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LEARNING LIKELIHOOD-EQUIVALENCE BAYESIAN NETWORKS
USING AN EMPIRICAL BAYESIAN APPROACH

Maomi Ueno∗

Many studies on learning Bayesian networks have used the Dirichlet prior score
metric (DPSM). Although they assume different optimum hyper-parameter values for
DPSM, few studies have focused on selection of optimum hyper-parameter values. Anal-
yses of DPSM hyper-parameters for learning Bayesian networks are presented here along
with the following results: 1. DPSM has a strong consistency for any hyper-parameter
values. That is, the score metric DPSM, uniform prior score metric (UPSM), likelihood-
equivalence Bayesian Dirichlet score metric (BDe), and minimum description length
(MDL) asymptotically converge to the same results. 2. The optimal hyper-parameter
values are affected by the true network structure and the number of data. 3. Contrary
to Yang and Chang (2002)’s results, BDe based on likelihood equivalence is a theo-
retically and actually reasonable score metric, if the optimum hyper-parameter values
can be found. Using these results, this paper proposes a new learning Bayesian network
method based on BDeu that uses the empirical Bayesian approach. The unique features
of this method are: 1. It is able to reflect a user’s prior knowledge. 2. It has both the
strong consistency and likelihood equivalence properties. 3. It finds the optimum hyper-
parameter value of BDeu to maximize predictive efficiency, by adapting to domain and
data size. In addition, this paper presents some numerical examples using the proposed
method that demonstrate the effectiveness of the proposed method.

1. Introduction

Over the last few years, a method of reasoning using probabilities, variously called
Bayesian networks, belief networks, or causal networks, has become popular within the
AI probability and uncertainty community (see, for example Almond, 1995; Jensen, 2001;
Korb and Nicholeson, 2004; Neapolitan, 1990; Pearl, 1988, and so on).

Learning Bayesian networks is one of the basic research topics in the field and con-
cerns building a network structure based on data. Artificial intelligence researchers and
statisticians have proposed a variety of scoring methods based on different assumptions
to address this issue.

Cooper and Herskovits (1991), Cooper and Herskovits (1992), in the first significant
attempt at learning Bayesian networks, assumed a uniform distribution and a general
Dirichlet prior score of the Bayesian network model and derived two score metrics which
will be referred to as uniform prior score metric (UPSM) and Dirichlet prior score metric
(DPSM).

Buntine (1991) also assumed the Dirichlet prior and introduced a hyper-parameter that
gives equivalent networks equivalent priors, meaning that marginal priors for individual
variables are non-informative.

Spiegelhalter et al. (1993) proposed a score metric using the Bayes factors that use the
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Dirichlet prior. They recommended the Dirichlet prior’s hyper-parameter values, which
are higher than 1.0 and propose a hyper-parameter determination method when the orig-
inal structures are transformed into a junction tree as the basis for efficient computation.

Lam and Bacchus (1994) proposed a minimum description length (MDL) encoding of
Bayesian networks. However, their encoding was not a function of the size of the data set,
so the code length could not be efficient.

Suzuki (1993) proposed an alternative MDL code for Bayesian networks that is approx-
imated from the DPSM with hyper-parameter 1

2 . This criterion has a strong consistency.
Suzuki (1993) and Suzuki (1998) also proved that the DPSM converges to the MDL only
when the hyper-parameter values are all 1

2 .
On the other hand, Bouckaert (1994a) and Bouckaert (1994b) also proved that the

UPSM (DPSM when the prior distribution has a uniform distribution, or when the hyper-
parameter values are all 1.0) converges to the MDL.

However, Suzuki (1998) claimed that Bouckaert (1994a)’s derivation was wrong and
that DPSM converges to MDL only when the hyper-parameter values are all 1

2 .
Heckerman, Geiger, and Chickering (1995) proposed the likelihood equivalence assump-

tion and showed that the Dirichlet prior with the constant sum of the hyper-parameters
for a variable is a sufficient condition to satisfy the assumption. They pointed out that
UPSM does not satisfy the likelihood equivalence assumption and called their new score
metric the likelihood-equivalence Bayesian Dirichlet score metric (BDe metric). Buntine
(1991)’s hyper-parameter can be interpreted as a special case of the BDe when the prior is
assumed to be uniform. Heckerman, Geiger, and Chickering (1995) called Butine’s metric
the BDeu metric.

Kayaalp and Cooper (2002) also proposed a new score metric called the global uni-
form (GU) metric, which is a special instance of BDeu in which the constant sum of the
hyper-parameters for a variable is equivalent to the sample size.

Yang and Chang (2002) compared the performances of the score metrics UPSM, DPSM,
BDe, and MDL using some simulation experiments. Their results showed that the DPSM
with hyper-parameter value 10 was best at identifying the true network structure. They
also reported that BDe performed worst in their experiment, so assuming likelihood equiv-
alence is unreasonable in learning Bayesian networks.

Thus, there are several different contradictory theories in the Bayesian network learning
area that all derive different optimum hyper-parameter values or conditions for DPSM.

Steck and Jaakkola (2002) provided a study of foresight which focused on the hyper-
parameter value of BDeu. They showed that asymptocally, as the hyper-parameter value
goes to zero, the addition or deletion of an arc in a Bayesian network is infinitely favored
or disfavored, and that the preference depends on effective degrees of freedom, a measure
that is defined in terms of sufficient statistics, the sumple size of a variable i takes k-th
value given a certain parents pattern, that equal zero. They also suggest that in the other
extreme, when the hyper-parameter value approaches infinity, the number of arcs in the
estimated structure probably increases. These results are significant, but since they are
asymptotic they may not sound alarming enough.

