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Abstract. Educational assessments occasionally require “uniform test
forms” for which each test form consists of a different set of items, but
the forms meet equivalent test specifications (i.e., qualities indicated by
test information functions based on item response theory). We propose
two maximum clique algorithms (MCA) for uniform test forms assembly.
The proposed methods can assemble uniform test forms with allowance
of overlapping items among uniform test forms. First, we propose an ex-
act method that maximizes the number of uniform test forms from an
item pool. However, the exact method presents computational cost prob-
lems. To relax those problems, we propose an approximate method that
maximizes the number of uniform test forms asymptotically. Accord-
ingly, the proposed methods can use the item pool more efficiently than
traditional methods can. We demonstrate the efficiency of the proposed
methods using simulated and actual data.

Keywords: test assembly, uniform test forms, maximum clique prob-
lem, item response theory.

1 Introduction

Educational assessments occasionally require “uniform test forms” for which
each form consists of a different set of items but which still must have equiv-
alent specifications (e.g., equivalent amounts of test information based on item
response theory, equivalent average test score, equivalent time limits). For ex-
ample, uniform test forms are necessary when a testing organization administers
a test in different time slots. To achieve this, uniform test forms are assembled
in which all forms have equivalent qualities so that examinees who have taken
different test forms can be evaluated objectively using the same scale.

Recently, automatic assembly for test forms has become popular. Automatic
assembly assembles test forms to satisfy given test constraints (e.g., number of
test items, amount of test information, average test score) to provide equivalent
qualities [16,22,9,3,1,2,14,4,24,7,23,8,21,20,6].

In these studies, a test assembly is formalized as a combinational optimization
problem. For example, van der Linden [23] proposed the big-shadow-test method
using linear programming (LP). This method sequentially assembles uniform
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test forms by minimizing qualitative differences between a current assembled
test form and the remaining set of items in an item pool. Although this method
assembles uniform test forms in a practically acceptable time, it presents two
problems. First, qualitative differences increase with the assembled order of test
forms. Secondly, this method does not maximize the number of uniform test
forms from the item pool.

To alleviate or ameliorate the first problem, Sun et al. [21] proposed a Genetic
Algorithm (GA) for uniform tests assembly that simultaneously assembles uni-
form test forms as minimizing the differences among the qualities of assembled
test forms and user-determined values. Furthermore, Songmuang and Ueno [20]
applied the Bees Algorithm to uniform test forms assembly and to improve the
performance of the method proposed by Sun et al. [21]. Although these methods
[23,21,20] showed effective performance for minimizing the qualitative differences
among assembled test forms, no method maximizes the number of uniform test
forms from the item pool. These methods do not allow the item pool to be used
efficiently to the greatest degree possible.

To maximize the number of test forms, Belov and Armstrong [8] proposed
a uniform tests assembly method based on Maximum Set-Packing Problems.
Moreover, Belov proposed a random test assembly method [6] to improve the
tractability of maximizing the number of uniform test forms. However, these
methods [8,6] cannot assemble uniform test forms with overlapping items (i.e.,
two test forms are allowed to have a common item called an overlapping item). In
the non-overlapping conditions, each item is used only at once on assembled test
forms. Therefore, the non-overlapping condition strongly restricts the number
of assembled test forms. Consequently, the non-overlapping condition interrupts
the efficient uses of the item pool.

The goal of this paper is to propose a uniform test forms assembly method
that maximizes the number of assembled test forms with overlapping conditions.
To achieve this goal, we apply the Maximum Clique Algorithm (MCA). MCA
is an algorithm that solves the Maximum Clique Problem. We propose an exact
method based on Maximum Clique Problem (ExMCP) for the maximum number
of uniform test forms from the item pool.

The unique feature of ExMCP is to generalize Belov and Armstrong’s method
[8] to maximize the number of uniform test forms with an overlapping condi-
tion. Therefore, theoretically, ExMCP can assemble a greater number of test
forms than when using traditional methods (e.g., [23,21,8,20]). In fact, ExMCP
is expected to use the item pool more efficiently than traditional methods do.

