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COLLABORATIVE FILTERING FOR MASSIVE DATASETS BASED
ON BAYESIAN NETWORKS

Maomi Ueno∗ and Takahiro Yamazaki∗

This paper proposes a collaborative filtering method for massive datasets that is
based on Bayesian networks. We first compare the prediction accuracy of four scoring-
based learning Bayesian networks algorithms (AIC, MDL, UPSM, and BDeu) and
two conditional-independence-based (CI-based) learning Bayesian networks algorithms
(MWST, and Polytree-MWST) using actual massive datasets. The results show that
(1) for large networks, the scoring-based algorithms have lower prediction accuracy than
the CI-based algorithms and (2) when the scoring-based algorithms use a greedy search
to learn a large network, algorithms which make a lot of arcs tend to have less prediction
accuracy than those that make fewer arcs. Next, we propose a learning algorithm based
on MWST for collaborative filtering of massive datasets. The proposed algorithm em-
ploys a traditional data mining technique, the “a priori” algorithm, to quickly calculate
the amount of mutual information, which is needed in MWST, from massive datasets.
We compare the original MWST algorithm and the proposed algorithm on actual data,
and the comparison shows the effectiveness of the proposed algorithm.

1. Introduction

Recommender systems automatically propose suitable items to individual users on the
basis of various personal information. This has become an important research area since
the appearance of the first papers on collaborative filtering in the mid-1990s (Hill et al.,
1995; Resnick et al., 1994; Shardanand and Maes, 1995). Recommender systems are usu-
ally classified into the following categories according to how recommendations are made
(Balabanovic and Shoham, 1997):

• Content-based recommendations: Items similar to those preferred by the user in the
past are recommended.

• Collaborative recommendations: Items that people with similar tastes and preferences
liked in the past are recommended.

• Hybrid approaches: These methods combine collaborative and content-based meth-
ods.

In content-based recommendations, an item profile is usually computed by extracting a
set of features from the item, and the profile is used to determine the appropriateness of
the item for recommendation purposes. The advantages of content-based recommendation
are that we do not need peer user profiles and the latest items that have no peer user
profiles are available for recommendation. The disadvantages are that only similar items
tend to be recommended and it is sometimes difficult to extract features from an item.

Collaborative recommendations involve two general types of algorithm: memory-based
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Table 1: Comparing collaborative filtering methods with ranked scoring results for the MS Web
dataset

Algorithm Given2 Given5 Given10 AllBut1

BN 59.95 59.84 53.92 66.69
CR+ 60.64 57.89 51.47 63.59

VSIM 59.22 56.13 49.33 61.70
BC 57.03 54.83 47.83 59.42

POP 49.14 46.91 41.14 49.77

RD 0.91 1.82 4.49 0.93

(or heuristic-based) and model-based. Memory-based algorithms (Breese et al., 1998;
Delgado and Ishii, 1999; Nakamura and Abe, 1998; Resnick et al., 1994; Shardanand and
Maes, 1995) essentially are heuristics that make rating predictions based on the entire
collection of items previously rated by users. In contrast, model-based algorithms (Billsus
and Pazzani, 1998; Breese et al., 1998; Getoor and Sahami, 1999; Goldberg et al., 2001;
Hofmann, 2003; Marlin, 2003; Pavlov and Pennock, 2002; Ungar and Foster, 1998) use
the collection of ratings to learn a model, which is then used to make rating predictions.
The advantage of collaborative recommendations is that they do not need item profiles.
This means collaborative recommendations do not inevitably recommend items that have
similar profiles.

