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Abstract

Recent reports have described that learn-
ing Bayesian networks are highly sensitive
to the chosen equivalent sample size (ESS)
in the Bayesian Dirichlet equivalence uniform
(BDeu). This sensitivity often engenders some
unstable or undesirable results. This paper de-
scribes some asymptotic analyses of BDeu to
explain the reasons for the sensitivity and its
effects. Furthermore, this paper presents a pro-
posal for a robust learning score for ESS by
eliminating the sensitive factors from the ap-
proximation of log-BDeu.

1 Introduction

An extremely popular Bayesian network learning
score is the marginal likelihood (ML) score (using a
Dirichlet prior over model parameters), which finds
the maximum a posteriori (MAP) structure, as de-
scribed by Buntine (1991) and Heckerman et al.
(1995). In addition, the Dirichlet prior is known as a
distribution that ensures likelihood equivalence; this
score is known as “Bayesian Dirichlet equivalence
(BDe)” (Heckerman et al., 1995). Given no prior
knowledge, the Bayesian Dirichlet equivalence uni-
form (BDeu), as proposed earlier by Buntine (1991),
is often used. Actually, BDe(u) requires an “equiva-
lent sample size (ESS)”, which reflects the degree of
a user’s prior belief. Moreover, recent studies have
demonstrated that ESS plays an important role in
the resulting network structure estimate.

Steck and Jaakkola (2002) demonstrated that the
deletion of an arc in a Bayesian network is more
likely to occur as ESS goes asymptotically to zero
for a large sample. Actually, the learned network be-
comes an empty graph when ESS approaches zero.

This result is particularly surprising because it had
been believed that the likelihood, which has consis-
tency, would become dominant in the score as ESS
approaches zero. That study also demonstrated that
when the value of ESS becomes large, the number of
arcs in the structure tends to increase to a complete
graph, which is also counterintuitive because it had
been believed that a Bayesian prior relaxed overfit-
ting in learning. Then increasing ESS blocked the
addition of extra arcs.

Silander, Kontkanen and Myllymaki (2007) con-
ducted a series of empirical experiments to find the
optimum ESS-value of BDeu. The results confirmed
earlier results described by Steck and Jaakkola
(2002), showing that the solution of the network
structure is highly sensitive to the chosen ESS-value.
To solve the sensitivity problem of BDeu, they pro-
posed an empirical Bayes method of optimizing ESS
to maximize the ML.

Steck (2008) showed that the log-Bayes factor of
dependence between two nodes using BDeu is ex-
pressible as a tradeoff between the skewness (non-
uniformity) of the sample distribution and model
complexity. This result is almost identical to the
Akaike information criterion (AIC; Akaike, 1974).
Additionally, Akaike proposed an empirical method
of optimizing ESS to minimize the expected error
measured using AIC.

To clarify the properties of BDe(u), Ueno (2010) an-
alyzed the log-BDe(u) asymptotically, finding the re-
sult that it is decomposed into the log-posterior and
the penalty term of the complexity which reflects the
difference between the learned structure from data
and the hypothetical structure from the user’s knowl-
edge. As the two structures become equivalent, the
penalty term is minimized with the fixed ESS. Con-



versely, the term increases to the degree that the two
structures become different. Furthermore, the result
suggests that a tradeoff exists between the role of
ESS in the log-posterior (which helps to block extra
arcs) and its role in the penalty term (which helps to
add extra arcs). That tradeoff might cause the BDeu
score to be highly sensitive to ESS and might make
it more difficult to determine an approximate ESS.
However, Ueno (2010) was not able to identify the
causes of the tradeoff in BDeu or a means to solve
the problems. In addition, although he assumed im-
plicitly that all the hyperparameters were more than
1.0, this is an impractical constraint, especially for
BDeu, because the hyperparameters usually become
less than 1.0 when the parameters become numerous.

Thereby, this work expands on Ueno(2010)’s approx-
imation of BDeu by relaxing the constraint on the
hyperparameters to obtain more accurate results.
The results show that BDeu becomes more sensitive
to ESS as ESS approaches zero. Furthermore, based
on results of some asymptotic analyses, this study
identifies the reasons for the sensitivity of BDeu by
decomposing it into two parts: (1) the prior term
that is independent of data, and (2) the likelihood
term that reflects data. Results of this study show
that the role of the prior term rapidly changes from
strongly blocking extra arcs to strongly helping to
add arcs. In fact, the results show that the prior
term is highly sensitive to ESS and that it causes
some odd phenomena of BDeu.

The results also show that the prior of BDeu does
not represent ignorance of prior knowledge but repre-
sents a user’s prior belief for the uniformity of condi-
tional distribution, which causes the optimal ESS to
become large/small when the empirical conditional
distribution becomes uniform/skewed. This is the
main factor that derives the sensitivity of BDeu to
ESS.

