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Abstract. A score-based learning Bayesian networks, which seeks the
best structure with a score function, incurs heavy computational costs.
However, a constraint-based (CB) approach relaxes this problem and
extends the available learning network size. A severe problem of the CB
approach is its lower accuracy of learning than that of a score-based app-
roach. Recently, several CI tests with consistency have been proposed.
The main proposal of this study is to apply the CI tests to CB learning
Bayesian networks. This method allows learning larger Bayesian net-
works than the score based approach does. Based on Bayesian theory,
this paper addresses a CI test with consistency using Bayes factor. The
result shows that Bayes factor with Jeffreys’ prior provides theoretically
and empirically best performance.

Keywords: Bayesian networks · Conditional independence test ·
Jeffreys’ prior · Learning Bayesian networks

1 Introduction

A Bayesian network is a probabilistic graphical model that represents relations
of random variables using a directed acyclic graph (DAG) and a conditional
probability table (Heckerman 1995; Pearl 1988). When a joint probability distri-
bution has the DAG probabilistic structure, it can be decomposed exactly into a
product of the conditional probabilities of variables given their parent variables.
Therefore, a Bayesian network is guaranteed to provide a good approximation
of the joint probability distribution. When we use a Bayesian network, it is
necessary to estimate the structure of a Bayesian network from data because
it is generally unknown. Estimating the structure is called “learning Bayesian
network”.

Two approaches can be used for learning Bayesian networks. First are
score-based (SB) approaches (Chickering 2002; Cooper and Herskovits 1992;
Heckerman 1995; Heckerman et al. 1995). The SB approach seeks the best struc-
ture with a score function that has consistency with the true DAG structure.
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Therefore, this approach is called score-based learning. A popular Bayesian net-
work learning score is the marginal likelihood (ML) score (using a Dirichlet prior
over model parameters), which finds the maximum a posteriori (MAP) struc-
ture, as described by Buntine (1991) and Heckerman et al. (1995). In addition,
the Dirichlet prior is known as a distribution which is only likelihood equivalent
when certain conditions hold (Heckerman et al. 1995); this score is known as
“Bayesian Dirichlet equivalence (BDe)” (Heckerman et al. 1995). Given no prior
knowledge, the Bayesian Dirichlet equivalence uniform (BDeu), as proposed ear-
lier by Buntine (1991), is often used. Actually, BDeu requires an “equivalent
sample size (ESS)”, which is the value of a user-specified free parameter. More-
over, it has been demonstrated in recent studies that the ESS plays an important
role in the resulting network structure estimate.

Several learning algorithms in this approach have been developed based on
dynamic programming (Cowell 2009; Koivisto and Sood 2004; Silander and Myl-
lymaki 2006), A* search (Yuan et al. 2011), branch and bound (Malone et al.
2011), and integer programming (Cussens 2011; Jaakkola et al. 2010). However,
the Bayesian network score-based learning is adversely affected by exponential
time and NP hard problems (Chickering 1996). Consequently, the SB approach
makes it difficult to apply a large network.

Second is a constraint-based (CB) approach. Fundamentally, the solution of
the CB approach sequentially checks conditional independence relations among
all variables by statistical testing (CI), and directs edges of the structure from
observed data. Actually, the CB approach can relax computational cost prob-
lems and can extend the available learning network size for learning. Recently,
Yahezkel et al. (2009) proposed the recursive autonomy identification (RAI) algo-
rithm. The RAI algorithm decomposes into autonomous sub-structures after the
basic solution of CB approaches. This sequence is performed recursively for each
sub-structure. The advantage of the RAI algorithm is to be able to minimize
the number of parent nodes when using CI tests in the CB approach. The RAI
algorithm is, therefore, the highest accuracy in CB approaches. However, the
CB approach depends on the threshold of CI test. It has no consistency with the
true DAG structure. Traditional CI tests use G2 or χ2 test, and mutual informa-
tion (MI). Recently, several CI tests with a score function have been proposed
for learning Bayesian networks. For example, de Campos (2006) proposed a new
score function based on MI for CI tests (de Campos 2006). MI shows consis-
tency for the conditional independence relations between two nodes, but it has
not proved the strong consistency (van der Vaart 2000).

