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Abstract

Learning Bayesian networks is known to be highly sensitive to the chosen equivalent sample size (ESS) in

the Bayesian Dirichlet equivalence uniform (BDeu). This sensitivity often engenders unstable or undesired

results because the prior of BDeu does not represent ignorance of prior knowledge, but rather a user’s

prior belief in the uniformity of the conditional distribution. This paper presents a proposal for a non-

informative Dirichlet score by marginalizing the possible hypothetical structures as the user’s prior belief.

Some numerical experiments demonstrate that the proposed score improves learning accuracy. The results

also suggest that the proposed score might be effective especially for small samples.

1 Introduction

Marginal likelihood (ML) (using a Dirichlet
prior) that ensures likelihood equivalence, the
most popular learning score for Bayesian net-
works, finds the maximum a posteriori (MAP)
structure (Buntine, 1991; Heckerman et al.,
1995). This score is known as ”Bayesian
Dirichlet equivalence (BDe)” (Heckerman et
al., 1995). Given no prior knowledge, the
Bayesian Dirichlet equivalence uniform (BDeu),
as proposed earlier by Buntine (1991), is of-
ten used. Actually, BDe(u) requires an ”equiv-
alent sample size (ESS)”, which reflects the
degree of a user’s prior belief. Moreover, re-
cent studies have demonstrated that learning
Bayesian networks is highly sensitive to the cho-
sen equivalent sample size (ESS) (Steck and
Jaakkola, 2002; Silander, Kontkanen and Myl-
lymaki, 2007).

To clarify the BDe(u) mechanism, Ueno
(2010) analyzed log-BDe(u) asymptotically, ob-
taining the result that it is decomposed into the
log-likelihood and the penalty term of the com-
plexity, which reflects the difference between the
learned structure from data and the hypotheti-
cal structure from the user’s knowledge. As the

two structures become equivalent, the penalty
term is minimized with the fixed ESS. Con-
versely, the term increases to the degree that
the two structures become different. Further-
more, the result suggests that a tradeoff exists
between the role of ESS in the log-likelihood
(which helps to block extra arcs) and its role
in the penalty term (which helps to add extra
arcs). That tradeoff might cause the BDeu score
to be highly sensitive to ESS. It might make
it more difficult to determine an approximate
ESS.

Moreover, Ueno (2011) showed that the prior
of BDeu does not represent ignorance of prior
knowledge, but rather a user’s prior belief in the
uniformity of the conditional distribution. This
fact is particularly surprising because it had
been believed that BDeu has a non-informative
prior. The results further imply that the op-
timal ESS becomes large/small when the em-
pirical conditional distribution becomes uni-
form/skewed. This main factor underpins the
sensitivity of BDeu to ESS.

To solve this problem, Silander, Kontka-
nen and Myllymaki (2007) proposed a learn-
ing method to marginalize the ESS of BDeu.
They averaged BDeu values with increasing ESS



from 1 to 100 by 1.0 . Moreover, to decrease
the computation costs of the marginalization,
Cano et al. (2011) proposed averaging a wide
range of different chosen ESSs: ESS > 1.0,
ESS >> 1.0, ESS < 1.0, ESS << 1.0. They
reported that the proposed method performed
robustly and efficiently.

However, such approximated marginalization
does not always guarantee robust results when
the optimal ESS is extremely small or large. In
addition, the exact marginalization of ESS is
difficult because ESS is a continuous variable in
domain (0,∞).

Our proposal in this paper is a full non-
informative Dirichlet score. We assume all pos-
sible hypothetical structures as a prior belief of
BDe because the problem of BDeu is that it
assumes only a uniform distribution as a prior
belief. This paper presents a proposal for a non-
informative Dirichlet score by averaging the hy-
pothetical structures as a user’s prior belief.