Most recently, Silander, Kontakanen, and Myllymaki (2007) provided a series of con-
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crete experiments to find the optimum parameter values of BDeu. The results did not give
a definite answer and showed that the solution of the network structure is highly sensitive
to the chosen hyper-parameter values. This study provided a significant hypothesises that
the optimum hyper-parameter value of BDeu cahanges by the kinds of data.

Unfortunately, since their experiments employed several diffrent actual data, the re-
sults could not refer to the relationship between the original network structure and the
optimum hyper parameter value. In addition, their study forcused on BDeu score and did
not compare the performances of the BDeu chainging the hyper-parameter value with the
other score metrics.

Therefore, this paper provides some simulation experiments by changing original net-
work structures and the conditional probabilities parameters, and compares the perfor-
mances with the other score metrics. The results are as follows:

1. DPSM has a strong consistency for any set of hyper-parameters. That is, the score
metrics UPSM, DPSM, BDe, and MDL asymptotically converge to the same results.

2. The problem of setting optimal hyper-parameters is affected by the true network
structure and the amount of data.

3. Contrary to Yang and Chang (2002)’s results, the BDe based on the likelihood equiv-
alence is theoretically and actually a reasonable score metric.

These results unify and explain the apparently contradictory research on learning Bayesian
networks.

This paper also proposes a new Bayesian network learning method based on the BDe
from an empirical Bayesian approach. The unique features of this method are:

1. It can reflect a user’s prior knowledge since this paper does not limit the prior distri-
bution to the uniform prior as BDeu. If we have a prior structure, we can determine
the equivalent sample size of BDe after a joint probability distribution of the prior
knowledge is integrated to BDe metric.

2. It has both the strong consistency and likelihood equivalence properties.
3. It finds the optimum hyper-parameter value for DPSM, maximizing the predictive

efficiency by adapting to domain and data size.
4. The cross varidation based empirical Bayesian approach can unify the different two

problems of Bayesian networks, maximizing the probabilities inferences efficiency
given certain evidence and approximating the true joint probabuility distribution, or
finding the true network structure.

Finally, this paper presents some numerical examples using the proposed method
and demonstrates the effectiveness of the method. It should be noted that Silander,
Kontakanen, and Myllymaki (2007) also reffered to the need of an empirical Bayesian
approach for learning Bayesian networks to solve the problem which they pointed out.

2. Bayesian networks

Let U = {x1, x2, · · · , xN} be a set of N discrete variables; each can take values in
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Figure 1: Prior probabilities of a Bayesian network

Figure 2: Posterior probabilities of a Bayesian network

the set {1, · · · , ri}. We write xi = k when we observe that variable xi is state k. We
use p(xi = k | xj = k′, ξ) to denote the probability of a person with background knowl-
edge ξ for observation xi = k given observation xj = k′. When we observe the state
for every variable in set U , we call this set of observations an instance of U . We use
p(Y | Z, ξ) to denote the set of probabilities for all possible observations of Y given all
possible observations of Z, where Y ⊂ U , Z ⊂ U , and Y ∩ Z = φ.
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A Bayesian network represents a joint probability distribution over domain U by en-
coding assertions of conditional independence as well as a collection of probability distri-
butions. From the chain rule of probability we know

p(x1, x2, · · · , xN | ξ) =
N∏

i=1

p(xi | x1, x2, · · · , xi−1, ξ). (1)

For each variable xi, let Πi ⊆ {x1, · · · , xi−1} be a set of variables called parent nodes
that renders xi and {x1, x2, · · · , xi−1 \ Πi} conditionally independent. That is,

p(xi | x1, x2, · · · , xi−1, ξ) = p(xi | Πi, ξ). (2)

A Bayesian network is represented as a pair of a network structure BS that encodes the
assertions of conditional independence in this equation and a set of conditional probability
parameters BP , (BS , BP ). Parameter BS is a directed acyclic graph such that (1) each
variable in U corresponds to a node in BS , and (2) the parents of the node corresponding
to xi are the nodes corresponding to the variables in Πi. Hereafter, this paper uses xi to
refer to both a variable and its corresponding node in a graph. Associated with node xi in
BS are the probability distributions p(xi | Πi, ξ). BP is the union of these distributions.
When (1) and (2) are combined, it can be seen that any network for U uniquely determines
a joint probability distribution for U . That is,

p(x1, x2, · · · , xN | BS) =
N∏

i=1

p(xi | Πi, BS). (3)

For example, Figure 1 shows a Bayesian network model for movie preference. Each
node indicates a random variable of film preference, and the arcs to node i correspond to
the conditional probabilities table {p(xi|Πi, BS)}. The prior probabilities of root node 007
are decided, then the prior probabilities over the network are given as shown in Figure 1.
If we know that a person likes A Nightmare on Elm Street and dislikes Mission Impossible,
as shown in Figure 2, the probabilities over the networks are propagated by applying the
Bayes theorem given the evidences for the nodes A Nightmare on Elm Street and Mission
Impossible. The posterior probabilities given the evidence that a person likes A Nightmare
on Elm Street and dislikes Mission Impossible are propagated as shown in Figure 2. We
know that all prior probabilities are around 0.5 in Figure 1, but the propagated probabil-
ities in Figure 2 show with high probability that the person prefers horror movies. The
main problem, which this paper focuses on, is using score metrics methods to construct
the network structures, as shown in Figure 1.