On the other hand, a Bayes factor is known to have a strong consistency (van
der Vaart 2000). The Bayes factor indicates the ratio of the marginal likelihoods
for two hypotheses. The marginal likelihood finds the maximum a posteriori
(MAP) structure, as described by Buntine (1991) and Heckerman et al. (1995).
Steck and Jaakkola (2002) proposed a CI test using a Bayes factor that set of
BDeu as the marginal likelihood. The CI test does not address the orientation of
edges between two variables. To detect the orientation correctly, BDeu adjusts
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the number of parameters to be constant. However, this adjustment entails bias
of the prior distribution (Ueno 2011).

In addition, Suzuki (2012) proposed a CI test that has strong consistent
estimator of mutual information. As the result of the research, the proposed
method corresponds to asymptotically a Bayes factor. But the method is only
applied in the Chou–Liu algorithm and is not used in the learning Bayesian
networks. Suzuki (2015) also proposed a CI test but he did not write how to use
the test for learning Bayesian networks.

This study proposes constraint-based learning Bayesian networks using Bayes
factor. A Bayes factor consists of the marginal likelihood for conditional joint
probability distributions between two variables in Bayesian networks. This paper
also shows that the Bayes factor using Jeffreys’ prior is theoretically optimal for
CI tests of Bayesian network. Clarke and Barron (1994) derived that the mini-
mum risk value of the hyperparameter of Dirichlet prior is 1/2, which is Jeffreys’
prior because it minimizes the entropy risk of prior. For a score-based learning
Bayesian network, the Jeffreys’ prior works worse than BDe(u) does because it
does not satisfy the likelihood equivalence property. However, this study shows
theoretically that Jeffreys’ prior is the optimal for the proposed Bayes factor.
In addition, some numerical experiments underscore the effectiveness of the pro-
posed method. This study gives score-based learning for a large Bayesian network
including more than 60 variables.

This paper is organized as follows. First, we introduce the learning Bayesian
networks in Sect. 2. Section 3 shows traditional CI tests. Section 4 presents the
CI test using the Bayes factor with consistency. Section 5 presents the theoreti-
cal analyses about the proposed method that is introduced into Sect. 4. Section 6
introduces the recursive autonomy identification algorithm, which is the state-of-
the-art algorithm in the CB approach. Section 7 shows experimental evaluations
using the RAI algorithm. In these experiments, we review the learning accu-
racy of the RAI algorithm according to comparison of each CI tests. Section 8
concludes the paper and suggests avenues of future work.

2 Learning Bayesian Networks

Let {x1, x2, · · · , xN} be a set of N discrete variables; each can take values in the
set of states {1, · · · , ri}. Actually, xi = k means that xi is state k. According
to the Bayesian network structure g ∈ G, the joint probability distribution is
given as

p(x1, x2, · · · , xN | g) =
N∏

i=1

p(xi | Πi, g), (1)

where G is the possible set of Bayesian network structures, and Πi is the parent
variable set of xi.

Next, we introduce the problem of learning a Bayesian network. Let θijk be a
conditional probability parameter of xi = k when the j-th instance of the parents
of xi is observed (we write Πi = j). Buntine (1991) assumed the Dirichlet prior
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and used an expected a posteriori (EAP) estimator as the parameter estimator
Θ̂ = (θ̂ijk) (i = 1, · · · , N, j = 1, · · · , qi, k = 1, · · · , ri − 1):

θ̂ijk =
αijk + nijk

αij + nij
, (k = 1, · · · , ri − 1). (2)

Therein, nijk represents the number of samples of xi = k when Πi = j, nij =∑ri

k=1 nijk, αijk denotes the hyperparameters of the Dirichlet prior distributions
(αijk is a pseudo-sample corresponding to nijk), αij =

∑ri

k=1 αijk, and θ̂ijri
=

1 − ∑ri−1
k=1 θ̂ijk.