Additionally, to solve the sensitivity problem, we
propose a robust learning score (called “NIP-BIC )
for ESS by eliminating the sensitivity factors from
the approximation of log-BDeu because it is impos-
sible to eliminate them directly from the log-BDeu
function. Numerical experiments show that NIP-
BIC is effective especially when we have no prior
knowledge.

2 Learning Bayesian networks

Let {x1, 22, -+ ,xn} be aset of N discrete variables,
each of which can take a value in the set of states

{1,---,7;}. Here, x; = k means that an z; is state k.
According to the Bayesian network structure g € G,
the joint probability distribution is given as

N
=[IpGi 1m0, ()
=1

where G signifies the possible set of Bayesian net-
work structures, and where II; denotes the parent
variable set of x;.

p(xlax%'” y TN | g)

Next, we introduce the problem of learning a
Bayesian network. Let 0;;, be a conditional prob-
ability parameter of z; = k£ when the j-th instance
of the parents of z; is observed (We write II; = j).
Buntine (1991) assumed the Dirichlet prior and used
an expected a posteriori (EAP) estimator as the pa-

rameter estimator © = (é”k)7(l =1,---,N,j =
17"',Qi7k:17"'a7“i_1):
gij_k:M,(/ﬂ:L...’ri_l), (2)

Qij + Nij
where n;j;, represents the number of samples of z; =
k when II; = j and n;; = 22;1 Nk, and where
oj; denotes the hyperparameters of the Dirichlet
prior distributions. (o, is a pseudo-sample cor-
responding to ngji), o = ZZ=1 aiji, and 0,5, =
ri—1 A
1-— k=1 Gijk.

The marginal likelihood is obtained as

H H I(vij) ﬁ D(aijn +nije)
iy Dledg +nig) 2 Tlage)

3)
Here, ¢; signifies the number of instances of II; in
which ¢; = Hmzer{i 7. Also, X is a dataset. The
problem of learning a Bayesian network is to find
the MAP structure which maximizes the score (3).

p(X|g,a)

Particularly, Heckerman et al. (1995) presented
a sufficient condition for satisfying the likelihood
equivalence assumption in the form of the following
constraint related to hyperparameters of (3):

i = ap(z; = kI =5 | g"). (4)
Here, « is the user-determined equivalent sample
size (ESS) and ¢” is the hypothetical Bayesian net-
work structure that reflects a user’s prior knowledge.
This metric was designated as the Bayesian Dirichlet
equivalence (BDe) score metric.

As Buntine (1991) described, a;ji = Ty is re-
garded as a special case of the BDe metric. Hecker-
man et al. (1995) called this special case “BDeu”.
Qi = ﬁ does not mean “uniform prior” but “the
same value of all hyperparameters for a variable”.



3 Previous works

For cases of which we have no prior knowledge, BDeu
is often used in practice. Heckerman et al. (1995)
reported, as a result of their comparative analyses
of BDeu and BDe, that BDeu is better than BDe
unless the user’s beliefs are close to the true model.
BDeu requires an “equivalent sample size (ESS)”,
which is the value of a free parameter specified by
the user. Recent reports have described that ESS in
BDeu plays an important role in learning Bayesian
networks (Steck and Jaakkola, 2002, Silander, Kon-
tkanen and Myllymaki, 2007) .

To clarify the mechanism of BDe, Ueno (2010) an-
alyzed the log-BDe asymptotically and derived the
following theorem.

Theorem 1. (Ueno 2010) When a+n is sufficiently
large, log-BDe converges to

1ogp<xwg7 a) =1logp(© | X, g,q) (5)

—fzzzm_ log< Zjk)—!—const,

i=1 j=1 k=1 Qijk

where logp(@ | X,g9,a) =

qq T4

Z Z Z aijr + nijk) log (((1”11: i Z:jl)v)

i=1 j=1 k=1

and const is the term that is independent of
the number of parameters. From (5), log-BDe
can be decomposed into two factors: (1) a log-
posterior term logp(© | X,g,a) and (2) a penalty

1\ Qi T n—l Nijk
52 1245 12 1Og<1+aljk)
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This well known model selection formula is generally
interpreted (1) as reflecting the fit to the data and
(2) as signifying the penalty that blocks extra arcs
from being added.

term

Ueno  (2010)  described  that  the  term
Zﬁil 1Dk log (1 + 27—;’;) in (5) reflects
the difference between the learned structure from
data and the hypothetical structure g" from the
user’s knowledge in BDe. To the degree that the
two structures are equivalent, the penalty term is
minimized with the fixed ESS. Conversely, to the
degree that the two structures differ, the term is
larger. Moreover, from (5), a determines the mag-
nitude of the user’s prior belief for a hypothetical
structure g”. Consequently, the mechanism of BDe
makes sense to us when we have approximate prior
knowledge. However, Ueno (2010) did not present

a sufficiently detailed discussion of the mechanism
of BDeu for circumstances in which we have no
knowledge.