The following sections introduce a method of estimating network structure called learn-
ing Bayesian networks.

3. Dirichlet-multinomial model

This section introduces the Dirichlet-multinomial model (Cooper and Herskovits, 1991,
1992; Heckerman, Geiger, and Chickering, 1995) which is parameterized from (3).
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Let θijk be a conditional probability parameter of xi = k when jth instance of the
parents of xi is observed (We write Πi = j), then the likelihood L(ΘBS

| X) is given by

L(ΘBS
| X, BS) ∝

N∏
i=1

qi∏
j=1

ri−1∏
k=0

θ
nijk

ijk , (4)

where ΘBS
= (θijk)(i = 1, · · · , N, j = 1, · · · , qi, k = 0, · · · , ri − 1), ri is the number of

states of xi, qi is the number of instances of
∏

i, qi =
∏

xl∈Πi
rl, nijk is the number of

samples of xi = k when Πi = j, and X is a multinominal sample from Bayesian network
p(BS, BP ).

If the resulting posterior distributions are in the same family, it is known that the prior
distribution has a Dirichlet distribution as a conjugate prior, which is a class of likelihood
functions of the multinomial distribution.

p(ΘBS
) =

N∏
i=1

qi∏
j=1

ri−1∏
k=0

Γ(
∑ri−1

k=0 n′
ijk)∏ri−1

k=0 Γ(n′
ijk)

ri−1∏
k=0

θ
n′

ijk−1

ijk , (5)

n′
ijk > 0(k = 0, . . . , ri − 1),

where Γ is the Gamma function, which satisfies Γ(x + 1) = xΓ(x), and n′
ijk is the hyper-

parameter of the prior distribution corresponding to multinominal sample nijk.
Consequently, we obtain the posterior as follows:

p(ΘBS
| X, BS) ∝

N∏
i=1

qi∏
j=1

ri−1∏
k=0

θ
n′

ijk+nijk−1

ijk . (6)

Thus, if the prior distribution for ΘBS
has a Dirichlet distribution, then so does the

posterior distribution for ΘBS
.

Given the Dirichlet distribution’s properties, Cooper and Herskovits (1992), Hecker-
man, Geiger, and Chickering (1995) employed an unbiased estimator, the expectation of
the parameter θijk as the parameter estimator θ̂ijk. That, is

θ̂ijk =
n′

ijk + nijk

n′
ij + nij

, (k = 0, · · · , ri − 2), (7)

where n′
ij =

∑ri−1
k=0 n′

ijk, nij =
∑ri−1

k=0 nijk, ̂θij(ri−1) = 1 −∑ri−2
k=0 θ̂ijk.

The predictive distribution is obtained as follows:

p(X | BS) =
∫

ΘBS

p(X | ΘBS
, BS)p(ΘBS

)dΘBS
(8)

=
N∏

i=1

qi∏
j=1

Γ(n′
ij)

Γ(n′
ij + nij)

ri−1∏
k=0

Γ(n′
ijk + nijk)
Γ(n′

ijk)

This criterion is called the Dirichlet prior score metric, (DPSM). The estimated struc-
ture of the Bayesian network can be obtained by maximizing the DPSM from data. To put
it more precisely, it should be noticed that this criterion is not a predictive distribution,
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because the estimator is not a well known Bayesian estiomator. However, almost all the
score metrics of Bayesian networks assume this estimator, this paper also employs this
estimator.

Furthermore, Cooper and Herskovits (1991), Cooper and Herskovits (1992) assumed
that the prior distribution has a uniform n′

ijk = 1, (i = 1, · · · , N, j = 1, · · · , qi, k =
0, · · · , ri − 1) and then derived the following criterion,

p(X | BS) ∝
N∏

i=1

qi∏
j=1

(ri − 1)!
(nij + ri − 1)!

ri−1∏
k=0

nijk!. (9)

This criterion led to their famous causal discovery program “K2” and is called the
uniform prior score metric (UPSM).

4. Minimum Description Length (MDL)

The minimum description length (MDL) inference was invented by Rissanen (1978),
and its basic idea is to make a tradeoff between model simplicity and fit to the data
by minimizing the length of a joint description of the model and the data, assuming
the model is correct. The first MDL encoding of Bayesian networks was put forward
by Lam and Bacchus (1994). However, their encoding is not a function of the size
of the data set. This implies that the code length cannot be efficient. Suzuki (1993)
proposes an alternative MDL code for Bayesian networks when the hyper parameter
n′

ijk = 1
2 , (i = 1, · · · , N, j = 1, · · · , qi, k = 0, · · · , ri − 1):

I(BS ,X) = ln p(BS) +
N∑

i=1

qi∑
j=1

ri−1∑
k=0

[
nijk ln

nijk

nij

]
−
∑N

i=1 qi(ri − 1)
2

ln n, (10)

where n =
∑qi

j=1 nij . This criterion has a strong consistency that guarantees that the
estimated model converges to the true model as n → ∞.

Suzuki (1993) and Suzuki (1998) proved that when the hyper parameter n′
ijk = 1

2 (i =
1, · · · , N, j = 1, · · · , qi, k = 0, · · · , ri − 1), the DPSM (8) converges to the MDL in (10).