The marginal likelihood is obtained as

p(X | g, α) =

N∏

i=1

qi∏

j=1

Γ(αij)

Γ(αij + nij)

ri∏

k=1

Γ(αijk + nijk)

Γ(αijk)
. (3)

Here, qi signifies the number of instances of Πi, where qi =
∏

xl∈Πi
rl and X

is a dataset. The problem of learning a Bayesian network is to find the MAP
structure that maximizes the score (3).

Particularly, Heckerman et al. (1995) presented a sufficient condition for sat-
isfying the likelihood equivalence assumption in the form of the following con-
straint related to hyperparameters of (3):

αijk = αp(xi = k,Πi = j | gh). (4)

Here, α is the user-determined equivalent sample size (ESS); gh is the hypo-
thetical Bayesian network structure that reflects a user’s prior knowledge. This
metric was designated as the Bayesian Dirichlet equivalence (BDe) score metric.

As Buntine (1991) described, αijk = α/(riqi) is regarded as a special case
of the BDe metric. Heckerman et al. (1995) called this special case “BDeu”.
Actually, αijk = α/(riqi) does not mean “uniform prior,” but “is the same value
of all hyperparameters for a variable”.

These methods are called a “score based approach.” Score-based learning
Bayesian networks are hindered by heavy computational costs. However, a con-
ditional independence (CI) based approach is known to relax this problem and
to extend the available learning network size.

3 CI Tests

Common means of CI testing are by thresholding conditional mutual information
(CMI) or a statistic that measures statistical independence between variables (in
Pearson’s chi-square or likelihood ratio G-test).

Mutual Information. Mutual Information (MI) between variables X and Y
measures the amount of information shared between these variables, which is
provided as

MI(X;Y ) =
∑

x∈X,y∈Y

P (x, y) log{P (x, y)/(P (x)P (y))}. (5)
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It also measures the degree to which uncertainty about Y decreases when X
is observed (and vice versa) (Cover and Thomas 1991). Actually, MI is the
Kullback–Leibler (KL) divergence between P (x, y) and P (x)P (y) (Cover and
Thomas 1991), measuring how much the joint differs from the marginals’ prod-
uct, or how much the variables can be regarded as not independent.

The CMI between X and Y , given a conditioning set Z, is given as

CMI(X;Y | Z) =
∑

x∈X,y∈Y,z∈Z

P (x, y, z) log{P (x, y | z)/(P (x | z)P (y | z))}.

(6)
By definition, MI(X;Y ) and CMI(X;Y | Z) are non-negative. MI(X;Y ) = 0

(CMI(X;Y | Z) = 0) if and only if X and Y are independent (given Z). The
true MI is unknown. The estimated M̂I is larger than MI (Treves and Panzeri
1995), and therefore for independent variables larger than 0. Practically, M̂I is
compared to a small threshold, ε, to distinguish pairs of dependent and pairs
of independent variables (Aliferis et al. 2010; Besson 2010; Cheng et al. 1999;
2002). If M̂I(X;Y ) < ε, X and Y are regarded as independent and the edge
connecting them is removed. The test for CI using CMI is similar.