There are many kinds of collaborative recommendation algorithms, and the prediction
accuracy of their recommendations depends on the collaborative recommendation algo-
rithms. Breese et al. (1998) compare the prediction accuracies of various collaborative
recommendation algorithms. Bayesian-network-based collaborative filtering has the best
performance in Table 1, where “BN” indicates the Bayesian network model, “CR+” in-
dicates the correlation method, “VSIM” indicates the vector similarity method, “BC”
indicates the Bayesian clustering model, “POP” indicates the baseline performance, and
“RD” indicates the required difference at the 90% confidence level for the experiment as
a whole. “Given2”, “Given5”, and “Given10” in Table 1 respectively indicate the predic-
tion accuracies given two, five, and ten observations. “Allbut1” in Table 1 indicates the
prediction accuracy given the observations for all variables except the target variable. Al-
though the results show that BN performs the best, Breese et al. (1998) use only the BDeu
(likelihood-equivalence Bayesian Dirichlet with uniform prior) metric (Heckerman et al.,
1995), which is one of various scoring metrics for learning Bayesian networks. It is known
that the prediction accuracy of Bayesian network depends on the learning algorithm. For
example, Yang and Chang (2002) compare the performances of various score metrics for
learning Bayesian networks. The results of their simulation experiments show that the
Dirichlet Prior Score Metric with a 10-th order hyper-parameter is the best and BDeu is
the worst. We, therefore, expect that the other learning Bayesian networks algorithms
perform better than BDeu for collaborative recommendation algorithms.

Learning Bayesian networks algorithms can be divided into two types (Cheng and
Greiner, 1999): (1) scoring-based learning algorithms and (2) conditional-independence-
based (CI-based) learning algorithms. The former uses a scoring metric such as AIC
(Akaike, 1974), MDL (Rissanen, 1983), UPSM (Cooper and Herskovits, 1992), or BDeu
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(Heckerman et al., 1995). In scoring-based learning, the search problem for the network
structure is NP-complete. We therefore have to use heuristics to shrink the search space.
The greedy search procedure using an ordering of the nodes is often used for that purpose.
Even if we use this procedure, the computational cost for the search procedure increases
exponentially with the number of nodes. The latter uses a conditional independence test
(CI-test) such as the Chi-squared test or a mutual information test for finding condition-
ally independent nodes sets. The computational cost of the CI-based algorithms is O(n2)
(n indicates the number of nodes). This indicates that the computational cost of these
algorithms is much less than that of the scoring-based ones.

Heckerman et al. (1997) compare the two kinds of learning algorithm and show that the
scoring-based algorithms often have certain advantages over the CI-based algorithms in
terms of modeling a distribution. Their study does not use a large number of variables and
evaluates only the accuracy of modeling a distribution. However, large numbers of vari-
ables are generally used in collaborative recommendations, and the accuracy of modeling
a distribution does not reflect the prediction accuracy of collaborative recommendations.

The purpose of this paper is to find the best learning Bayesian networks algorithm for
collaborative recommendation and modify the algorithm to decrease its computational
cost on massive datasets.

We first compare the prediction accuracy of four scoring-based learning Bayesian net-
works algorithms (AIC, MDL, UPSM, and BDeu) and two conditional-independence-based
(CI-based) learning Bayesian networks algorithms (MWST, and Polytree-MWST) using
actual massive datasets. The results show that (1) for large networks, the scoring-based
algorithms have less accuracy of prediction than the CI-based algorithms and (2) when the
scoring-based algorithms use a greedy search to learn a large networks, the algorithms that
make a lot of arcs tend to have less prediction accuracy than the those that make fewer
arcs. Next, we propose a learning algorithm based on MWST for collaborative filtering of
massive datasets. The proposed algorithm employs a traditional data mining technique,
the “a priori algorithm”, to quickly calculate the amount of mutual information, which
is needed in MWST, from massive datasets. We compare the original MWST algorithm
and the proposed algorithm on actual data, and the comparison show the effectiveness of
the proposed algorithm.

2. Background

2.1 Bayesian networks

Consider a domain U of n discrete random variables X1, ..., Xn, where each variable
Xi takes a state K ∈ {0, . . . , ri − 1}.

A Bayesian network is an annotated acyclic directed graph that encodes a joint proba-
bility distribution over a set of random variables U. Formally, a Bayesian network for U
is a pair B =< BS , Θ >. The first component, BS , is an acyclic directed graph whose ver-
tices correspond to the random variables X1, ..., Xn, and whose edges represent directed
dependencies between the variables. The graph BS encodes independence assumptions:
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each variable Xi is independent of its nondescendants given its parents in BS . The second
component, Θ, represents the set of parameters that quantifies the network. It contains
a parameter θijk = p(Xi = k|Πi = j) for each possible value k of Xi and j of Πi, where
Πi denotes the set of parents of Xi in BS . A Bayesian network B defines a unique joint
probability distribution over U given by

p(X1, . . . , Xn|B) =
n∏

i=1

p(Xi|Πi, BS) (2.1)

2.2 Learning algorithms for Bayesian networks

The problem of learning a Bayesian network can be informally stated as: Given a
training data X = {x1, . . . ,xN} of instances of U, find a network B that best matches X.