However, Bouckaert (1994a) and Bouckaert (1994b) also proved that the UPSM (the
DPSM when n′

ijk = 1, (i = 1, · · · , N, j = 1, · · · , qi, k = 0, · · · , ri − 1)) converges to the
MDL in (10). Suzuki (1998) claimed that Bouckaert (1994a)’s derivation was wrong
and the DPSM converges to the MDL in (10) only when n′

ijk = 1
2 , (i = 1, · · · , N, j =

1, · · · , qi, k = 0, · · · , ri − 1).
This argument is very interesting, but the problem is that Suzuki (1993), Suzuki (1998),

Bouckaert (1994a), and Bouckaert (1994b) assumed that the DPSM with only one prior
condition produces the MDL. This paper shows below that the DPSMs with any hyper-
parameter conditions derive a more general score metric. This means that both Suzuki
(1993) and Bouckaert (1994a) showed the right results.
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5. Likelihood equivalence assumption and BDe metric

Heckerman, Geiger, and Chickering (1995) introduced a likelihood equivalence assump-
tion that states that if two structures are equivalent, their parameter joint probability
density functions are identical. Theoretically, the likelihood equivalence assumption is
written as follows:

Given network structures BS1 and BS2 such that p(BS1 | ξ) > 0 and p(BS2 | ξ) > 0, if
BS1 and BS2 are equivalent, then p(ΘBS1 | BS1, ξ) = p(ΘBS2 | BS2, ξ).

Heckerman, Geiger, and Chickering (1995) pointed out that formula (9) does not sat-
isfy the likelihood equivalence assumption and used the likelihood equivalence assumption
instead of the Dirichlet distribution assumption to derive the same formula as (8). They
also presented a sufficient condition for satisfying the likelihood equivalence assumption
as the following constraint about the hyper-parameters:

n′
ijk = n′p(xi = k, Πi = j | Bh

S , ξ), (11)

where n′ is the equivalent sample size determined by users and Bh
S is the hypothetical

Bayesian network structure that reflects a user’s prior knowledge. They called this metric
the likelihood-equivalence Bayesian Dirichlet score metric (BDe).

Buntine (1991)’s uniform prior constraint n′
ijk = n′/(riqi) is considered a special case

of the BDe metric, and Heckerman, Geiger, and Chickering (1995) called this special case
BDeu (“u” stands for uniform joint distribution). Buntine noted that this metric satisfies
the property of likelihood equivalence.

Kayaalp and Cooper (2002) also proposed a new score metric called the global uni-
form (GU) metric, which assumes the uniform prior and holds the likelihood-equivalence
without any constant n′ values.

This paper proves for the first time that the DPSM with any hyper-parameter values
has strong consistency and converges to the MDL in any prior knowledge conditions.

6. Relationships among various score metrics

As mentioned above, Suzuki (1993), Suzuki (1998), Bouckaert (1994a), and Bouck-
aert (1994b) assumed that the DPSM with only one hyper-parameter value (n′

ijk = 1
or n′

ijk = 1/2) derives the MDL. However, they have not proved that the MDL cannot
be derived from the DPSM, whose hyper-parameter values do not satisfy their setting
conditions.

This section shows that DPSMs with any hyper-parameter values, including the BDe,
the BDeu, and the GU, converge to the more general score metric, which has a strong
consistency and is asymptotically equivalent to the MDL.

That is, the following theorem holds.

Theorem 1 For n′
ijk, (i = 1, · · · , N, j = 1, · · · , qi, k = 0, · · · , ri − 1),

ln p(X | BS) ≥ ln p(X, Θ̂BS
| BS) −

(
K

2

)
ln

n′ + n

2π
+ const, (n → ∞), (12)
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where K is the number of parameters in the Bayesian network model, n′ is the equivalent
sample size detemined by users, and n is the sample size.

[Proof] 　
From (8), the log-predictive distribution can be written by

ln p(X | BS) =
N∑

i=1

qi∑
j=1

(
ri−1∑
k=0

ln Γ(n′
ijk + nijk) − ln Γ

[
ri−1∑
k=0

(n′
ijk + nijk)

])
+const

=
N∑

i=1

qi∑
j=1

(
ri−1∑
k=0

ln Γ(n′
ijk + nijk) − ln Γ(n′

ij + nij)

)
+ const.

Using the Stirling’s series (Box and Tiao (1973), p.147. A.2.2.8)

ln Γ(n) =
1
2

ln(2π) +
(

n − 1
2

)
ln n − n + O

(
1
n

)
,

we can expand ln p(X | BS) as follows;

ln p(X | BS) =
N∑

i=1

qi∑
j=1

⎛⎜⎝ ri−1
2 ln(2π) +

∑ri−1
k=0

(
n′

ijk + nijk − 1
2

)
ln(n′

ijk + nijk)
− (n′

ij + nij − 1
2

)
ln(n′

ij + nij)

⎞⎟⎠
+const, (n → ∞)

=
N∑

i=1

qi∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎝

ri−1∑
k=0

(n′
ijk + nijk) ln(n′

ijk + nijk)

−(n′
ij + nij) ln(n′

ij + nij) + ri−1
2 ln(2π)

−1
2

ri−1∑
k=0

ln(n′
ijk + nijk) +

1
2

ln(n′
ij + nij)

⎞⎟⎟⎟⎟⎟⎟⎠
+const, (n → ∞).