Therefore, we expand on Theorem 1(Ueno, 2010) to
derive a more accurate asymptotic analysis of BDeu
and to identify the main reasons for its sensitivity to
ESS.

4 Asymptotic analysis of BDeu

Asymptotic analyses of the log-BDeu are presented
to find the reason for the sensitivity. First, from (3),
we decompose log-BDeu into two parts (1) the prior
term (the first term in (6)), which is independent of
data and (2) the likelihood term (the second term in
(6)), which reflects data:

logp(X | g) =

ZZ <logF oj) Zlogl“ Qijk ) (6)

=1 j=1

N q; T
+Z (Zlogr Qijk +n2]k) logr(aij +nz])) P
i=1

Jj=1 k=1

%q, This section primarily presents

analysis of (1) the prior term and (2) the likelihood
term, respectively, and secondarily presents integra-

tion of the results to support the asymptotic analysis
of BDeu.

where a1, =

4.1 Analysis of prior term

Silander, Kontkanen and Myllymaki (2007), based
on results of some simulation experiments, reported
that the prior term acts as a complexity penalizing
factor and monotonically decreases concomitantly
with increasing «. This paper mathematically de-
rives the following theorem.

Theorem 2. When all the hyperparameters are less
than 1.0(a < r;q;), the prior term is approximated

as
ZZ (logF (aij) Zlogf (aijr) )

=1 j=1

Z -—110g

+ O(1).

Triq;

Proof. When «;jy, is sufficiently small, approximat-
ing 1/T (k) = aiji + O ”k) (Steck and Jaakkola,
2002), we obtain

ZZ <10gF aij) ZlogF Qijik )

=1 j=1



i=1 j=1

Using Jensen’s inequality for a € (0, 1) because the
log function is a convex function,

— Z log aiji + log i < log ;.
b k=1

From r; > 1.0, l Zlogaijk <logay;. (7)

r
Y k=1

Consequently, we obtain

ZZ (logF (aiz) Zlogf‘ Qijk )

=1 j=1

R

=1 j=1

= Zqz

IN

Zlog aijk + O(1).

k=1

(1)
O

From Theorem 2, When all hyperparameters are less
than 1.0, the term ZZ 16i(ri — 1) log %~ dominates
the prior term and increases the complexity penalty
rapidly as the number of parameters increases. Con-
sequently, BDeu produces empty graph structures
when « approaches zero.

Theorem 3. When all the hyperparameters are

greater than 1.0 (o > r;q;), the prior term can be
approrimated as

> Z <log (o) — Z log F(Qz‘jk))

i=1 j=1

@
Zalogm + = Zqz (ri — 1) log S (righ) +O().

Proof. Here, we use the following Stirling series (c.f.
Box and Tiao, 1992), as

logT'(a) = %log(%r)—i— (a— 1) loga—a+ O (1>
a

When all the hyperparameters are greater than 1.0
(a > riqi) we obtain

ZZ <logF (cvij) Zlogf Qijk) > =

=1 j=1

Zlog ik + log ouj
k=1

(( ; — 1) log(2m)

+O(mazi(=1)),

using Jensen’s inequality for o < 1.0, according to (7)

ZZ (Z log avijr — loga”> + O(mazx;) ( ) )

v

1
— Zlog ik > log o, we obtain

b k=1

ZZ <logF ij) ZlogF ijk )

=1 j=1

Zalognfqul
+ QZZ

1=1 j=1

o
— Zalogn—i— qu e log2 (r~q-)+0(1)

Y

r; —1)log 2w

Z log ai;ji + O(1)

k=1

Theorem 3 shows also that when all the hyperparam-
eters are greater than 1.0, the term 1 SN g;(r; —
1) log m dominates the prior term and increases
with increasing a. The increasing rate of the prior
term decreases gradually as the number of parame-
ters increases because of the term log m Con-
sequently, the prior term produces complete graph
structures when a becomes extremely large.

From Theorems 2 and 3, the prior term blocks the
addition of arcs when oy, < 1.0 for all the hyper-
parameters and helps to add arcs when a;;; > 1.0
for all hyperparameters. The role of the prior term
changes rapidly from strongly blocking addition of
arcs to strongly helping to add arcs dependent on «.
Therefore, the prior term is highly sensitive to a and
might cause some odd phenomena of BDeu.

4.2 Analysis of likelihood term

This section presents analysis of the likelihood term
in (6).