The common approach to this problem is to introduce a scoring metric that evaluates
each network with respect to the training data and then to search for the best network
according to this function.

There are two ways to view a Bayesian network, each suggesting an approach to learn-
ing. First, a Bayesian network is a structure that encodes the joint distribution of the
attributes. This suggests that the best Bayesian network is the one that fits the data and
leads to scoring-based learning algorithms which seek a structure that maximizes scoring
metrics such as AIC, MDL, UPSM, and BDeu (Akaike, 1974; Cooper and Herskovits,
1992; Heckerman et al., 1995; Rissanen, 1983).

Second, the Bayesian network structure encodes a group of conditional independence re-
lationships among the nodes, according to the concept of d-separation (Pearl, 1988). This
suggests learning the Bayesian network structure by identifying the conditional indepen-
dence relationships among the nodes. Using statistical tests such as the Chi-squared test
and the mutual information test, we can find the conditional independence relationships
among the attributes and use those relationships as constraints to construct a Bayesian
network. These algorithms are referred as CI-based algorithms or constraint-based algo-
rithms.

Heckerman et al. (1997) compare these two general approaches to learning and show
that the scoring-based methods often have certain advantages over the CI-based methods
in terms of modeling a distribution. However, Friedman et al. (1997) theoretically show
that the general scoring-based methods may result in poor classifiers, because a good clas-
sifier maximizes a different function, namely classification accuracy. Greiner et al. (1997)
reach the same conclusion, albeit via a different analysis. Cheng and Greiner (1999) also
insists that CI-based methods are superior to scoring based algorithms for classifications.
However, these studies focus on only Bayesian classifier models; thus we cannot expand
these results to Bayesian network models.

In this paper, we compare the prediction accuracies of four scoring-based learning
Bayesian networks algorithms (AIC, MDL, UPSM, and BDeu) and two CI-based learn-
ing Bayesian network algorithms (MWST, and Polytree-MWST) using actual massive
datasets.
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2.3 Scoring-based algorithms

2.3.1 UPSM – Uniform Prior Score Metric

This subsection introduces the most popular scoring metrics: the Dirichlet Prior Score
Metric (DPSM) and Uniform Prior Score Metric (UPSM) (Cooper and Herskovits, 1992).

Let θijk be a conditional probability parameter of Xi = k when Πi = j. The likelihood
L(Θ | X, BS) is given by

L(Θ | X, BS) ∝
n∏

i=1

qi∏
j=1

ri−1∏
k=0

θ
Nijk

ijk , (2.2)

where Θ = {θijk}(i = 1, · · · , n, j = 1, · · · , qi, k = 0, · · · , ri − 1), qi is the number of in-
stances of Πi, ri is the number of states of xi, Nijk is the number of samples of Xi = k

when Πi = j, and X is a multinomial sample from Bayesian network B =< BS , Θ >.
We assume a Dirichlet distribution as a conjugate prior distribution, which is a class of

likelihood functions if the resulting posterior distributions are in the same family, of the
multinomial distribution,

p(Θ | BS) =
n∏

i=1

qi∏
j=1

ri−1∏
k=0

Γ(
∑ri−1

k=0 N ′
ijk)∏ri−1

k=0 Γ(N ′
ijk)

ri−1∏
k=0

θ
N ′

ijk−1

ijk , (2.3)

N ′
ijk > 0(k = 0, . . . , ri − 1),

where N ′
ijk is the hyper-parameter of the prior distribution corresponding to the multino-

mial sample Nijk.
Consequently, we obtain the posterior as follows:

p(Θ | X, BS) ∝
n∏

i=1

qi∏
j=1

ri−1∏
k=0

θ
N ′

ijk+Nijk−1

ijk . (2.4)

Thus, if the prior distribution for Θ has a Dirichlet distribution, so does the posterior
distribution for Θ.