Pearson’s chi-square and G2 test Statistical tests compare the null hypoth-
esis that two variables are independent of the alternative hypothesis. If the null
is rejected (cannot be rejected), then the edge is learned (removed). A statistic
that is asymptotically chi-square distributed is calculated and compared to a
critical value. If it is greater (smaller) than the critical value, then the null is
rejected (cannot be rejected) (Agresti 2002; Spirtes et al. 2000). In Pearson’s
chi-square test, the statistic X2

st is

X2
st =

∑

x∈X,y∈Y

(Oxy − Exy)2/Exy ∼ χ2
d.f=(|X|−1)(|Y |−1), (7)

where Oxy(Exy) is the number of records (expected to be if the null was correct)
for which X = x, Y = y, and |X| and |Y | are the corresponding cardinalities.
If the null is correct, P (x, y) = P (x) · P (y),∀x ∈ X, y ∈ Y . We expect that
Exy/N = (Ex/N) · (Ey/N),∀x ∈ X, y ∈ Y and Exy = Ex ·Ey/N for Ex and Ey,
which are the numbers of records in which X = x and Y = y, respectively, and
where N is the total number of records. If X2

st is greater than a critical value
for a significance value α, X2

st > Xd.f=(|X|−1)(|Y |−1),α, then we reject the null
hypothesis.

Instead, based on maximum likelihood, if the statistic

G2
st = 2

∑

x∈X,y∈Y

Oxy log(Oxy/Exy) ∼ χ2
d.f=(|X|−1)(|Y |−1) (8)

is larger than the previous critical value G2
st > X2

d.f=(|X|−1)(|Y |−1),α, then we
reject the null hypothesis.

However, the learning accuracy of the CB approach is less than that of score-
based learning because these CI tests have no strong consistency (van der Vaart
2000).
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4 Bayes Factor for CI Test

Traditional CI tests have used statistical tests without consistency. Therefore,
the traditional CI tests are not guaranteed to obtain the correct structure even
when the data size becomes large. In this paper, we propose a CI test with
consistency using the Bayes factor to improve the traditional CI test.

The Bayes factor is the ratio of the marginal likelihood (ML) (Kass and
Raftery 1995), which finds the maximum a posteriori (MAP) of the statistical
model. Therefore, the Bayes factor has asymptotic consistency. For example, the
Bayes factor is given as p(X | g1)/p(X | g2), where g1 and g2 are the hypothetical
structures from observed data X. If the value is larger than 1.0, then g1 is favored
more than g2, else g2 is favored more than g1.

Steck and Jaakkola (2002) proposed a CI test using the Bayes factor. In
this method, X presents observed data for only two variables X1 and X2 given
conditional variables as

log
p(X | g1)
p(X | g2)

. (9)

In the CI test, g1 shows a dependent model in Fig. 1; g2 shows an independent
model in Fig. 2, where C is the conditional variables. When the log-Bayes factor
takes a negative value, then the edge between x1 and x2 is deleted.

Fig. 1. g1; dependent model. Fig. 2. g2; independent model.

Steck and Jaakkola (2002) applied BDeu as the marginal likelihoods of the
Bayes factor. However, Ueno (2010, 2011) pointed out that BDeu’s prior is not
non-informative. Especially, BDeu is not guaranteed to optimize CI tests because
it was developed for score-based learning Bayesian network. The CI test does not
address the orientation of edge between two variables. To detect the orientation
correctly, BDeu adjusts the number of parameters to be constant. However, this
adjustment causes the bias of the prior distribution (Ueno 2011).

To solve this problem, our approach uses a joint probability distribution of X1

and X2 because it is unnecessary to consider the orientation of edge between X1

and X2. Let θjk1k2 represent p(x1 = k1, x2 = k2 | Π(x1,x2) = j, g1), where Π(x1,x2)

represents a set of common parents variables of x1 and x2. Here, njk1k2 denotes
the number of samples of x1 = k1 and x2 = k2 when Π(x1,x2) = j, nk1k2 =∑r1

k1=1

∑r2
k2=1 njk1k2 . It is noteworthy that θjr1r2 = 1 − ∑r1−1

k1=1

∑r2−1
k2=1 θjk1k2 .