Since ln(n′
ij + nij) ≥ ln(n′

ijk + nijk), we get

ln p(X | BS) ≥
N∑

i=1

qi∑
j=1

⎛⎜⎜⎜⎜⎝
ri−1∑
k=0

(n′
ijk + nijk) ln

(n′
ijk + nijk)

(n′
ij + nij)

+
ri − 1

2
ln(2π)

−1
2

ri−1∑
k=0

ln(n′
ij + nij) +

1
2

ln(n′
ij + nij)

⎞⎟⎟⎟⎟⎠
+const, (n → ∞)

=
N∑

i=1

qi∑
j=1

⎛⎜⎜⎝
ri−1∑
k=0

(n′
ijk + nijk) ln

(n′
ijk + nijk)

(n′
ij + nij)

+
ri − 1

2
ln(2π)

−ri − 1
2

ln(n′
ij + nij)

⎞⎟⎟⎠
+const, (n → ∞)
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=
N∑

i=1

qi∑
j=1

⎛⎜⎜⎜⎝
ri−1∑
k=0

(n′
ijk + nijk) ln

(n′
ijk + nijk)

(n′
ij + nij)

−ri − 1
2

ln
(n′

ij + nij)
2π

⎞⎟⎟⎟⎠
+const, (n → ∞).

From ln(n′ + n) ≥ ln(n′ + nij), we obtain

ln p(X | BS) ≥ ln p(X, Θ̂BS
| BS) −

(
K

2

)
ln

n′ + n

2π
+ const, (n → ∞).

This theorem shows that the various DPSMs, including BDe and BDeu with likeli-
hood equivalence, converge to a strongly consistent score metric because the sufficient
condition of strong consistency is that ln lnn < c < n when the metric is described by
ln p(X, Θ̂BS

| BS) − c × K (Nishi, 1988). That is, the summation of hyper-parameter n′

must be satisfied for the score metric to have a strong consistency

ln p(X, Θ̂BS
| BS) →

N∑
i=1

qi∑
j=1

ri−1∑
k=0

[
nijk ln

nijk

nij

]
, as n → ∞

2π(lnn)2 − n < n′ < 2π exp(2n) − n.

In addition, we note that, as a score metric, formula (12) represents various score metrics
by changing the values of the hyper-parameters. For example, when n′ = (2π − 1)n, then
this score metric converges to (10). The differences between formula (12) and the MDL
(Bouckaert, 1994a; Suzuki, 1993) are that hyper-parameters remain in the log-posterior
term and the penalty term of the metric and π remains in the penalty term of the formula
(12). Therefore, asymptotically, these score metrics behave very similarly because they
all have a strong consistency. However, term ln p(BS) +

∑N
i=1

∑qi

j=1

∑ri−1
k=0

[
nijk ln nijk

nij

]
in MDL (10) is not a Bayesian estimator but a maximum likelihood estimator, so score
metric (12) will be better when nij = 0 because of the small amount of data for the
number of variables.

Moreover, score metric (12) converges to the following information criteria by changing
its hyper-parameter values. When n′ = 200 ∗ π − n, the score metric (12) is equivalent to
Akaike’s information criterion (AIC) (Akaike, 1974). When n′ = 1, score metric (12) is
equivalent to ICOPMP (Bozdogan, 1990).

Thus, score metric (12) can unify the various score metrics for learning Bayesian net-
works. This means that the DPSM also provides the various score metrics by changing
the hyper-parameter values.

7. Learning Bayesian networks from an empirical Bayesian approach

7.1 Previous work and problems

As mentioned first, Silander, Kontakanen, and Myllymaki (2007) provided a series of
concrete experiments to find the optimum parameter values of BDeu and showed that the
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solution of the network structure is highly sensitive to the chosen hyper-parameter values.
However, their study forcused on BDeu score and did not compare the performances of
the BDeu chainging the hyper-parameter value with the other score metrics.

Yang and Chang (2002) compared the performance of score metrics UPSM, DPSM,
BDeu, and MDL using networks with three nodes and five nodes and the ALARM net-
work structure. The experimental results show that when n′

ijk = 10, the DPSM is best at
identifying the true network structure. They also reported that the BDeu performed worst
in their experiments and that the likelihood equivalence assumption was unreasonable for
actual learning Bayesian networks.

However, they investigated the performances of the DPSM only when n′
ijk = 2 and

n′
ijk = 10, and the BDeu only when n′ = 4, n′ = 16, and n′ = 96. There were not a

sufficient amount of conditions in the experiments to find that n′
ijk = 10 is the optimum

hyper-parameter and the BDe is not a good criterion.
It should be also noted that they implicitly assumed that there is a certain optimum

hyper-parameter value for the learning Bayesian networks in the same way as Suzuki
(1993), Suzuki (1998), Bouckaert (1994a), and Bouckaert (1994b). As theorem 1 showed,
the score metrics UPSM, DPSM, BDeu, and MDL have the strong consistency, so they all
asymptotically provide the same results. The selection of hyper-parameter values affects
the learning Bayesian network results especially when there is only a small amount of
data. If the prior distribution is close to the true distribution, then the probability of
constructing the true network structure (or learning efficiency) increases even when there
is only a small amount of data. Thus, the optimal hyper-parameter values are thought to
depend on the true network structure and the amount of data. The next section presents
some simulations that were used to analyze the hyper-parameters and proposes a learning
Bayesian networks method from an empirical Bayesian approach.

7.2 Simulations

This section provides some simulations to test whether the optimal hyper-parameter
values depend on the true network structures and the amount of data. Three Bayesian
network structures are constructed. These experiments investigate the effects of different
settings of the parameters on the prediction results by making the arcs “strong cousal-
ity” and “weak causality”. Here, we define the causality strongness of A → B by the
amount of mutual information I(A, B) in accordance with Chow and Liu (1968). The
mutual information between arcs in Figure 3(1) are I(0, 1) = 0.037, I(0, 2) = 0.022,
I(1&2, 3) = 0.014, and I(2, 4) = 0.018. The mutual information between arcs in Fig-
ure 3(2) are I(0, 1) = 0.061, I(0, 2) = 0.067, I(1&2, 3) = 0.063, and I(2, 4) = 0.057. The
mutual information between arcs in Figure 3(1) are I(0, 1) = 0.0005, I(0, 2) = 0.004,
I(1&2, 3) = 0.018, and I(2, 4) = 0.0005.