The optimal ESS of BDeu becomes
large/small when the empirical conditional
distribution becomes uniform/skewed because
its hypothetical structure assumes a uniform
conditional probabilities distribution and the
ESS adjusts the magnitude of the user’s belief
for a hypothetical structure. However, the
ESS of full non-informative prior is expected
to work effectively as actual pseudo-samples to
augment the data, especially when the sample
size is small, regardless of the uniformity of
empirical distribution. This is a unique feature
of the proposed method because the previous
non-informative methods exclude the ESS
from the score(Averaged BDeu(Silander, Kontkanen

and Myllymaki, 2007,Cano et al., 2011), Normalized

Maximum Likelihood (NML)(Silander, Roos, and

Myllymaki, 2010) ).

Some numerical experiments demonstrate
that the proposed score improves learning accu-
racy. The results also suggest that the proposed
score might be effective especially for small sam-
ples.

2 Learning Bayesian networks

Let {x1, x2, · · · , xN} be a set of N discrete vari-
ables, each of which can take a value in the set of

states {1, · · · , ri}. Here, xi = k means that an
xi is state k. According to the Bayesian network
structure g ∈ G, the joint probability distribu-
tion is given as

p(x1, x2, · · · , xN | g) =
N∏
i=1

p(xi | Πi, g), (1)

where G signifies the possible set of Bayesian
network structures, and where Πi denotes the
parent variables set of xi.
Next, we introduce the problem of learning

a Bayesian network. Let θijk be a conditional
probability parameter of xi = k when the j-th
instance of the parents of xi is observed (We
write Πi = j). Buntine (1991) assumed the
Dirichlet prior and used an expected a poste-
riori (EAP) estimator as the parameter estima-

tor Θ̂ = (θ̂ijk), (i = 1, · · · , N, j = 1, · · · , qi, k =
1, · · · , ri − 1):

θ̂ijk =
αijk + nijk

αij + nij
, (k = 1, · · · , ri − 1), (2)

where nijk represents the number of samples of
xi = k when Πi = j and nij =

∑ri
k=1 nijk, and

where αijk denotes the hyperparameters of the
Dirichlet prior distributions. (αijk is a pseudo-
sample corresponding to nijk), αij =

∑ri
k=1 αijk,

and θ̂ijri = 1−
∑ri−1

k=1 θ̂ijk.
The marginal likelihood is obtained as

p(X | α, g) =
N∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk)

Γ(αijk)
.

(3)

Here, qi signifies the number of instances of
Πi in which qi =

∏
xl∈Πi

rl. In addition, X is
a dataset. The problem of learning a Bayesian
network is to find the MAP structure that max-
imizes the score (3).
Particularly, Heckerman et al. (1995) pre-

sented a sufficient condition for satisfying the
likelihood equivalence assumption, which says
that data should not help to discriminate net-
work structures that represent the same asser-
tions of conditional independence, in the form
of the following constraint related to hyperpa-
rameters of (3):

N∑
i=1

qi∑
j=1

ri∑
k=1

αijk = const. (4)

Furthermore, they proposed a marginal likeli-
hood that reflects a user’s prior knowledge as



shown below.

p(X | α, g, gh) =
N∏
i=1

qi∏
j=1

Γ(αgh

ij )

Γ(αgh

ij + nij)

ri∏
k=1

Γ(αgh

ijk + nijk)

Γ(αgh

ijk)

(5)

αgh

ijk = αp(xi = k,Πg
i = j | gh) (6)

Here, α is the user-determined equivalent sam-
ple size (ESS), Πg

i denotes the parent variable
sets of xi according to g and gh is the hypothet-
ical Bayesian network structure that reflects a
user’s prior knowledge. This metric was des-
ignated as the Bayesian Dirichlet equivalence
(BDe) score metric.

As Buntine (1991) described, αgh

ijk = α
(riqi)

is
regarded as a special case of the BDe metric.
Heckerman et al. (1995) designated this special
case as ”BDeu”.

For cases of which we have no prior knowl-
edge, BDeu is often used in practice. Heck-
erman et al. (1995) reported, as a result of
their comparative analyses of BDeu and BDe,
that BDeu is better than BDe unless the user’s
beliefs are close to the true model. BDeu re-
quires an ”equivalent sample size (ESS)”, which
is the value of a free parameter specified by the
user. Recent reports have described that ESS
in BDeu plays an important role in learning
Bayesian networks (Steck and Jaakkola, 2002;
Silander, Kontkanen and Myllymaki, 2007).