Assuming a uniform prior αjk1k2 = α, the marginal likelihood is obtained as
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p(X|g1) =
Γ(r1r2α)

Γ(α)

qi∏

j=1

r1∏

k1=1

r2∏

k2=1

Γ(α + njk1k2)
Γ(r1r2α + nk1k2)

, (10)

p(X|g2) =
∏

i=1,2

Γ(riα)
Γ(α)

qi∏

j=1

ri∏

ki=1

Γ(α + njki
)

Γ(riα + nki
)
. (11)

The remaining problem is determination of the value of hyper-parameter α.
Clarke and Barron (1994) described that the optimal minimum risk value of the
hyperparameter of the Dirichlet prior is 1/2, which is Jeffreys’ prior because it
minimizes the entropy risk of prior. Ueno (2010, 2011) claimed that Jeffreys’
prior is not efficient for score-based learning Bayesian network. However, this
study specifically examines CI tests. The Jeffreys’ prior is theoretically optimum
for this problem.

Suzuki (2012) proposed a Bayes estimator of the mutual information for
extending the Chow–Liu algorithm. The estimator is almost identical to the pro-
posed Bayes factor in this paper. However, their purposes differ because Suzuki
(2012) learned probabilistic tree structures to maximize the Bayes estimator.

Suzuki (2015) also proposed a CI test but he did not write how to use the
test for learning Bayesian networks. The main proposal of this study is to apply
the Bayes factor CI test to CB learning Bayesian networks.

5 Theoretical Analyses

In this section, we present results from some theoretical analyses of CI tests
using the proposed method. From (3), the sum of hyperparameters α of BDeu
is constant for the number of parents because αijk = α/(riqi), but that of the
proposed method increases as the number of parents increases. For example, one
might consider two binary variables with the empty set of C, as shown in Figs. 1
and 2. Then the proposed score for g1 is calculable by

p(X | g1) =
Γ(4α)
Γ(α)

2∏

k1=1

2∏

k2=1

Γ(α + nk1k2)
Γ(4α + nk1k2)

.

The proposed score for g2 is obtained as

p(X | g2) =
Γ(2α)
Γ(α)

2∏

k1=1

2∏

k2=1

Γ(α + nk1k2)
Γ(2α + nk1k2)

.

The proposed score for g1 is equivalent to the BDeu score where ESS = 4α,
but the proposed score for g2 is equivalent to the BDeu score where ESS = 2α.
Consequently, from the view of BDeu, the proposed score changes the ESS value
according to the number of parameters. From this, the reader might suspect that
the proposed method is affected by estimation bias.
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To clarify the mechanisms of marginal likelihood of Bayesian network, Ueno
(2010) analyzed the log-marginal likelihood asymptotically and derived the fol-
lowing theorem.

Theorem 1. (Ueno 2010) When α + n is sufficiently large, log-marginal likeli-
hood converges to

log p(X | g, α) = log p(Θ̂ | X, g, α)−1
2

N∑

i=1

qi∑

j=1

ri∑

k=1

ri − 1
ri

log
(

1 +
nijk

αijk

)
+const.,

(12)
where

log p(Θ̂ | X, g, α) =
N∑

i=1

qi∑

j=1

ri∑

k=1

(αijk + nijk) log
(αijk + nijk)
(αij + nij)

,

and const. is the term that is independent of the number of parameters.

From (12), the log-marginal likelihood can be decomposed into two fac-
tors: (1) a log-posterior term log p(Θ̂ | X, g, α) and (2) a penalty term
1
2

∑N
i=1

∑qi
j=1

∑ri

k=1
ri−1

ri
· log

(
1 + nijk

αijk

)
.

∑N
i=1

∑qi
j=1

∑ri

k=1
ri−1

ri
is the number

of parameters.
This well known model selection formula is generally interpreted (1) as reflect-

ing the fit to the data and (2) as signifying the penalty that blocks extra arcs
from being added. This result suggests that a tradeoff exists between the role
of αijk in the log-posterior (which helps to block extra arcs) and its role in the
penalty term (which helps to add extra arcs).