However, the computational time and space costs of ExMCP increase expo-
nentially with the number of “feasible test forms” (i.e., a set of those test forms
which satisfy all test constraints except for the overlapping constraint from a
given item pool). Therefore, it is difficult to use ExMCP for a large item pool.

To relax this problem, we propose RndMCP by approximating ExMCP using
a random search approach (e.g., [19]). RndMCP maximizes the number of uni-
form test forms asymptotically from the item pool with overlapping conditions,
and assembles a greater number of test forms than those of traditional methods
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(e.g., [23,8]). In addition, RndMCP searches the maximum number of uniform
test forms more efficiently than traditional random search methods do [21,20]
because the search space of RndMCP is more restrictive than those of the tra-
ditional methods.

Moreover, some experiments were conducted to evaluate the proposed meth-
ods. The results demonstrate that the proposed methods assemble a greater
number of uniform test forms than the traditional methods do.

2 Maximum Clique Algorithm for Uniform Test Forms
Assembly

In this section, we propose new methods to maximize the number of assembled
uniform test forms with overlapping conditions.

2.1 Maximum Clique Problem

We apply the Maximum Clique Algorithm (MCA) to assemble the maximum
number of uniform test forms. The MCA is an algorithm to solve the Maximum
Clique Problem (MCP), which is a well-known combinational optimization prob-
lem in graph theory [15,11].

As described in this paper, a graph is represented as a pair G = {V,E}, where
V denotes a set of vertices, and E denotes a set of edges.

Maximum Clique Problem searches a special structure called “Maximum
Clique” from a given graph. “Clique” is a set of vertices in which each pair
of vertices is connected. The “Maximum Clique” is the clique which has the
maximum number of vertices in the given graph.

2.2 Maximum Clique Algorithm for Uniform Test Forms Assembly

In our study, the maximum number of uniform test forms is assembled to solve
the maximum clique problem.

We assemble the following “Uniform test forms”:

1. Any test form satisfies all test constraints.
2. Any two test forms satisfy the overlapping constraint. ( i.e., any two test

forms have fewer overlapping items than the allowed number in the overlap-
ping constraint).

Accordingly, the maximum number of uniform test forms assembly can be de-
scribed as the maximum clique extraction from a graph:

V =

⎧
⎪⎪⎨

⎪⎪⎩

s : s ∈ S, “Feasible test form”, s
satisfies all test constraints
excepting the overlapping constraint
from a given item pool

⎫
⎪⎪⎬

⎪⎪⎭

E =

{{s′, s′′} : The pair of s′ and s′′ satisfies
the overlapping constraint

}

.
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Fig. 1. MCA for Uniform Tests Assembly

This maximum clique problem searches the maximum set of feasible test forms in
which any two test forms satisfy the overlapping constraint (i.e., this set is the
maximum uniform test forms). Therefore, this optimization problem theoreti-
cally maximizes the number of uniform test forms. Figure 1 presents an example
of uniform test forms assembly using the maximum clique problem. The graph G
has six feasible test forms T1–T6 with nine satisfactions of overlapping constraint
and the maximum number of uniform test forms Cmax = {T1,T2,T3,T4}.

Belov and Armstrong’s method [8] is a special case of this maximum clique
problem when E = { { v,w }: v and w have no overlap items (v ∩ w = ∅) }.
Therefore, our method generalizes Belov and Armstrong’s method by relaxing
the overlapping constraint.

2.3 Exact Solution: ExMCP

We propose a uniform tests assembly algorithm, “ExMCP”, which exactly solves
the maximum clique problem described in Maximum Clique Algorithm for Uni-
form Test Forms Assembly. Therefore, ExMCP theoretically maximizes the num-
ber of uniform test forms.

ExMCP consists of the following three steps:

Step 1: (assembling feasible test forms)
Step 1 assembles all feasible test forms. We use branch and bound technique
(e.g., [3]) to assemble the feasible test forms using test constraints except for
the overlapping constraint. Finally, Step 1 stores the feasible test forms into
a system memory.