Especially, Ueno (2011) reported that the
prior of BDeu does not represent ignorance of
prior knowledge but rather a user’s prior be-
lief in the uniformity of the conditional distri-
bution. This result is particularly surprising be-
cause it had been believed that BDeu has a non-
informative prior. In addition, he explained the
mechanism by which the optimal ESS becomes
large/small when the empirical conditional dis-
tribution becomes uniform/skewed because ESS
determines the magnitude of the user’s prior be-
lief for a hypothetical structure. This mecha-
nism causes the BDeu score to be highly sensi-
tive to ESS.

3 Non-informative Dirichlet Score

This section presents an alternative non-
informative prior Dirichlet score because BDeu
has no non-informative prior.

To clarify the mechanism of BDe, Ueno
(2010) analyzed the log-BDe asymptotically and
derived the following theorem.

Theorem 1. (Ueno 2010) When α+nt is suf-
ficiently large, log-BDe converges to

log p(X | α, g, gh) = log p(Θ̂g | X, α, g, gh) (7)

−1

2

N∑
i=1

qi∑
j=1

ri∑
k=1

ri − 1

ri
log

(
1 +

nijk

αgh

ijk

)
+ const,

where log p(Θ̂g | X, α, g, gh) =

N∑
i=1

qi∑
j=1

ri∑
k=1

(αgh

ijk + nijk) log
(αgh

ijk + nijk)

(αgh

ij + nij)
,

const is independent terms of the num-

ber of parameters, and Θ̂g = {θ̂gijk}, (i =

1, · · · , , N, j = 1, · · · , qi, k = 1, · · · , ri − 1),

θ̂gijk =
αgh

ijk + nijk

αgh

ij + nij

. (8)

From (7), log-BDe can be decomposed
into two factors: 1. a log-posterior term

log p(Θ̂gh | X, α, g, gh) and 2. a penalty

term 1
2

∑N
i=1

∑qi
j=1

∑ri
k=1

ri−1
ri

log

(
1 +

nijk

αgh

ijk

)
.∑N

i=1

∑qi
j=1

∑ri
k=1

ri−1
ri

is the number of param-
eters.

This well known model selection formula is
generally interpreted 1. as reflecting the fit to
the data and 2. as signifying the penalty that
blocks extra arcs from being added.

Ueno (2010) described that the term∑N
i=1

∑qi
j=1

∑ri
k=1 log

(
1 +

nijk

αgh

ijk

)
in (7) reflects

the difference between the learned structure
from data and the hypothetical structure gh

from the user’s knowledge in BDe. To the de-
gree that the two structures are equivalent, the
penalty term is minimized with the fixed ESS.
Conversely, to the degree that the two struc-
tures differ, the term is larger. Moreover, from
(7), α determines the magnitude of the user’s
prior belief for a hypothetical structure gh.

On the other hand, BDeu, of which the prior
distribution assumes an uniform distribution
of conditional probabilities, had been believed
to employ a non-informative prior. However,
from (7), the optimal ESS of BDeu becomes



large/small when the empirical conditional dis-
tribution becomes uniform/skewed because its
hypothetical structure gh assumes a uniform
conditional probabilities distribution and the
ESS adjusts the magnitude of the user’s belief
for a hypothetical structure. Namely, the prior
of BDeu does not represent ignorance of prior
knowledge but rather a user’s prior belief in the
uniformity of the conditional distribution.

The main purpose of this paper is to develop
a Dirichlet score that has a full non-informative
prior. For this purpose, we assume all possible
hypothetical structures as a prior belief of BDe
because a problem of BDeu is that it assumes
only a uniform distribution as a prior belief.