From (12), the value of hyperparameter αijk should not be changed because
the change of αijk strongly affects the penalty term of the score. The difference
between BDeu and the proposed marginal likelihood is that the value of αijk in
BDeu decreases as the number of parameters increases because αijk = α/(riqi)
in BDeu, but that of the proposed method is constant for the different number
of parameters. However, we use αijk = α/(riqi) only for correct orientation
identification. Therefore, generally, the decrease of αijk leading to the increase
the number of parameters in BDeu cannot be justified. Consequently, BDeu
might show somewhat unstable performance in the CI test.

6 Recursive Autonomy Identification Algorithm

The remaining problem is which CB algorithm we employ to implement the
Bayes factor CI test. In this study, we use the recursive autonomy identification
(RAI) algorithm which is the state-of-art algorithm for the CB approach. In this
section, we present the definition and procedure of the RAI algorithm.
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Yehezkel and Lerner (2009) proposed the RAI algorithm to reduce unneces-
sary CI tests. They show that X and Y which are the variables of structure are
independent conditioned on a set of conditional variables S using X ⊥ Y | S, and
make use of d-separation (Pearl 1988). Also, they define d-separation resolution
as the purpose to evaluate d-separation for different the number of conditional
variables, and an autonomous substructure.

D-Separation Resolution. The resolution of a d-separation relation between
a pair of non-adjacent nodes in a graph is the size of the smallest condition set
that d-separates the two nodes.

Exogenous Causes. A node Y in g(V ,E) is an exogenous cause to g′(V ′,E′),
where V ′ ⊂ V and E′ ⊂ E, if Y �∈ V ′ and X ∈ V ′, Y ∈ P a(X, g) or
Y �∈ Adj(X, g) (Pearl 2000).

Autonomous Sub-structure. In DAG g(V ,E), a sub-structure gA(V A,EA)
such that V A ⊂ V and EA ⊂ E is said to be autonomous in g given a set
Vex ⊂ V of exogenous causes to gA if ∀X ∈ V A, P a(X, g) ⊂ {V A ∪ Vex}. If
Vex is empty, we say the sub-structure is (completely) autonomous.

They define sub-structure autonomy in the sense that the sub-structure holds
the Markov property for its nodes. Given a structure g, any two non-adjacent
nodes in an autonomous sub-structure gA in g are d-separated given nodes either
included in the sub-structure gA or exogenous causes to gA.

In this method, starting from a complete undirected graph and proceeding
from low to high graph d-separation resolution, the RAI algorithm uncovers the
correct pattern of a structure by performing the following sequence of operations.

First, all relations between nodes in the structure are checked using the CI
test. Second, the edges are directed by orientation rules. Third, structure decom-
poses autonomous sub-structures. For each sub-structure, the RAI algorithm is
applied recursively, while increasing the order of the CI tests. The important idea
is that the entire structure decomposes autonomous sub-structures. By perform-
ing that procedure, decrease the high order of the CI tests. In the experimentally
obtained results, the RAI algorithm was shown to be significant in comparison
with other algorithms of the CB approach.

By the procedure, the RAI algorithm is able to realize the computational
cost smaller than any other algorithm in the CB approach.

7 Numerical Experiments

This section presents some numerical experiments used to evaluate the effec-
tiveness of our proposed method. For this purpose, we compare the learning
accuracy of the proposed method with the other methods.
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7.1 Experimental Design

We conducted some simulation experiments to evaluate the effectiveness of the
proposed method. In the experiments, we compare the performances of Bayes
factor with αijk = 1/2, those with αijk = 1, those with BDeu (α = 1) (Steck
and Jaakkola 2002), those of de Campos’s method (2006), and those of the
mutual information with the threshold of 0.003 which is derived as best value
by Yehezkel and Lerner (2009). These methods are presented in Table 1.

In Sect. 7.2, we evaluate the performances of CI tests using three small net-
work structures with binary variables. First structure shows a strongly skewed
conditional probability distribution. Second has a skewed conditional probability
distribution. Third has a uniform conditional probability distribution.