Theorem 4. When n + « is sufficiently large, the
likelihood term converges to

Z Z <Z IOgF Qi + nz]k) IOgF(OLi]‘ + nlj))

=1 j=1

= logp(©]X,g,0)

—ZZ< Z1og(a”’“;r"“k)> +0(1).

i=1 j=1 k=1

Proof. When n + « is sufficiently large, using the
Stirling series, we obtain

ZZ (Z IOgF ik + nz]k:) logr(aij + nl]))

=1 j=1

qi T

S SR e G

i=1 j=1k=1



Z log QK + nz]k)

k=1

l\)\r—t
||'Mz

Z( » — 1) log(27) —

. - Zq’L
+log(aij +nij)) + O(maz:(— =)

With Jensen’s inequality ,
L rl

(az]k: + nz]k)
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i=1 j=1 k=1

SN ((”; 2 ;1og(o‘”’“;””’“)) + o).

O
Theorem 4 shows that the likelihood term can
be decomposed into (1) the log posterior term

N i i ijktTij
Yt g (e 4 nie)log (C(Yof;}zi;l;)
and (2) the penalty term of complexity

LN, 2 (e Y log(Ruts) ).

The result shows that oy, in the likelihood term
works as pseudo-data that augments data to support
the hypothetical structure. Especially for BDeu, it
works to avoid overfitting for parameter estimation
regularization. In contrast, « in the prior term di-
rectly adds or deletes arcs according to the user’s
hypothetical structure g" for the learning structure
regularization.

In addition, Steck and Jaakkola (2002) showed that
asymptotically, as a approaches zero, the addition or
deletion of an arc in a Bayesian network is infinitely
favored or disfavored. The reason is explainable from
the following theorem.

Corollary 1. When a+ n is sufficiently small, the
likelihood term converges to

Z Z <Z log T'(vijk 4 nijr) — log T'(auy + ”u))

i=1 j=1

fqu (ri — 1) log( )+0(1).

Proof. When a+n < 1.0, then n is expected to be
zero. Therefore, when n is zero and « approaches
zero, we can prove the theorem in the same mode of
Theorem 2. O

Tiqs

When using a — 0 and large data, BDeu yields an
empty graph because the prior term dominates the
BDeu, as shown in Theorems 2 and 4. However,
when o — 0 and small data, if no zero sample cell
exists in each n;;i, then the prior term dominates
the BDeu, as shown in Theorem 2. By increasing
the number of arcs until some zero sample cells are
generated, the change of the likelihood term becomes

greater than that of the prior term. Consequently,
BDeu adds extra arcs if zero sample cells are gener-
ated by the addition. Therefore, to solve this prob-
lem, determination of extremely small « for sparse
data should be avoided.

4.3 Analysis of BDeu

Theorem 1(Ueno 2010) for BDeu holds only when
a > r;q; and n is large. Theorem 2, 3, and 4 relax
the constraint a > r;¢; to obtain the following more
accurate result.
Corollary 2. When a > r;q;, (i =1,--- |N) and n
1s sufficiently large, log-BDeu converges to

N

)ZQZIOgT1+lOgP(@|X795a) (8)

i=1

ZZZ“_

'Lljlkl

When a < riq;, (i =1,---

logp(X | g,

log (1 + n”k) +0(1),

Qijk

,N) and n is sufficiently

large,
log p(X | g7 = 1ogp(é | X, g, ) 9)
1 —1) NN Tk
Z Z ( Zlog(mg_k )) +0(1),
i=1j=1 k=1 v

where jp = .
Lq?,

To be precise, the penalty term in (9) is

log (24t tik ) but ayj,(< 1.0) in the numerator is

27ra ik

dropped ‘because n,;i is sufficiently large. The re-
sult in (8) is the same as in Ueno (2010). How-
ever, the result in (9) is more important for BDeu
than that in (8) because %~ is usually less than 1.0
when the number of parameters becomes large. The
main difference of the penalty terms in (8) and (9)
is only the a;;; in (8) and a?jk in (9) because the
constant term 27 can be dropped. Namely, term

N i Ti— nij .
3 2sim1 21 ((ril) Ly log(3 @’;k)) in (9) also

reflects the difference between the learned structure
from data and the hypothetical structure ¢g" from
the user’s knowledge. From (8), when a;;, > 1, the
penalty term with large «;;;, decreases to add the
arcs which are included in the user’s hypothetical
structures. From (9), when oy, < 1, the penalty
term with small «;j;, increases to delete the arcs
which are not included in the user’s hypothetical
structures.

For BDeu, af;, = (Ti“qi)g,(j = 1,05k =
1,-+-,r;) in (9) also takes the same value for all the
parameters given the number of parameters. There-
fore, the penalty term of BDeu with small « also

reflects the difference between the empirical distri-



bution n;j; and the uniform distribution of a;jy.
Moreover, the penalty magnitude of complexity in
(9) rapidly becomes larger as the number of param-
eters increases compared with that in (8) because of
the term afjk. Consequently, BDeu has the com-
plexity penalty term that increases as the empirical
distribution becomes skewed (non-uniform).