That is, we marginalize ML over the hypo-
thetical structures gh ∈ G as follows:

Definition 1. NIP − BDe (Non-informative
prior Bayesian Dirichlet equivalence) is defined
as

p(X | g, α) =
∑
gh∈G

p(gh)p(X | α, g, gh) (9)

=
∑
gh∈G

p(gh)

 N∏
i=1

qi∏
j=1

Γ(αgh

ij )

Γ(αgh

ij + nij)

ri∏
k=1

Γ(αgh

ijk + nijk)

Γ(αgh

ijk)

 ,

where
∑

gh∈G is the summation over the possi-

ble hypothetical structures, and where p(gh) is
a uniform distribution.

To estimate the marginal ML, it is necessary
to calculate p(xi = k,Πg

i = j | gh) automati-
cally for all the structures. For this purpose, we
use an empirical estimation of p̂(xi = k,Πg

i = j |
gh,Θgh) using data. Here, we estimate the joint

probability estimate p̂(xi = k,Πg
i = j | gh,Θgh)

which is transformed to the joint probability of
xi and its parents variables in g from the esti-
mated conditional probability parameters Θgh

given gh.

Our method has the following two steps:

1. Estimate the conditional probability

parameters set Θgh = {θg
h

ijk}, (i =
1, · · · , , N, j = 1, · · · , qi, k = 1, · · · , ri − 1)
given gh from data

2. Estimate the joint probability p̂(xi =

k,Πg
i = j | gh,Θgh)

First, we estimate the conditional probability
parameters set given gh as

θ̂g
h

ijk =

1

riq
gh

i

+ ngh

ijk

1

q
gh

i

+ ngh

ij

, (10)

where ngh

ijk represents the number of samples of

xi = k when Πgh

i = j (parent variables set of xi

given gh) and ngh

ij =
∑ri

k=1 n
gh

ijk, and qg
h

i denotes

the number of parent variables of Πgh

i .
Next, we calculate the estimated joint prob-

ability p̂(xi = k,Πg
i = j | gh,Θgh) as shown

below.

p̂(xi = k,Πg
i = j | gh,Θgh) = (11)∑

xl∈/ xi∪Π
g
i

p(x1, · · · , xi, · · · , xN | gh,Θgh)

For the computation of (11), we can employ
various marginalization algorithms (e.g. vari-
able elimination, factor elimination, random
sampling elimination: see, for example, (Dar-
wiche, 2009)).
In practice, however, the Expected log-BDe

is difficult to calculate because the product of
multiple probabilities suffers serious computa-
tional problems. To avoid this, we propose an
alternative method, Expected log-BDe, as de-
scribed below.
Definition 2. Expected log-BDe is defined as

Egh∈G log p(X | α, g, gh) = (12)∑
gh∈G

p(gh) log p(X | α, g, gh)

=
∑
gh∈G

p(gh)

 N∑
i=1

qi∑
j=1

log
Γ(αgh

ij )

Γ(αgh

ij + nij)

ri∑
k=1

log
Γ(αgh

ijk + nijk)

Γ(αgh

ijk)

 ,

Compared to NIP-BDe, the Expected log-
BDe is practical for computation because it can
be calculated by the sum of log-BDe.
Although a similar Bayesian model averag-

ing criterion has already been proposed (Chick-
ering and Heckerman, 2000), (Tian, He, and
Ram, 2010), its purpose is not to predict the
true structure but to seek the optimal structure



which maximizes the inference prediction of a
new data xi+1. Therefore, their purpose is not
the same as that of this study.

4 Learning algorithm using dynamic
programming

Learning Bayesian networks is known to be an
NP complete problem (Chickering, 1996). Re-
cently, however, the exact solution methods can
produce results in reasonable computation time
if the variables are not prohibitively numerous
(e.g.(Silander and Myllymaki, 2006), Malone et
al., 2011).

We employ the learning algorithm of (Silan-
der and Myllymaki, 2006) using dynamic pro-
gramming. Our algorithm comprises four steps:

1. Compute the local Expected log-BDe
scores for all possible N2N−1 (xi,Π

g
i ) pairs.

2. For each variable xi ∈ x, find the best par-
ent set in parent candidate set {Πg

i } for all
Πg

i ⊆ x \ {xi}, (∀g ∈ G).