Step 2: (generating a graph that corresponds to a set of feasible test forms with
overlapping items)
Step 2 generates the corresponding graph by counting overlapping items
among each pair of feasible test forms. The feasible test forms are represented
as vertices and satisfactions of the overlapping constraint are represented as
edges. Thereby, only if a pair of test forms has fewer common items than
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the overlapping constraint do two vertices representing the pair of test forms
have an edge.

Step 3: (extracting the maximum clique from the graph)
Step 3 extracts the maximum clique from the graph generated in Step 2. The
extracted maximum clique represents the maximum number of uniform test
forms that satisfy all test constraints including the overlapping constraint.
To obtain the maximum clique, we use Nakanishi and Tomita’s algorithm
[17], which is the fastest exact algorithm in MCA.

ExMCP guarantees to extract the maximum number of uniform test forms with
overlapping conditions from all combinations of feasible test forms from an item
pool. However, the computational time and space costs are O(2F ) and O(F 2),
where F is the number of feasible test forms from an item pool. Consequently,
ExMCP is not available for large item pools.

2.4 Approximate Solution: RndMCP

To relax the computational costs problem, we approximate ExMCP using a
random search approach. This method is designated as “RndMCP”, which max-
imizes the number of uniform test forms asymptotically.

Although RndMCP consists of three steps similar to those of ExMCP,
RndMCP repeats the three steps using a random search approach until it satis-
fies the three following constraints for computational costs:

C1 is the number of feasible test forms assembled in Step 1,
C2 is the time limit of Step 3,
C3 is the total time limit of the test assembly.

Details of the steps are the following.

Step 1: (assembling feasible test forms randomly)
Step 1 randomly assembles feasible test forms. Step 1 continues this step
until the number of feasible test forms reaches C1. Finally, Step 1 stores the
feasible test forms into the system memory.

Step 2: (generating a graph that corresponds to a set of feasible test forms with
overlapping items)
Step 2 generates the corresponding graph by counting the overlapping items
among feasible test forms similarly to ExMCP.

Step 3: (extracting the maximum clique)
Although Step 3 extracts the maximum clique from the graph similarly to
ExMCP, the computation time of this step is limited by C2.

Step 4: (controlling the computation time)
Step 4 compares the current largest clique and the result of Step 3. Step 4
stores the larger clique as the largest clique. If the computation time is less
than C3, then jump to Step 1.

The computational time cost of RndMCP is C3, and the space cost of RndMCP
is O(C1

2). By controlling the computational time and space costs, RndMCP
relaxes the computational costs problem in ExMCP.
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RndMCP repeatedly extracts the maximum number of uniform test forms
from subsets that are sampled randomly from all of feasible test forms. Therefore,
it asymptotically assembles the maximum number of uniform test forms.

Moreover, this method searches the maximum number of uniform test forms
more efficiently than the traditional random search methods [21,20] do because
the search space of RndMCP is more restrictive than that of the traditional
methods. The traditional methods have O(2F ) search space size, but RndMCP
(and ExMCP) has O(20.19171F ) search space because this depends on Nakanishi
and Tomita’s MCA [17]. (This size is an upper bound of the search space size of
maximum clique algorithm and might be more restricted when MCA research
progresses)

3 Experiments and Results

We demonstrate the respective performances of the proposed methods using two
experiments.

We used item response theory (IRT) to measure the quality of test forms
similarly to most previous studies of test form assembly (e.g., [25,10,5,4,23,20]).
We use simulated item pools in the first experiment and actual item pools in the
second experiment.

The items in the simulated and actual item pools have discrimination param-
eter a and the difficulty parameter b in item response theory. In the simulated
item pool, the discrimination parameter a is distributed as a ∼ U(0, 1), and the
difficulty parameter b is distributed as b ∼ N(0, 12). The actual item pools use
the Synthetic Personality Inventory (SPI) examination [18], which is a popular
aptitude test in Japan. Table 2 presents details of the actual item pools.

We compared the performances of ExMCP and RndMCP with those of the
traditional methods [23,21,20]. For that comparison, we used CPLEX [12] for
the liner programming method in Linden’s method. Table 1 shows details of
computational environment for all experiments.