Regarding sensitivity problems, they are explainable
as follows. The optimal a should become large to in-
crease the magnitude of the penalty term when the
empirical distribution is uniform because the user’s
hypothetical structure (the uniform distribution of
;) is true. In contrast, the optimal « should be-
come small when the empirical distribution is skewed
because the user’s hypothetical structure is not true.
Consequently, the uniform distribution assumption
in BDeu suffers from the sensitivity of BDeu to «.
Steck (2008) reported that the optimal a of BDeu
becomes small when the conditional distributions of
the variables are very skewed. Our analysis agrees
with this result.

Next, we will consider the meaning of the prior in
BDeu. From Theorems 2, 3 and 4, only the prior
term reflects ;i in the penalty terms in (8) and
(9). Namely, the prior term represents the user’s
hypothetical structure g" in the penalty term which
reflects the difference between the empirical distri-
bution and the prior distribution. Accordingly, the
prior term is extremely important when we use the
user’s approximate prior knowledge for BDe. How-
ever, when we use BDeu with no prior knowledge, the
prior term might suffer some unstable or undesirable
results because of the sensitivity. The reason is that
the prior term does not represent ignorance of prior
knowledge but a user’s prior belief for the uniformity
of conditional distribution. Therefore, when the em-
pirical distribution is skewed, BDeu can be expected
to reduce the degree of the prior belief by reducing
the « value because the hypothetical structure is not
true. In contrast, when the empirical distribution
is uniform, BDeu can be expected to increase the
degree of the prior belief by increasing the « value
because the hypothetical structure is true. Conse-
quently, BDeu does not assume a non-informative
prior but rather a user’s prior belief for the unifor-
mity of conditional distribution. Therefore, empir-
ical approaches (Silander, Kontkanen, and Mylly-
maki, 2007, Steck 2008) from actual data are use-
ful to adjust the degree of prior belief. However,
these approaches leave the following problem. Actu-

ally, the degrees of uniformity for the variables differ
greatly although the only one optimum « of BDeu for
a network is determined from the uniformities of all
variables. Therefore, these methods make it difficult
to find an approximate « for learning a network that
has combined skewed and uniform conditional distri-
butions. In addition, Bayesian networks usually have
combined skewed and uniform distributions.

5 Robust learning for prior belief

The previous section identified the factors that might
cause the sensitivity of BDeu. However, it is impos-
sible to eliminate the penalty term for the skewness
(non-uniformity) of the conditional distribution di-
rectly from BDeu because it can not be decomposed
from log-BDeu. Therefore, we eliminate the sensi-
tive factors from the approximation in Corollary 2.
The sensitive factors in the approximation are the
penalty term for the skewness of the conditional dis-
tribution in (8) and (9).

First, we replace the prior term of BDeu by a con-
stant term because it is highly sensitive to «. This
procedure is equivalent to ignore the prior term.
Then we consider only the likelihood term. The like-
lihood term still has the difference penalty for the
skewness of conditional distribution because n;;, re-
mains in the penalty term. For that reason, we re-
place the likelihood term by the lower bound. The
following theorem to obtain the lower bound is prov-
able from Theorem 4.

Corollary 3. When a + n is sufficiently large, the

lower bound of the likelihood term can be approxi-
mated as

ZZ (Z log T'( iz + nijr) — log I'(cuis + nij))

=1 j=1 \k=1
> Ing(e ‘ ng7a) - ik(g) log(oc—i—n), (10)
where k(g) is the number of parameters and aijr = r(');'

Proof. From Theorem 4,

ZZ <Z log T'(cvijk + nijr) — log I'(ouy + nz’j))

=1 j=1

\Y

logp(9 | X, g,aq)

(T S )
i=1 j=1
because a > avji, n > Nijk for Vz,V],Vk,
(a+mn)
2

. 1
> logp(® | X,g,a) - gk(g) log



We obtain (10) because 27 is dropped when a+n is large.
O

This paper presents a proposal of a learning score
for Bayesian networks by maximizing the right
side of (10). We designate the score in (10)
“non-informative prior Bayesian information crite-
rion (NIP-BIC)”.

NIP-BIC is similar to the Bayesian information cri-
terion (BIC;Schwarz,1978) in (11) because NIP-BIC
gortlverges asymptotically to BIC for sufficiently large

ata.