In Sects. 7.3 and 7.4, we present learning results obtained using large net-
works. We use the Alarm network in Sect. 7.3 and the win95pts network in
Sect. 7.4. These benchmark networks were used from the bnlearn repository
(Scutari 2010).

Table 1. Comparison of methods.

# Methods

1 αijk = 1
2

2 αijk = 1

3 BDeu (α = 1)(Steck and Jaakkola 2002)

4 MI & χ2 (de Campos 2006)

5 MI (Yehezkel and Lerner 2009)

7.2 Experimentation with Small Network

First, we evaluated the learning accuracy using a five-variable structure. Figure 3
has a strongly skewed conditional probability distribution. Figure 4 has a skewed
conditional probability distribution. Figure 5 has a uniform conditional proba-
bility distribution.

The procedures of this experiment are described below.

1. We generated 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000 samples
from the three structures.

2. Using CI tests in Table 1, Bayesian network structures were estimated from
100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000 samples.

3. We repeated procedure 2 for 10 iterations for each number of samples.

We presented the average of the total learning errors for each CI test.
The learning error shows the difference between the learned structure and
the true structure, which is called the structure Hamming distance (SHD).
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Fig. 3. Strongly skewed distribution. Fig. 4. Skewed distribution.

Fig. 5. Uniform distribution.

Tsamardinos et al. (2009) proposed the evaluation of the accuracy of the learning
structure using the SHD, which is the most efficient metric between the learned
and the true structure.

The results are depicted in Fig. 6. The results show that our proposed
method (#1) produces the best performance. For a strongly skewed distrib-
ution (Fig. 3), our proposed method decreases the learning error faster than
αijk = 1 as the sample size becomes large. For a skewed distribution (Fig. 4),
our proposed method decreases the learning error faster than αijk = 1 as the
sample size becomes large. For a uniform distribution (Fig. 5), all CI tests tend
to be adversely affected, showing somewhat unstable behaviors. However, only
the method with αijk = 1/2 converges to zero error for a uniform distribution.

From Fig. 6, for a small network, performances with de Campos’s method
and MI are more adversely affected than those with the other methods because
they have no strong consistency.

7.3 Experimentally Obtained Result with the Alarm Network

To evaluate a large network, we first used the Alarm network because it is
widely known as a benchmark structure for the evaluation of learning Bayesian
networks. The Alarm network includes 37 variables and 46 edges. The maximum
in-degree is four. In this experiment, we determined the number of states of all
variables as two.

To evaluate the CI test accuracy, we used learning errors of three types
(Spirtes et al. 2000; Tsamardinos et al. 2006). An extra edge (EE) is a learned
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Fig. 6. Results of the learning small network.

edge, although it does not exist in the true graph. A missing edge (ME) is a
missed edge from learning, although it exists in the true graph. Additionally, we
used SHD.

For evaluation of learning of the Alarm network, we generated N = 10, 000,
20,000, 50,000, 100,000, and 200,000 samples. Then we let the RAI algorithm
with each CI test learn the structure using these samples. We repeated this
procedure 10 times. We plot the MEs, EEs, and SHDs of the methods for each
sample size to evaluate the learning accuracy in Figs. 7, 8, and 9. Additionally,
we show the average of run-time in comparison with the method presented in
Table 2.

Table 2. Comparison of the average run-time for each CI method in the Alarm network.

N Average run-time results (s)

#1 #2 #3 #4 #5

10,000 80.9469 80.9974 80.2859 0.7680 0.5558

20,000 167.6280 168.2110 169.8730 1.1758 0.7945

50,000 423.5380 423.7020 424.3510 2.3933 1.6321

100,000 1.8034E+03 1.8283E+03 1.7869E+03 5.8928 4.3668

200,000 4.3404E+03 4.3984E+03 4.3753E+03 9.5591 7.1311
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Fig. 7. Average numbers of MEs Fig. 8. Average numbers of EEs

Fig. 9. Average numbers of SHDs

Fig. 10. Average numbers of MEs. Fig. 11. Average numbers of EEs.