3.1 Results for the Simulated Item Pool

In the previous section, we described that ExMCP theoretically maximizes the
number of uniform test forms. In this experiment, we present the performances
of proposed methods experimentally using the simulated item pools.

We compare the number of assembled test forms with ExMCP, RndMCP, and
the traditional methods [23,21,20].

We use six simulated item pools and three constraints. The item pools have the
total quantities of items I = 70, 80, 90, 100, 110, and 120. The three constraints
have common test constraints as follows:

1. The test length was four.
2. The allowed quantities of overlapping items were 0, 1and 2.
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Table 1. Computation Environment

CPU Intel(R) Xeon(R) E5640 2.67 GHz

System Memory 12.0 GB

OS Windows 7 SP1 64bit

Table 2. Details of the Actual Item Pool

Item Pool Parameter a Parameter b
Size Range Mean SD Range Mean SD

87 0.15∼0.67 0.35 0.134 -2.09∼4.55 0.73 1.625

93 0.19∼0.69 0.43 0.122 -3.92∼3.61 -0.79 1.196

104 0.13∼1.10 0.59 0.213 -0.18∼4.55 1.50 1.188

141 0.24∼1.09 0.64 0.155 -1.41∼3.91 0.60 0.855

158 0.15∼3.08 0.44 0.255 -4.00∼4.00 -1.12 1.434

175 0.12∼0.93 0.39 0.139 -2.93∼3.12 -0.25 1.113

220 0.16∼0.92 0.46 0.155 -4.00∼2.82 -1.28 1.098

Table 3. Constraints of the Information Function

Constraint Information Function (Lower /Upper Bound)
ID θ = −2.0 θ = −1.0 θ = 0 θ = 1.0 θ = 2.0

1 0.1/0.2 0.2/0.3 0.4/0.5 0.2/0.3 0.1/0.2

2 0.0/0.2 0.1/0.3 0.3/0.5 0.1/0.3 0.0/0.2

3 0.0/0.4 0.1/0.5 0.3/0.7 0.1/0.5 0.0/0.4

In addition, the three constraints have different information constraints among
the constraints. The information constraint is described by the lower and upper
bounds of the test information function I(θk). Those information constraints are
listed in Table 3. These restrict the number of feasible test forms (and assembled
test forms) to ID: 1 < ID: 2 < ID: 3.

For the traditional methods [23,21,20], we determined the target values of
information function T (θk) as

T (θk) =
(Lowerboundsofinformationfunction)+ (Upperboundsofinformationfunction)

2
.

The time limitation of test assembly is 6 hr for all methods except for RndMCP.
For RndMCP, we determined the respective computational cost constraints

C1 as 100000, C2 as 60 s, and C3 as 1400 s.
Table 4 presents the quantities of test forms assembled by the proposed meth-

ods and the traditional methods for the item pool sizes, the overlapping con-
straint (maximum number of overlap items) and information constraints. In the
table, “BST” denotes Linden’s method [23],“GA” denotes Sun’s method[21],
“BA” denotes Songmuang’s method[20], “EM” denotes the proposed ExMCP,
and “RM” denotes the proposed RndMCP.

In many cases, ExMCP failed the test assembly because it did not complete
the calculations in 6 hr (†). Moreover, it was unable to assemble uniform test
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Table 4. Results for the Simulated Item Pool

Item Pool Overlap Constraint ID: 1 Constraint ID: 2 Constraint ID: 3
Size Constraint BST GA BA EM RM BST GA BA EM RM BST GA BA EM RM

70 0 1 0 1 1 1 6 6 7 8† 7 7 7 7 8† 8

1 2 0 1 2 2 17 26 48 66† 67 17 58 59 0‡ 99
2 3 0 2 3 3 17 66 214 736† 735 17 274 278 0‡ 1767