3. Find the best sink for all 2N variables and
the best ordering.

4. Find the optimal Bayesian network

Only Step 1 is different from the procedure de-
scribed by Silander et al., 2006. First, to obtain
the local Expected log-BDe score for a variable
and its parent variables set pair, we should aver-
age log-BDe for all possible hypothetical struc-
tures. To compute the local Expected log-BDe
score for each pair (xi,Π

g
i ) in Step 1, conditional

frequency tables cft(xi,Π
gh

i ) for all possible hy-

pothesis parent sets {Πgh

i } for (∀gh ∈ G)are
needed.

Algorithm 1 gives a pseudo-code for com-
puting the local Expected log-BDe scores,
LS[xi][Π

g
i ] , for all possible (xi,Π

g
i ) pairs.

The pseudo-code assumes some helper func-
tions: getCft(xi,Π

g
i ) produces the con-

ditional frequency table cft(xi,Π
g
i ), and

getT l(Πg
i , cft[xi][Π

gh

i ]) translates the joint

probability estimate p̂(xi = k,Πg
i = j | gh,Θgh)

from cft[xi][Π
gh

i ], and the function

scorei(Π
g
i , T l[xi][Π

g
i ][Π

gh

i ]) calculates the
local log-BDe score of g given a hypothetical
structure gh.

First, getCft(xi,Π
g
i ) produces the condi-

tional frequency tables cft(xi,Π
g
i ) for all pos-

sible Πg
i . They are stored on the memory or the

disk as soon as they are produced. This proce-
dure is the same as that of (Silander and Mylly-

maki, 2006). Next, getT l(Πg
i , cft[xi][Π

gh

i ]) cal-
culates the joint probability estimate p̂(xi =

k,Πg
i = j | gh,Θgh) using the stored conditional

frequency tables by marginalizing the product
of factors in Θgh including {xi,Πg

i }. This pro-
cedure runs in O(|{xi ∪ Πg

i }| exp(w)) given an
elimination order of width w. The local Ex-
pected log-BDe, LS[xi][Π

g
i ] , can be calculated

as the summation of local log-BDe values for all

local possible structures Πgh

i .

Algorithm 1 getLocalScore(x).
for all xi ∈ x do

for all {Πg
i } ⊆ x \ {xi} do

if cft[xi][Π
g
i ] = null then

cft[xi][Π
g
i ]← getCft(xi,Π

g
i )

end if
end for
for all {Πg

i } ⊆ x \ {xi} do

for all {Πgh

i } ⊆ x \ {xi} do

T l[xi][Π
g
i ][Π

gh

i ]← getT l(Πg
i , cft[xi][Π

gh

i ])

LS[xi][Π
g
i ]← LS[xi][Π

g
i ] + scorei(Π

g
i , T l[xi][Π

g
i ][Π

gh

i ])

end for
LS[xi][Π

g
i ]← LS[xi][Π

g
i ]/|{Π

g
i ⊆ x \ {xi}}|

end for
end for
if |x| > 1 then

getLocalScore(x \ {xi})
end if

The time complexity of the Algorithm 1 is
O(N222(N−1) exp(w)). After computing the lo-
cal scores, we find the optimal Bayesian network
in Steps 2, 3 and 4 of our algorithm. Steps 2–4
are the same as those proposed by Silander et al.
(2006). Although the traditional scores (BDeu,
AIC, BIC, and so on) run in O(N2(N−1)), the
proposed method requires greater computation
costs. However, the required memory for the
proposed computation is equal to that of the
traditional scores.
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Figure 1: g1: Strongly skewed distribution.
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Figure 2: g2: Skewed distribution.
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Figure 3: g3: Uniform distribution.
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Figure 4: g4: Strongly uniform distribution.