Bayesian network (1) in Figure 3 is a combination of strong and weak causality arcs.
Here, a strong causality arc is one in which the conditional probabilities for a variable
consist of very different values, such as the values around 1.0 and around 0.0. A weak
causality arc is one in which the conditional probabilities of a variable take the almost
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Figure 3: Bayesian network (1). Figure 4: Bayesian network (2).

Figure 5: Bayesian network (3).

Figure 6: DPSM performance for
Bayesian network (1).

Figure 7: BDeu performance for
Bayesian network (1).

same values. Bayesian network (2) in Figure 4 consists only of strong causality arcs.
Bayesian network (3) in Figure 5 consists only of weak causality arcs. The procedures in
the simulations using the three network structures are as follows:

1. There are three sets of 1000 samples generated from the three Bayesian network
structures with the different conditional probabilities shown in Figures 3, 4, and 5.

2. Using the DPSM and the BDeu, Bayesian network structures are estimated based on
100, 500, and 1000 samples, respectively, from the datasets for the structures shown
in Figures 3, 4, and 5, by changing the values of hyper-parameters from 1 to 100.

3. The number of times the estimated structure is the true structure is counted by
repeating Procedure 2 1000 times.
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Figure 8: DPSM performance for
Bayesian network (2).

Figure 9: BDeu performance for
Bayesian network (2).

Figure 10: DPSM performance for
Bayesian network (3).

Figure 11: BDeu performance for
Bayesian network (3).

Table 1: Comparisons of estimation performances among various score metrics

The structure Sample sizes for BDeu DPSM UPSM AIC MDL

100 348 (n′=10) 330 (n′
ijk=6) 222 205 341

Bayesian network 1 500 979 (n′=2) 973 (n′
ijk=1) 870 480 972

1000 999 (n′=1) 998 (n′
ijk=40) 897 424 989

100 446 (n′=9) 486 (n′
ijk=2) 357 238 428

Bayesian network 2 500 773 (n′=9) 804 (n′
ijk=2) 676 561 726

1000 956 (n′=2) 970 (n′
ijk=12) 896 496 928

100 9 (n′=89) 19 (n′
ijk=65) 4 2 6

Bayesian network 3 500 31 (n′=93) 28 (n′
ijk=45) 26 7 26

1000 59 (n′=100) 62 (n′
ijk=30) 47 6 51

Here, the greedy algorithm with no restriction on the number of parents is used as a
search algorithm. The DPSM and the BDeu results obtained by changing the respective
hyper-parameter values, n′

ijk and n′, from 1 to 100 are shown in Figures 6, 7, 8, 9, 10,
and 11. In each Figure, the horizontal axis indicates the value of the hyper-parameter,
and the vertical axis indicates the number of correct estimations per 1000 estimations ex-
periments using the learning method. From these figures, the optimum hyper-parameter
values can be determined as one which shows the highest prediction performance (The
highest number of correct estimation as the vertical axis).

It can be seen from these results that the optimum hyper-parameter values of the DPSM
and the BDeu depend on the true structure and the number of samples. However, the
traditional concerning researches have implicitly assumed that there is a certain optimum
hyper-parameter value for learning Bayesian networks. The performances of the BDeu for
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networks (1) and (2) show the peak when the hyper-parameter is around 0-10. When the
true conditional probabilities of the network have values around 1.0 or 0.0, BDeu’s perfor-
mances show the peak when the hyper-parameter is small values. In contrast, when the
true conditional probabilities of the network tend to have values around 0.5 like network
(3), BDeu’s performance increases in a monotonic curve because of the shrinkage effects
(see, for example, Varian (1975)) of the hyper-parameter values.

The same simulations for the score metric with fixed hyper-parameter values, UPSM,
and the score metrics with no hyper-parameters, AIC and MDL, are provided. (Note that
the results of DPSM and BDeu show the results of the highest number of correct estimation
by changing the hyper-parameter values. Table 1 shows the number of correct estimations
for the DPSM, the BDeu, the UPSM, the AIC, and the MDL. As can be seen in the table,
the BDeu performs best for network structure (1), which has both strong causality arcs
and weak causality arcs, and the DPSM performs best for network (2) with strong causal-
ity arcs and (3) with weak causality arcs. It can be seen that BDeu and DPSM return
similar results. The optimum hyper-parameters of DPSM and BDeu in Table 1 are differ-
ent because DPSM’s optimum hyper-parameter means n′

ijk = const, but BDeu’s optimum
hyper-parameter means the likelihood equivalent sample size n′ =

∑qi

j=1

∑ri

k=0 nijk. If the
numbers of all variables’ parameters (riqi) is constant at K, then DPSM’s performance
with n′ are equivalent to BDeu’s performance with n′ × K. This means that the best
hyper-parameter for DPSM is smaller than the best hyper-parameter for BDeu when the
numbers of all variables’ parameters (riqi) is constant at K. The reasons why Table 1
shows some contrary results are that this experiment does not satisfy the constraint that
the numbers of all variables’ parameters (riqi) is constant at K and the search areas of
the best hyper-parameter for the DPSM and the BDeu are different because the scales of
the hyper-parameter are different between the DPSM and the BDeu.