80 0 2 1 2 2 2 7 8 8 9† 9 7 8 8 0‡ 9

1 11 2 11 12† 11 20 40 64 100† 100 20 74 78 0‡ 131

2 20 4 69 88† 88 20 82 242 1462† 1404 20 347 301 0‡ 2825

90 0 2 1 2 2 2 8 7 8 10† 10 8 8 9 0‡ 10

1 13 3 11 13† 12 22 40 71 122† 119 22 83 86 0‡ 156
2 22 3 78 107† 107 22 81 251 1949† 1846 22 321 336 0‡ 3634

100 0 2 1 2 2 2 8 7 8 10† 10 9 9 9 0‡ 11

1 13 3 11 12† 13 25 36 76 131† 130 25 88 87 0‡ 173

2 25 3 87 118† 118 25 80 292 2325† 2170 25 312 346 0‡ 4288

110 0 2 1 2 2 2 8 8 9 10† 10 10 9 10 0‡ 11

1 13 3 11 13† 13 27 34 79 138† 137 27 86 92 0‡ 195
2 27 2 91 123† 123 27 70 308 2632† 2413 27 271 356 0‡ 4938

120 0 2 2 2 2 2 9 6 9 11† 11 10 10 11 0‡ 13

1 13 2 10 13† 13 30 29 82 152† 150 30 92 102 0‡ 229

2 30 4 95 129† 127 30 68 336 2913† 2617 30 269 407 0‡ 6006

†: The maximum number of uniform test forms detected in 6 hr.
‡: A memory insufficiency problem interrupted the test construction.

forms because the computational environment had insufficient system memory
(‡). In † cases, ExMCP detected a greater number of uniform test forms than
any other method in the given time limitation. In all cases, RndMCP assem-
bled higher quantities of uniform test forms than the traditional methods did
[23,21,20]. In addition, the computational time of RndMCP is less than the other
random search methods (e.g., [21,20]). The computational time of RndMCP is
C3 = 1400 s, and the time limitations of the other random search methods are
6 hr. Results show that RndMCP provides more accurate results than the other
random search methods do. Moreover, the difference of quantities of assembled
test forms between the proposed method and the traditional methods increase
with the number of assembled test forms (or the scale of assembly).

The results can be summarized as shown below.

1. ExMCP assembles the maximum number of uniform test forms, but it entails
a computational cost problem.

2. Even when ExMCP fails a uniform test forms assembly by computational
cost problem, RndMCP assembles a greater number of uniform test forms
than the traditional methods do. Actually, RndMCP relaxes ExMCPś com-
putational costs problem.

3. RndMCP assembled more quantities of uniform test forms in a shorter time
than the other random search methods (e.g., [21,20]) did. Results show that
RndMCP provides more accurate results than the other random search meth-
ods do.

4. The differences of the number of assembled test forms between the proposed
methods and traditional methods increase with the number of feasible test
forms (or the scale of test assembly). For large scale assembly, the proposed
methods are more efficient than the traditional methods are.
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3.2 Results for Actual Item Pool

We assemble uniform test forms using actual item pools to demonstrate the ef-
fectiveness of RndMCP in actual situations. ExMCP cannot assemble the test
forms in an actual situation because the computational environment has insuf-
ficient resources.

We use six actual item pools that have total numbers of items I = 87, 93,
104, 141, 158, 175, and 220. The distributions of item parameters a and b in the
item pool are given in Table 2.

We use the same test constraints as in Results for the Simulated Item pool.
For RndMCP, we determine the computational costs constraint C1 = 100000,
C2 = 30 s, and C3 = 6 hr. All other assembly methods are also given 6 hr for
calculation times.

Table 5. Results for the Actual Item Pool

Item Pool Overlap Constraint ID: 1 Constraint ID: 2 Constraint ID: 3
Size Constraint BST GA BA RM BST GA BA RM BST GA BA RM

87 0 0 0 0 0 3 3 4 4 3 3 4 4
1 0 0 0 0 16 10 19 29 14 11 20 27
2 0 0 0 0 21 36 139 307 21 39 140 309

93 0 0 0 0 0 4 5 5 6 5 5 5 6
1 0 0 0 0 23 16 33 51 23 16 33 51
2 0 0 0 0 23 43 211 658 23 54 208 721