5 Simulation experiments

We conducted simulation experiments to com-
pare Expected log-BDe with BDeu according to
the procedure described by Ueno (2011). We
used small network structures with binary vari-
ables in Figs. 1, 2, 3, and 4, in which the dis-
tributions are changed from skewed to uniform.
Figure 1 presents a structure in which the con-
ditional probabilities differ greatly because of
the parent variable states (g1: Strongly skewed

Table 1: Learning performance of BDeu
g1 BDeu(α = 0.1)
n ◦ SHD ME EE WO MO EO

200 5 233 97 21 12 81 22
500 76 67 21 11 5 19 11
1000 98 5 0 2 0 2 1
g2
n ◦ SHD ME EE WO MO EO

200 5 211 97 9 2 91 12
500 82 52 8 0 9 19 16
1000 99 4 0 0 1 1 2
g3
n ◦ SHD ME EE WO MO EO

200 0 205 131 3 0 69 2
500 9 194 85 0 2 95 12
1000 72 74 16 1 13 27 17
g4
n ◦ SHD ME EE WO MO EO

200 0 253 208 5 0 38 2
500 0 208 111 1 3 86 7
1000 16 184 77 1 3 88 15

g1 BDeu(α = 1.0)
n ◦ SHD ME EE WO MO EO

200 34 173 53 17 19 56 28
500 84 52 5 11 6 16 14
1000 96 10 0 4 0 4 2
g2
n ◦ SHD ME EE WO MO EO

200 32 177 54 10 11 69 33
500 86 45 0 2 11 13 19
1000 99 4 0 0 1 1 2
g3
n ◦ SHD ME EE WO MO EO

200 3 227 101 8 5 86 27
500 33 189 32 1 18 79 59
1000 85 49 1 0 13 16 19
g4
n ◦ SHD ME EE WO MO EO

200 1 233 158 7 2 56 10
500 7 210 84 1 9 93 23
1000 41 175 28 0 15 75 57

g1 BDeu(α = 10)
n ◦ SHD ME EE WO MO EO

200 1 458 17 223 11 123 84
500 24 252 2 112 2 100 36
1000 47 176 0 73 2 72 29
g2
n ◦ SHD ME EE WO MO EO

200 40 180 18 43 16 60 43
500 74 73 0 17 10 26 20
1000 87 32 0 14 1 8 9
g3
n ◦ SHD ME EE WO MO EO

200 6 299 46 23 36 87 107
500 44 200 4 14 32 66 84
1000 84 50 0 3 13 15 19
g4
n ◦ SHD ME EE WO MO EO

200 5 290 94 26 19 77 74
500 22 249 36 10 30 82 91
1000 51 174 4 3 24 60 83

distribution). By gradually reducing the differ-
ence of the conditional probabilities from Fig.
1, we generated Fig. 2 (g2: Skewed distribu-
tion), Fig. 3 (g3: Uniform distribution), and
Fig. 4 (g4: Strongly uniform distribution).
Procedures used for the simulation experi-

ments are described below.
1. We generated 200, 500, and 1,000 samples



Table 2: Learning performance of Expected log-BDe
g1 Expected log-BDe(α = 0.1)
n ◦ SHD ME EE WO MO EO