In Table 2, the proposed methods are shown to consume more run-time than
the traditional MI methods do. In addition, the run-time of the proposed meth-
ods increases linearly as the sample size increases.
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Fig. 12. Average numbers of SHDs.

From Figs. 7 and 9, Bayes factor with αijk = 1/2 outperforms other methods
in many cases. Our proposed method tends to be adversely affected more by extra
edges for small sample sizes. As the sample size becomes larger than 100,000,
the EEs of the proposed method show the best results.

7.4 Experimentally Obtained Results with the Win95pts Network

In the SB approach, Cussens (2011) proposed a learning algorithm using the
integer programming and achieved the learning structure with 60 variables. To
prove that our proposed method can learn a structure with more than 60 vari-
ables, we used the win95pts network. The network includes 76 variables and 112
edges. In addition, the maximum number of degrees is seven.

In this experiment, we also evaluated our proposed method using the same
method as that used for learning the Alarm network. We compared the per-
formances of the CI tests for N = 10, 000, 20, 000, 50, 000, 100, 000, and 200,000
samples. The procedure was repeated 10 times.

In Figs. 10, 11, and 12, we depict the experimentally obtained results from
using MEs, EEs, and SHDs. Additionally, we show the average of run-time in
comparison with the method presented in Table 3.

Table 3. Comparison of the average run-time for each CI method in the win95pts
network.

N Average run-time results (s)

#1 #2 #3 #4 #5

10,000 1.0222e+03 1.0642e+03 986.1200 7.7304 5.2507

20,000 2.1132e+03 1.9826e+03 2.0241e+03 13.5052 8.3541

50,000 4.9998e+03 5.1772e+03 4.7857e+03 21.9171 13.4316

100,000 1.5838e+04 1.5379e+04 1.4425e+04 39.9133 23.6153

200,000 3.3139e+04 3.2942e+04 3.2829e+04 66.8592 36.7520
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From Fig. 10, our proposed method (#1) is shown to be the best. From
Fig. 11, our proposed method (#1) tends to be adversely affected by extra edges.
However, de Campos’s method produces fewer extra edges. From Fig. 12, for a
small sample size, the Bayes factor with αijk = 1 exhibits superior performance.
However, regarding the performance of the proposed method, the Bayes factor
with αijk = 1, and de Campos’s method show almost identical performance
when the sample size becomes large. Actually, de Campos’s method without
strong consistency provides the best performance because the sample size in this
experiment is insufficiently large for this network.

From Table 3, the proposed methods consume more run-time than the tra-
ditional MI methods do. In addition, the run-time of the proposed methods
increases linearly as the sample size increases. The run-time of the traditional
MI methods increases rapidly as the network size increases. Consequently, the
proposed method is expected to be applicable to extremely large networks.

8 Conclusion

As described herein, we proposed a new CI test using the Bayes factor with
αijk = 1/2 for learning Bayesian networks. Additionally, we provided some the-
oretical analyses of the proposed method. The results show that the prior dis-
tribution of BDeu for score-based learning is not non-informative, and it might
cause biased and unstable estimations. The proposed CI test based on Jeffreys’
prior minimizes the entropy risk of the prior and optimum the learning results.
Using some experiments, we demonstrated that our proposed method improves
learning accuracy compared with the other CI tests. Although the CI tests using
Bayes Factor based on BDeu (Steck and Jaakkola 2002) have already been pro-
posed, our proposed CI test worked better than the other CI tests did. However,
for a large network, we were unable to find a significant difference from the other
methods. For a large network, the proposed method requires a large sample size
because it has asymptotic consistency.

On a different note, this work indicates that it begins taking a modest step
towards improving the theory of the CB approach. A future work is to investigate
the performance of the proposed method for larger networks and huge samples.
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