104 0 2 2 2 2 6 5 8 10 12 15 15 18
1 6 5 9 10 26 26 71 131 26 171 140 369
2 26 14 83 121 26 59 275 2088 26 590 394 8442

141 0 10 3 9 10 18 19 21 27 26 31 27 35
1 35 5 70 150 6 122 188 589 35 506 239 1014
2 35 20 268 2307 10 185 393 11426 35 1511 386 19095

158 0 0 0 0 0 6 1 5 6 6 4 7 8
1 0 0 0 0 22 12 24 40 39 42 75 131
2 0 0 0 0 39 50 137 316 39 94 279 4877

175 0 2 0 2 2 6 6 7 9 6 6 8 10
1 12 1 13 15 43 53 96 186 43 65 100 193
2 43 2 128 234 43 102 303 7030 43 103 283 7413

220 0 2 0 2 2 7 5 8 10 9 8 10 13
1 8 2 7 17 54 20 87 177 54 57 124 282
2 54 8 75 136 54 44 309 5889 54 114 334 9938

Table 5 presents the quantities of test forms assembled using the proposed
method and the traditional methods for the item pool size, the overlapping
constraint and information constraints.

Similar to simulated experiments, in all cases, RndMCP assembled greater
quantities of uniform test forms than the traditional methods did [23,21,20].
Moreover, the difference quantities of assembled test forms between the proposed
method and the traditional methods increase continuously with the number of
assembled test forms.
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The results can be summarized as follows:

1. RndMCP assembles a greater number of uniform test forms than the tradi-
tional methods do.

2. RndMCP assembled greater quantities of uniform test forms than the other
random search methods (e.g., [21,20]) did during an equal time period. Re-
sults show that RndMCP provides more accurate results than the other
random search methods do.

3. The differences of the number of assembled test forms between the proposed
methods and traditional methods increase along with the number of feasible
test forms (or the scale of test assembly).

The results show that RndMCP uses an item pool more efficiently than the
traditional methods do.

4 Conclusion

We proposed two uniform test forms assembly methods, ExMCP and RndMCP,
based on the Maximum Clique Algorithm. The proposed methods exactly or
asymptotically maximize the quantities of uniform test forms with an overlap-
ping condition.

ExMCPgeneralizesBelov’smethod [8] for overlapping conditions. Furthermore,
it maximizes the number of uniform test forms with overlapping conditions. How-
ever, ExMCP presents computational costs problems. RndMCP approximates
ExMCP using a random search approach to relax this computational costs prob-
lem. RndMCP assembles a greater number of uniform test forms than the tradi-
tional methods (e.g., [23,21,20]) do. Moreover, RndMCP provides more accurate
results than other random search methods (e.g., [21,20]) do.

To demonstrate these features, we conducted two experiments using simulated
and actual data. Both experiments show that proposedmethods assemble a greater
number of uniform test forms than the traditional methods do. Moreover, the dif-
ferences of the number of assembled test forms between proposedmethods and the
traditional methods increases with the number of feasible test forms (or the scale
of test assembly). This result shows that the proposed methods can assemble a
greater number of uniform test forms than the traditional methods can.

In simulated experiments, more cases exist in which ExMCP cannot assemble
uniform test forms because of computational cost problems. However in those
cases, RndMCP assembles a greater number of uniform test forms than the tra-
ditional methods do. This result shows that RndMCP relaxes the computational
cost problems of ExMCP.

In simulated experiments, the computational time of RndMCP is less than
that of the other random search methods. In actual experiments, RndMCP as-
sembles a greater number of test forms than the traditional methods do, given
equal time limitations. Therefore, RndMCP provides more accurate results than
other random search methods (e.g., [21,20]) do.

Results show the salient benefits of using the proposed methods.



