, although i t  is natural from the 
definition. When = 1/2  (the prior distribution has 

the U distribution shown in Figure 3), the predictive 
distribution converges to BIC, or MDL. Moreover. when 

= -log e,, + 1 / 2 (the prior distribution has the 

convex distribution shown in Figure 3), the predictive 
distribution converges to AIC. It should be noted that 
BIC, or MDL and Cooper's criterion assume stronger 
penalties for the complexity of the model, which is the 
number of parameters, than one of AIC. Then, AIC has a 
tendency to select a structure with more arcs than the true 

I 5 #  

Figure 3. Prior distributions for various hyper parameters 

structure, and BIC or MDL and Cooper's criterion have a 
tendency to select a structure with less arcs than the true 
structure. 

5.2. Integration of teacher's knowledge 
By using these properties, utilizing the teacher's prior 
knowledge about student model into the predictive 
distribution (9) can be considered. The procedure is as 
follows: 1) A teacher constructs a student model structure 
by using his or her expert knowledge, 2)based on this 
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structure, let the value of the hyper parameter for the arcs 
which is considered to exist be nlllk = - log e,,, + 1 / 2 , 
and let the value of the hyper parameter for the arcs 
which is not considered to exist be n‘,,, = 1 / 2 .  Now, 

consider three possible structures, as prior knowledge 
structures, A, B, C concerning the structure in Figure 1 as 
follows: A is the structure with full arcs, B is the true 
structure, and C is the structure with no arc. Let consider 
three cases of which each structure is considered as a prior 
knowledge about the student model. The same Monte 
Carlo studies as section 4 are demonstrated in Table 2. If 
a teacher knows the true structure, the criterion acts more 
exactly than the traditional criteria for small sample sizes. 
Moreover, if a teacher has a wrong knowledge as 
structures A and B, the proposed criterion acts the same as 
the traditional criteria. 

Sample sizes 
50 

Table 2. The results of the Monte Carlo experiments by 
using prior knowledge 

Structure A Structure B Structure C 
205 982 75 

100 I 423 972 347 
200 486 I oon 64 1 

900 1000 
1000 424 1000 9x9 

300 

7. Application 
By using the data from 294 junior high school students 
data, the student model in a domain of a simple equation 
is estimated from (7). Expert knowledge is employed as 
prior knowledge, although i t  is omitted for want of space. 
It is known that the obtained structure is reasonable 
considering the meanings of the nodes. 

400 
500 
600 

8. Conclusions 
This paper proposed a new information criterion for the 
Student model construction problem by using a teacher’s 
expert knowledge. The Monte Carlo experiments showed 
the efficiency of the proposed model. 

497 IO00 908 
498 1000 95 1 
487 1000 972 
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