In addition, it can be said that the prediction efficiency of BDeu and DPSM are al-
most the same from Table 1. However, BDeu, which satisfies the likelihood equivalence,
is theoretically more sound than DPSM.

These results are quite different from Yang and Chang (2002)’s results because BDeu
performed at its worst in their experiments. This was because their experiments used only
n′ = 4, n′ = 16, and n′ = 96 as hyper-parameters values. BDeu’s performance changes a
great deal when the value of hyper-parameter from Figures 7, 9, and 11 is changed, but
Yang et al. did not use enough experimental conditions to compare the performances of
the various score metrics.

In addition, although the results are not shown in Figures 6–11 and Table 1, the same
simulations using 10,000 samples are performed. In those simulations, BDeu and DPMS
both estimated correctly 100% of the time with any hyper-parameter value because they
have the strong consistency for any hyper-parameters, as shown in Theorem 1.

This section showed that BDe is theoretically and practically the best score metric.
The remaining problem is how to estimate the optimum hyper-parameter values of BDeu
from data.
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Figure 12: Alarm network structure

7.3 BDeu from an empirical Bayesian approach

The previous section showed that BDeu is a theorically and actually reasonable score
metric for the various learning Bayesian networks methods. However, in the real world, it
is difficult to evaluate the values of hyper-parameters because the true network structure
is not known. This section proposes a hyper-parameter estimation method for BDeu based
on an empirical Bayesian approach.

Given n data X, we propose the following hyper-parameter values selection procedure
using the cross-validation method:

1. Let the range of the hyper-parameter n′ be a ≤ n′ ≤ b.
2. Let the initial value of the hyper-parameter be n′ = a.
3. Randomly sample as training data 50% of n data X. The remaining data is called

validation data.
4. Learn network structure using BDeu with n′ from the training data.
5. Learn network structure using BDeu with n′ from the validation data.
6. Count the errors of the estimated structures learned from the training data and the

validation data. One error is counted if one parent node is missing or if there is
one more parent node in the learned structure from the validation data than in the
learned structure from the training data.

7. Propagate the value of the hyper-parameter n′ = n′ + 1 while n′ ≤ b.
8. Repeat procedures 2–7 100 times.
9. Calculate the average of the errors over 100 trials.

10. Select the value of the hyper-parameter to minimize the average of the errors.

To test the performance of the proposed method, this study generated random sam-
ples from the Alarm network in Figure 12, specifically three kinds of 2000-sample data,
Bayesian networks A, B, and C, by changing the conditional probabilities of the Alarm
network. The setting method of the conditional probabilities follows 7.2 experiment’s
method. Bayesian network A consists of a combnation of strong and weak causality arcs.
Bayesian network B consists only of strong causality arcs. Bayesian network C consists
only of weak causality arcs. As same as 7.2, a strong causality arc is one in which the
conditional probabilities for a variable consist of very different values and a weak causality
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Table 2: Estimation performance of proposed method and other score metrics

The structure Sample sizes BDeu UPSM AIC MDL

1000 7.86 (n′=19) 8.26 14.72 10.26
Bayesian network A 1500 5.42 (n′=21) 7.58 13.61 8.94

2000 3.71 (n′=18) 6.94 14.87 7.86

1000 6.94 (n′=5) 8.12 27.87 11.23
Bayesian network B 1500 5.63 (n′=8) 7.23 28.65 8.27

2000 3.12 (n′=18) 6.76 27.76 6.53

1000 7.27 (n′=11) 8.11 31.72 10.27
Bayesian network C 1500 6.82 (n′=18) 7.38 31.87 8.96

2000 3.93 (n′=23) 6.93 32.79 8.21

arc is one in which the conditional probabilities of a variable take the almost same value.
However, the detail list of the conditional probabilities are omitted due to limitations of
space.

Using these data sets, the proposed method with UPSM, MDL, and AIC using 1000,
1500, and 2000 samples were compared.

It is impossible to estimate the complete true structure in the case of the Alarm net-
work because the network is large, therefore this experiment evaluates the average of the
errors (the average number of arcs which the estimated structure missed) by each learning
method. The results are shown in Table 2. It should be noted that Table 1 evaluated the
number of correct estimations of the true structure but Table 2 evaluated the average of
the errors (the average number of arcs which the estimated structure missed or wrongly
added).

As can be seen in Table 2, the proposed method using BDeu performed best for various
networks structures. BDeu’s results were almost always better than UPSM’s. In addition,
MDL performance was somewhat unstable when there was not enough data, which could
be anticipated based on its score metric expression in (10). Because nijk ln(nijk/nij) is
very sensitive to variations in nijk, and nijk may vary with database size, increasing the
amount of data may not necessarily reduce the chance of making errors during structure
induction.

The AIC performed worst because it does not have the strong consistency.
Thus, the proposed method performs better than any of the other learning Bayesian

networks in the simulations. Speeding up the hyper-parameter values selection proce-
dure is an urgent problem. The average number of errors for the structures learned from
training data and validation data describe a concave curve for the hyper-parameter val-
ues. Using the concave curve property for the hyper-parameter values, we can use the
high-speed searching algorithm of the hyper-parameter values selection.