Maximum Clique Algorithm for Uniform Test Forms Assembly 461

References

1. Ackerman, T.A.: An alternative methodology for creating parallel test forms using
the irt information function. Paper presented at the Annual Meeting of the National
Council on Measurement in Education, San Francisco, CA, March 30 (1989)

2. Adema, J.J.: Methods and models for the construction of weakly parallel tests.
Applied Psychological Measurement 16(1), 53–63 (1992)

3. Ameda, J.J.: Implementations of the branch-and-bound method for test construc-
tion problems. Project Psychometric Aspects of Item Banking, Department of Ed-
ucation, University of Twente, Research Report 89-6 (1989)

4. Armstrong, R.D., Jones, D.H., Kunce, C.S.: Irt test assembly using network-flow
programming. Applied Psychological Measurement 22(3), 237–247 (1998)

5. Armstrong, R.D., Jones, D.H., Wang, Z.: Automated parallel test construction
using classical test theory. Journal of Educational Statistics 19(1), 73–90 (1994)

6. Belov, D.I.: Uniform test assembly. Psychometrika 73(1), 21–38 (2008)
7. Belov, D.I., Armstrong, R.D.: Monte carlo test assembly for item pool analysis and

extension. Applied Psychological Measurement 29, 239–261 (2005)
8. Belov, D.I., Armstrong, R.D.: A constraint programming approach to extract the

maximum number of non-overlapping test forms. Computational Optimization and
Applications 33, 319–332 (2006)

9. Boekkooi-Timminga, E.: Simultaneous test construction by zero-one programming.
Methodika 1, 101–112 (1987)

10. Boekkooi-Timminga, E.: The construction of parallel tests from irt-based item
banks. J. Educat. Statist. 15, 129–145 (1990), reports

11. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

12. ILOG: ILOG CPLEX User’s Manual 11.0
13. Ishii, T., Songmuang, P., Ueno, M.: A method to extract the maximum number

of test forms using maxclique. In: The 23rd Annual Conference of the Japanese
Society for Artificial Intelligence (2009)

14. Jeng, H., Shih, S.: A comparison of pair-wise and group selections of items us-
ing simulated annealing in automated construction of parallel tests. Psychological
Testing 44(2), 195–210 (1997)

15. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations 40(4), 85–103 (1972)

16. Lord, F.M.: Applications of Item Response Theory to Practical Testing Problems,
1st edn. Routledge (July 1980)

17. Nakanishi, H., Tomita, E.: An o(20.19171n)-time and polynomial-space algorithm for
finding a maximum clique. Information Processing Society of Japan SIG Technical
Report 2008(6), 15–22 (2008)

18. Recruit: Synthetic Personality Inventory (SPI), http://www.spi.recruit.co.jp/
19. Solis, F.J., Wets, R.J.B.: Minimization by random search techniques. Mathematics

of Operations Research 6(1), 19–30 (1981)
20. Songmuang, P., Ueno, M.: Bees algorithm for construction of multiple test forms

in e-testing. IEEE Transactions on Learning Technologies 4, 209–221 (2011)
21. Sun, K.T., Chen, Y.J., Tsai, S.Y., Cheng, C.F.: Creating irt-based parallel test

forms using the genetic algorithm method. Applied Measurement in Educa-
tion 21(2), 141–161 (2008)

22. Theunissen, T.J.J.M.: Binary programming and test design. Psychometrika 50(4),
411–420 (1985)

http://www.spi.recruit.co.jp/


462 T. Ishii, P. Songmuang, and M. Ueno

23. van der Linden, W.J.: Liner Models for Optimal Test Design. Springer (2005)
24. van der Linden, W.J., Adema, J.J.: Simultaneous assembly of multiple test forms.

Journal of Educational Measurement 35(3), 185–198 (1998)
25. van der Linden, W.J., Boekkooi-Timminga, E.: A maximin model for irt-based test

design with practical constraints. Psychometrika 54(2), 237–247 (1989)


	Maximum Clique Algorithm for Uniform Test Forms Assembly
	1 Introduction
	2 Maximum Clique Algorithm for Uniform Test Forms Assembly
	2.1 Maximum Clique Problem
	2.2 Maximum Clique Algorithm for Uniform Test Forms Assembly
	2.3 Exact Solution: ExMCP
	2.4 Approximate Solution: RndMCP

	3 Experiments and Results
	3.1 Results for the Simulated Item Pool
	3.2 Results for Actual Item Pool

	4 Conclusion
	References