N g 7

BIC = nignlog 2% Lp)logn. (11
;;;; B e ~ k(@) logn. (1)
Suzuki (1993) and Bouckaert (1994) proposed a
learning Bayesian network using BIC based on the
minimum description length (MDL) principle. The
most important difference between the BIC and NIP-
BIC is that the hyper-parameters remain in the term
Z;Zol (cviji +nijx) log % in (10), but do not
remain in BIC. When the data are few, learning
Bayesian networks with the BIC is well known to
tend to overfit the data. In fact, some studies (e.g.
Yang 2002) have demonstrated that the performance
of the BIC for Bayesian networks is somewhat un-
stable when insufficient data are given. Because the
likelihood 35,0, 329, S04, nijk log %2 is very sen-
sitive to variation in n,;;, and because n;;, might
vary with the database size, increasing the amount
of data might not reduce the chance of making errors
during structure induction. Therefore, the role of «

in the log-posterior term in (10) is important.

Additionally, BDeu when o = 1.0 is mostly approx-
imated by NIP-BIC because 7;¢;n;x in the penalty
term of (8) and (9) can be approximated by n since
Ejilriginijr] = n. Ueno (2010) recommended the
BDeu with @ = 1.0 corresponding to the smallest
positive assignment of the hyperparameters, which
allows the data to reflect the estimated parame-
ters to the greatest degree possible. Additionally,
the variances of the Dirichlet distribution are known
to decrease with the sum of the hyperparameters
(Castillo, Hadi, and Solares, 1997). This decrease
of variance also suggests that BDeu with o = 1.0 is
the best method to mitigate the influence of ESS for
parameter estimation. This paper therefore also rec-
ommends o = 1.0 as the ESS of NIP-BIC. Results
show that BDeu with o = 1.0 assumes the uniformity
of conditional distribution and remains sensitive to
a because it remains n;;;, in the penalty term.
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Figure 4: g4: Strongly uniform distribution
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Figure 5: g5: Combined skewed and uniform distri-
butions

6 Numerical examples

We conducted simulation experiments to compare
NIP-BIC with BDeu. We used small network struc-