8. Why is a cross varidation based empirical Bayesian approach em-
ployed?

In this research, we employ a cross varidation method instead of a well known typi-
cal empirical Bayesian method, analytically estimating the hyper-parameter values which
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Figure 13: Evidence-based inference perfor-
mance of network using 100 sam-
ples

Figure 14: Evidence-based inference perfor-
mance of network using 1000 sam-
ples

maximizes the predictive distribution of network structures. The main reason is that
cross varidation based empirical Bayesian approach can also obtain the optimum hyper-
parameter values for the probabilistic inferences.

There is a learning Bayesian network approach that is not based on scoring metrics that
was not thoroughly discussed here. In this approach, Bayesian network structure encodes
a group of conditional independence relationships among the nodes using the concept of
d-separation (Pearl, 1988). This suggests that learning Bayesian networks are built by
identifying the conditional independence relationships among the nodes. Using statistical
tests such as Chi-squared test and mutual information test makes it possible to find the
conditional independence relationships among the attributes and use these relationships as
constraints to construct a Bayesian network. These algorithms are referred to as CI-based
algorithms or constraint-based algorithms (Cheng, Bell, and Liu, 1997; Sprites Glymour,
and Scheines, 1993).

Heckerman, Meek, and Cooper (1997) compared score metric approaches with CI-based
approaches and showed that the score metric approaches often have certain advantages
over the CI-based approaches, in terms of approximation of a joint probability distribution
of the Bayesian network. However, Friedman, Geiger, and Goldszmidt (1997) showed the-
oretically that the general score metric approaches may produce poor classifiers because
a good classifier maximizes a different function. Greiner, Grove, and Schuurmans (1997)
reached the same conclusion through a different type of analysis. They also reported that
score metric methods are often less efficient.

Cheng and Greiner (1999) referred to these results, proposing a modified CI-based
method (Chow and Liu, 1968) and demonstrated that it performed better than the other
learning Bayesian networks methods. As a Bayesian classifier, they used a sub-model of
a Bayesian network, but their results do not mean that the score metric methods have
no advantage over the CI-based methods. Rather, they mean that probabilistic infer-
ence, including classification by Bayesian network and approximation of joint probability
distribution by a Bayesian network, are different problems.

For example, Dash and Cooper (2004) proposed a very interesting method that assumes
a model that mixes several Bayesian networks. They proposed a score metric for learning
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Figure 15: Evidence-based inference perfor-
mance of network based on 100
samples

Figure 16: Evidence-based inference perfor-
mance of the network based on
1000 samples

a mixture of Bayesian networks and showed that the constructed Bayesian network mod-
els provide accurate inferences and classifications. However, this method suffers from the
serious problem that the search space of the network structure expands vastly, making it
impossible to use for large variable data.

We argue here that a unified score metric for learning Bayesian networks can be repre-
sented by changing the hyper-parameter values for both approximation of the joint proba-
bility distribution and inference of a Bayesian network. To put it another way, we assume
that there are optimal hyper-parameter values for approximating the joint probability
distribution and the different optimal hyper-parameter values for inferring a Bayesian
network. This means that we have to discriminate among the problems of approximating
the joint probability distribution of Bayesian networks and inferring each variable value
in a Bayesian network from the observed evidence.

For example, Figure 13 shows the evidence-based inferences performances of the
Bayesian network learned based on 100 random samples from the true structure (1) in Fig-
ure 3. The horizontal axis indicates the value of hyper-parameter n′ when the structure is
learned using BDeu, and the vertical axis indicates the mean squared errors (MSE: drawn
by heavy line) of the Bayesian network inferences for all variables over 100 simulation trials
given one bit of evidence. The thin line in the figure means the 95% confidence interval of
the MSE. Here, the evidence variable in each trial is randomly selected. Figure 14 shows
the one evidence-based inference performance of the network learned based on 1000 ran-
dom samples. Figure 15 shows the evidence-based inference performance of the network
based on three bits of evidence learned based on 100 random samples. Figure 16 shows the
three evidences based inferences performances of the network learned from 1000 random
samples. The figures show that the optimum hyper-parameter values for the inferences
given that some evidence is different from the optimum values for estimating the true
network structure, or approximation of the joint probability distribution.

However, the cross varidation based empirical Bayesian approach can unify the two
problems, maximizing the probabilities inferences efiiciency given certain evidence and
approximating the true joint probabuility distribution, or finding the true network struc-
ture.
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This is the main reason that we employ the cross varidation based empirical Bayesian
approach.

9. Conclusion and discussions

This paper proposed a likelihood-equivalence Bayesian network learning method based
on an empirical Bayesian approach. There have been several different apparently con-
tradictory theories in the learning Bayesian network area that derive different optimum
hyper-parameter values of DPSM. However, this paper has presented different results:

1. The DPSM has a strong consistency for any hyper-parameter set. That is, the score
metrics UPSM, DPSM, BDe, and MDL asymptotically converge to the same results.

2. The problem of setting optimal hyper-parameters is affected by the true network
structure and the amount of data.

3. BDe based on the likelihood equivalence is a theoretically and actually reasonable
score metric.

To find optimum hyper-parameters, this paper also proposed a new method of learning
Bayesian networks based on an empirical Bayesian approach. The unique features of this
method are:

1. It is possible to reflect a user’s prior knowledge.
2. It has both strong consistency and likelihood equivalence properties.
3. To maximize the predictive efficiency, adapting for the domain and data size,
4. The cross varidation based empirical Bayesian approach can unify the different two

problems of Bayesian networks, maximizing the probabilities inferences efficiency
given certain evidence and approximating the true joint probabuility distribution, or
finding the true network structure.

Finally, using the proposed method, this paper presented some numerical examples that
demonstrated the method’s effectiveness.
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