200 5 264 93 40 19 78 34
500 62 98 19 31 4 32 12
1000 91 19 0 9 0 8 2
g2
n ◦ SHD ME EE WO MO EO

200 10 203 91 9 3 86 14
500 86 41 4 1 8 14 14
1000 100 0 0 0 0 0 0
g3
n ◦ SHD ME EE WO MO EO

200 0 209 122 4 0 78 5
500 20 175 70 0 6 81 18
1000 81 55 8 1 12 18 16
g4
n ◦ SHD ME EE WO MO EO

200 0 247 192 6 0 45 4
500 2 204 102 1 3 91 7
1000 23 179 66 1 6 82 24

g1 Expected log-BDe(α = 1.0)
n ◦ SHD ME EE WO MO EO

200 34 191 52 30 22 49 38
500 84 55 5 18 3 22 7
1000 92 17 0 8 0 8 1
g2
n ◦ SHD ME EE WO MO EO

200 45 147 36 12 11 56 32
500 88 37 0 2 9 11 15
1000 100 0 0 0 0 0 0
g3
n ◦ SHD ME EE WO MO EO

200 4 241 91 12 10 85 43
500 50 144 20 1 20 55 48
1000 87 45 0 1 12 14 18
g4
n ◦ SHD ME EE WO MO EO

200 2 244 141 10 4 62 27
500 11 223 70 3 18 89 43
1000 45 180 19 0 20 69 72

g1 Expected log-BDe(α = 10)
n ◦ SHD ME EE WO MO EO

200 6 447 24 215 13 87 108
500 68 112 6 49 2 34 21
1000 96 8 0 4 0 4 0
g2
n ◦ SHD ME EE WO MO EO

200 51 126 14 42 11 34 25
500 82 44 0 10 8 12 14
1000 91 22 0 9 0 8 5
g3
n ◦ SHD ME EE WO MO EO

200 14 285 30 42 34 77 102
500 58 132 1 20 21 38 52
1000 84 49 0 6 12 14 17
g4
n ◦ SHD ME EE WO MO EO

200 4 324 75 47 25 74 103
500 25 250 27 19 33 73 98
1000 55 158 2 7 22 52 75

from the four figures.

2. Using BDeu and Expected log-BDe by
changing α (0.1, 1.0, 10), Bayesian net-
work structures were estimated, respec-
tively, based on 200, 500, and 1,000 sam-
ples. We searched for the exactly true
structure.

3. The times the estimated structure was
the true structure (when Structural Ham-
ming Distance (SHD) is zero; Tsamardinos,
Brown, and Aliferis, 2006) were counted by
repeating procedure 2 for 100 iterations.

We employ the variable elimination algorithm
(Darwiche, 2009) for the marginalization in (11)
because our experiments use only a five-node
network. Its computational cost is not burden-
some.

Table 1 presents the results for BDeu. Table
2 presents results for Expected log-BDe. Col-
umn “◦ ” shows the number of correct-structure
estimates in 100 trials. Column “SHD ”shows
the Structure Hamming Distance (SHD) . Col-
umn “ME ” shows the total number of missing
arcs, column “EE ” shows the total number of
extra arcs, column “WO ” shows the total num-
ber of arcs with wrong orientation, column “MO
” shows the total number of arcs with missing
orientation, and column “EO ” shows the total
number of arcs with extra orientation in the case
of likelihood equivalence. The results presented
in Table 1 reveal that BDeu is highly sensitive
to α.

In Table 1, the optimum value of α becomes
small as the conditional distribution becomes
skewed. In contrast, the optimum value of α be-
comes large as the conditional distribution be-
comes uniform.

As shown in Table 2, the performances of Ex-
pected log-BDe are better than those of BDeu
in almost all cases. The results also show that
the BDeu performances are highly sensitive to
α but those of Expected log-BDe are robust for
α.

Additionally, it is noteworthy that the perfor-
mance of BDeu is extremely worse than those
of Expected log-BDe for g4 with α = 0.1 and
g1 with α = 10. The reason is that the optimal
α becomes large/small for uniform/skewed con-
ditional probabilities because BDeu assumes a
uniform conditional prior. Although the opti-
mal α for BDeu is highly sensitive to the uni-
formity of conditional probabilities distribution,
the optimal α of the proposed method is robust
for the uniformity.

Especially for small samples, the large α set-



ting for the proposed method works effectively
because the learning performances of α = 10 for
n = 200 are better than those of α = 0.1, which
means that the ESS of Expected log-BDe might
be affected only by the sample size. The results
also suggest that the optimal ESS increases as
the sample size becomes small. Therefore, the
ESS of the proposed method works effectively
as actual pseudo-samples to augment the data,
especially when the sample size is small.

6 Conclusions

This paper presented a proposal for a non-
informative Dirichlet score. The results suggest
that the proposed method is effective especially
for a small sample size. The future tasks are the
following: 1. Analysis of the proposed method
using various simulation data. 2. Improvement
of the learning algorithm. 3. Determination of
the optimal α for a given data size. Further-
more, NML (Silander, Roos, and Myllymaki,
2010) is known as an alternative information-
theoretic approach for circumventing the prob-
lem with ESS. It is also an important future
task to compare the performances of these non-
informative learning scores.
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