Table 1: Learning with ML and BDeu by changing «

gl ML (a;, = 1.0) BDeu(a = 0.01) BDeu(a = 0.1) BDeu(a = 1.0) BDeu(a = 10) BDeu(a = 100)
n o + - o =+ - o + - o + - o =+ - o + -
50 19 67 143 3 52 131 5 51 125 20 58 96 8 204 33 0 491 0
100 69 31 19 4 25 114 8 26 110 32 31 69 21 139 14 0 486 0
200 T 23 2 3 18 109 41 14 67 84 9 11 50 58 2 0 467 0
500 54 50 0 94 3 3 97 3 0 92 8 0 74 30 0 0 433 0
1000 39 81 0 100 0 0 100 0 0 99 1 0 87 14 0 0 409 0
g2 ML (o, = 1.0) BDeu(a = 0.01) BDeu(a = 0.1) BDeu(a = 1.0) BDeu(a = 10) BDeu(a = 100)
n o =+ - o + - o + - o + - o —+ - o —+ -
50 31 44 75 1 16 228 2 25 163 4 37 125 19 95 63 0 354 9
100 39 73 30 0 18 129 0 21 121 12 27 103 39 68 44 0 368 9
200 31 90 4 1 14 113 12 13 100 50 16 52 65 38 8 0 340 1
500 34 107 0 66 1 35 95 0 5 99 1 0 89 11 0 1 262 0
1000 18 143 0 100 0 0 100 0 0 100 0 0 92 8 0 16 157 0
g3 ML (i, = 1.0) BDeu(a = 0.01) BDeu(a = 0.1) BDeu(a = 1.0) BDeu(a = 10) BDeu(a = 100)
n o =+ - o =+ - o + - o + - o =+ - o —+ -
50 9 66 115 0 2 421 0 9 349 0 31 218 5 78 139 1 232 63
100 14 92 64 0 1 309 0 3 215 0 14 149 9 57 104 7 186 44
200 19 123 22 0 1 168 0 5 131 4 6 105 31 30 58 13 156 20
500 17 146 3 2 1 101 11 2 90 52 3 48 7 17 11 39 92 4
1000 18 152 0 47 0 53 83 0 17 97 0 3 99 1 0 69 36 0
g4 ML (o, = 1.0) BDeu(a = 0.01) BDeu(a = 0.1) BDeu(a = 1.0) BDeu(a = 10) BDeu(a = 100)
n o + - o + - o + - o + - o —+ - o + -
50 2 130 243 0 1 497 0 5 477 0 17 421 1 85 302 2 209 192
100 6 143 154 0 1 490 0 4 457 0 16 364 0 53 248 4 171 138
200 5 146 87 0 0 458 0 1 399 0 4 281 4 25 185 5 119 104
500 17 135 37 0 0 274 0 0 202 2 1 144 13 9 97 25 65 57
1000 19 148 12 0 0 168 1 0 139 8 0 107 29 5 75 51 36 30
g5 ML (i, = 1.0) BDeu(a = 0.01) BDeu(a = 0.1) BDeu(a = 1.0) BDeu(a = 10) BDeu(a = 100)
n o + - o + - o + - o + - o + - o + -
50 11 68 158 0 41 211 3 51 184 7 69 149 4 162 72 0 363 15
100 45 63 53 1 29 156 2 34 138 27 46 97 23 114 37 0 368 0
200 48 59 6 10 26 116 37 23 78 80 13 21 47 67 7 0 358 0
500 42 77 0 96 0 4 99 0 1 96 4 0 80 21 0 0 324 0
1000 25 102 0 100 0 0 99 1 0 99 1 0 89 13 0 0 281 0
Table 2: Learning with BIC and NIP-BIC by changing o
gl BIC NIP(a =0.01) NIP(a =0.1) NIP(a =1.0) NIP(a = 10) NIP(a = 100)
n o + - o + - o + - o + - o —+ - o + -
50 0 476 7 18 46 117 18 45 118 15 41 121 7 41 132 0 40 147
100 0 452 7 48 14 61 48 14 61 49 14 60 49 16 58 21 43 78
200 0 398 3 91 5 8 91 5 8 92 4 7 95 3 5 20 117 8
500 1 302 0 99 1 0 99 1 0 100 0 0 99 1 0 13 127 0
1000 27 145 0 100 0 0 100 0 0 100 0 0 100 0 0 39 79 0
22 BIC NIP(a = 0.01) NIP(a =0.1) NIP(a = 1.0) NIP(a = 10) NIP(a = 100)
n [¢] + - o + - [¢] + - o =+ - o =+ - o =+ -
50 0 473 9 8 29 115 8 29 116 6 26 118 2 22 128 0 7 278
100 0 422 11 24 26 89 24 26 89 22 26 91 21 21 96 0 17 121
200 1 323 2 67 12 35 67 12 35 67 12 35 68 9 36 53 9 52
500 55 75 0 98 2 0 98 2 0 98 2 0 99 1 0 96 4 0
1000 81 22 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0
23 BIC NIP(a = 0.01) NIP(a =0.1) NIP(a = 1.0) NIP(a = 10) NIP(a = 100)
n o + - o + - o + - o —+ - o —+ - o —+ -
50 0 446 24 0 33 191 0 33 191 0 26 202 0 18 225 0 0 448
100 0 346 47 2 19 135 2 19 135 1 18 138 0 10 145 0 3 248
200 21 138 40 11 8 97 11 8 97 11 8 97 9 6 99 3 6 114
500 67 34 6 70 3 29 70 3 29 70 3 29 69 3 30 60 2 40
1000 90 11 0 99 0 1 99 0 1 99 0 1 99 0 1 99 0 1
24 BIC NIP(a = 0.01) NIP(a =0.1) NIP(a = 1.0) NIP(a = 10) NTP(a = 100)
n o + - o + - o + - o + - o —+ - o + -
50 0 427 99 0 26 400 0 26 400 0 25 407 0 14 431 0 1 498
100 3 282 143 0 21 332 0 21 332 0 21 333 0 18 359 0 2 473
200 6 75 145 0 7 250 0 7 250 0 7 252 0 7 257 0 3 351
500 23 17 83 6 3 122 6 3 122 6 3 122 5 3 125 2 1 149
1000 36 7 64 13 1 100 13 1 100 13 1 100 13 1 100 10 0 105
5 BIC NIP(a = 0.01) NIP(a =0.1) NIP(a = 1.0) NIP(a = 10) NIP(a = 100)
n o + - o + - o + - o + - o —+ - o —+ -
50 0 459 21 8 52 149 8 52 150 6 50 153 5 50 162 0 26 227
100 0 429 10 34 32 88 34 32 87 34 32 87 37 34 82 18 45 111
200 3 276 5 82 13 17 82 13 17 82 13 17 86 10 14 40 64 18
500 32 94 0 100 0 0 100 0 0 100 0 0 100 0 0 38 63 0
1000 66 43 0 100 0 0 100 0 0 100 0 0 100 0 0 61 39 0

tures with binary variables in Figs. 1, 2, 3, and 4, the parent variable states (gl: Strongly skewed dis-
in which the distributions are changed from skewed tribution). By gradually reducing the difference of
to uniform. Figure 1 presents a structure in which the conditional probabilities from Fig. 1, we gener-
the conditional probabilities differ greatly because of  ated in Fig. 2(g2: Skewed distribution), Fig. 3(g3:



Uniform distribution), and Fig. 4(g4: Strongly uni-
form distribution). Additionally, we generated in
Fig. 5(gh:Combined skewed and uniform distribu-
tions) which has combined skewed and uniform con-
ditional distributions.

Procedures used for the simulation experiments are
described below.

1. We generated 50, 100, 200, 500, and 1,000 sam-
ples from the five figures.

2. Using the marginal likelihood(ML)(cvx =
1.0)(Cooper and Herskovits, 1992), BIC, BDeu
and NIP-BIC by changing « (0.01, 0.1, 1.0,
10, 100), Bayesian network structures were esti-
mated, respectively, based on 50, 100, 200, 500,
and 1,000 samples. We searched for the true
structure among all possible structures.

3. The times the estimated structure was the true
structure were counted by repeating procedure
2 for 100 iterations.

Table 1 presents the results for ML and BDeu. Table
2 presents the results for BIC and NIP-BIC. Column
“+7has the total number of extra arcs for the esti-
mated structures, and column “-” has the total num-
ber of missing arcs for the estimated structures. The
maximum quantities of “+” and “-” are both 500.
Column “O” has the number of correct-structure es-
timates in 100 trials.

The results presented in Table 1 reveal that BDeu
is highly sensitive to . That is, the optimum value
of a becomes small as the conditional distribution
becomes skewed. In contrast, the optimum value
of o becomes large as the conditional distribution
becomes uniform. As described in section 4, the
uniformity of conditional distribution as the user’s
prior belief causes this sensitivity. The ML with
o = 1.0, which also assumes the prior unifor-
mity with no constraints of the number of parame-
ters, shows much less accurate performance because
it does not satisfy the likelihood equivalence.

As shown in Table 2, the performance of NIP-BIC is
better than that of BDeu in almost all cases except
g4 (a = 10 and 100). Actually, BDeu provides bet-
ter performance when the conditional distribution
becomes uniform and when a becomes large because
the uniformity of conditional distribution is assumed
as discussed in section 4. Especially, for gb, NIP-BIC
strongly improves performance of BDeu for all « set-
tings. The reason is that learning a network combin-
ing skewed and uniform distributions is very difficult

to set an approximate « for BDeu. This advantage
is the most important for NIP-BIC because Bayesian
networks usually have combined skewed and uniform
distributions. The results also show that the per-
formance of BDeu is highly sensitive to « but the
performance of NIP-BIC is robust for a .

Additionally, it is noteworthy that the NIP-BIC per-
forms similarly to BDeu with a = 1.0 because BDeu
with a = 1.0 is mostly approximated by NIP-BIC,
as explained in Section 5. The results also show that
NIP-BIC provides better performance than BDeu
with a = 1.0 because BDeu assumes the uniformity
of conditional distribution and because it remains
sensitive to a.

The results for BIC show a lower level of perfor-
mance than the others because BIC tends to overfit
the data. The results also indicate that NIP-BIC
tends to suffer more missing arcs than BIC. The
reason is that the hyper-parameters remain in the
term of NIP-BIC S0 M + niji) log w
n (10), but they do not remain in BIC. The hyper-
parameters work to block overfitting for large data
but tend to suffer missing arcs for small data.

Consequently, NIP-BIC is a convenient learning
score when given no prior knowledge. As a result,
we can confirm that NIP-BIC relaxes the sensitivity
of BDeu to a and that it yields more robust estima-
tors.

7 Conclusions

This paper presented asymptotic analysis of log-
BDeu by improving the result reported by Ueno
(2010). Although the final asymptotic result was
almost identical to that presented earlier by Ueno
(2010), we also newly discovered that the penalty
term rapidly becomes larger, especially when the hy-
perparameters are less than 1.0. Furthermore, we
identified the reasons of the sensitivity of BDeu us-
ing some asymptotic analyses by decomposing it into
the following two parts: (1) a prior term that is in-
dependent of data, and (2) a likelihood term that
reflects data. Moreover, results show that the prior
term changes rapidly the role from strongly block-
ing extra arcs to strongly helping additional arcs.
The results show that the prior term acts as to be
highly sensitive to ESS and that it causes some odd
phenomena of BDeu. The results also showed that
the prior of BDeu does not represent ignorance of



prior knowledge but rather a user’s prior belief in
the uniformity of conditional distribution. The re-
sults further imply that the optimal ESS becomes
large/small when the empirical conditional distribu-
tion becomes uniform/skewed. This main factor un-
derpins the sensitivity of BDeu to ESS. Moreover, to
solve the sensitivity problem, we proposed a robust
learning score (called “NIP-BIC ”) for ESS by elim-
inating the sensitivity factors from the approxima-
tion of log-BDeu because it is impossible to eliminate
them directly from the log-BDeu function. Some nu-
merical experiments have shown that NIP-BIC is ef-
fective, especially when we have no prior knowledge.

This study elucidated the learning performances of
NIP-BIC using small network structures. Find-
ing the MAP estimate of the structure is an NP-
complete problem (Chickering, 1996). Recently how-
ever, the exact solution methods can produce results
in reasonable computation time if the variables are
not prohibitively numerous (ex. Silander and Myl-
lymaki, 2006, Perrier et al., 2008). An important
future task is evaluation of the performances of NIP-
BIC for large network structures from various per-
spectives.
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