Given the Dirichlet distribution’s properties, Cooper and Herskovits (1992) and Heck-
erman et al. (1995) employed an unbiased estimator, i.e., the expectation of the parameter
estimator θ̂ijk:

θ̂ijk =
N ′

ijk + Nijk

N ′
ij + Nij

, (k = 0, · · · , ri − 2), (2.5)

where N ′
ij =

∑ri−1
k=1 N ′

ijk, Nij =
∑ri−1

k=1 Nijk.
Furthermore, the predictive distribution can be obtained as follows:

p(X | BS) =
∫

Θ

p(X | Θ, BS)p(Θ | BS)dΘ (2.6)

=
n∏

i=1

qi∏
j=1

Γ(N ′
ij)

Γ

[
ri−1∑
k=0

(N ′
ijk + Nijk)

] ri−1∏
k=0

Γ(N ′
ijk + Nijk)
Γ(N ′

ijk)
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=
n∏

i=1

qi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij + Nij)

ri−1∏
k=0

Γ(N ′
ijk + Nijk)
Γ(N ′

ijk)

The predictive distribution in (2.6) is called the “Dirichlet Prior Score Metric, (DPSM)”.
We maximize DPSM in order to select the true structure of the Bayesian network.

In particular, (Cooper and Herskovits, 1991, 1992) assumed that the prior distribution
has a uniform N ′

ijk = 1, (i = 1, · · · , N, j = 1, · · · , qi, k = 0, · · · , ri − 1) and derived the
following criterion:

p(X | BS) =
∫

Θ

p(X | Θ, BS)p(Θ | BS)dΘ (2.7)

∝
n∏

i=1

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri−1∏
k=0

Nijk!.

This criterion led to their famous causal discovery program K2 (Cooper and Herskovits,
1992), which we call the “Uniform Prior Score Metric (UPSM)”.

2.3.2 BDeu – Likelihood equivalence Bayesian Dirichlet with uniform prior

Heckerman et al. (1995) introduced a likelihood equivalence assumption: if two struc-
tures are equivalent, their parameter joint probability density functions are identical.
Theoretically, the likelihood equivalence assumption is written as follows:

Given two network structures BS1 and BS2 such that p(BS1 | ξ) > 0 and p(BS2 | ξ) > 0,
if BS1 and BS2 are equivalent, then p(ΘBS1 | BS1, ξ) = p(ΘBS2 | BS2, ξ).

Heckerman et al. (1995) pointed out that formula (2.10) does not satisfy the likelihood
equivalence assumption.

Furthermore, Heckerman et al. (1995) used the likelihood equivalence assumption, in-
stead of the Dirichlet distribution assumption, and derived the same formula as (2.9).
They also showed the following constraint about the hyper-parameters is a sufficient con-
dition for satisfying the likelihood equivalence assumption:

N ′
ijk = N ′ · p(xi = k, Πi = j | Bh

S , ξ), (2.8)

where N ′ is the equivalent sample size determined by users and Bh
S is the hypotheti-

cal Bayesian network structure which reflects the user’s prior knowledge. They called
this metric the “likelihood-equivalence Bayesian Dirichlet score metric” (BDe). Buntine
(1991)’s uniform prior constraint N ′

ijk = N ′/(riqi) is considered to be a special case of the
BDe metric, and Heckerman et al. (1995) call this special case “BDeu” (“u” for uniform
prior ). Buntine noted that this metric has the property of likelihood equivalence.

2.3.3 AIC – Akaike’s Information Criterion

Akaike’s Information Criterion (AIC) (Akaike, 1974) is a scoring-based method. The
AIC scoring metric is based on expectation log likelihood with a penalty. Using maximal
log likelihood lm(Θ|D, BS), the AIC scoring metric can be expressed as

AIC(BS, D) = log p(BS) + lm(Θ|D, BS) −
n∑

i=1

qi(ri − 1) (2.9)
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= log p(BS) +
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
−

n∑
i=1

qi(ri − 1),

where Nijk denotes the number of cases in the given training data D in which the variable
Xi took its kth value (k = 1, 2, ..., ri) and its parent Pa(Xi) was instantiated as its jth
value (j = 1, 2, ..., qi), and Nij =

∑ri

k=1 Nijk. In this paper, we assume that the prior dis-
tribution p(BS) is uniform because we have no prior information about the true network
structure.

2.3.4 MDL – Minimum Description Length

The Minimum Description Length (MDL) (Rissanen, 1983) is a scoring-based method
that can judge the quality of a network structure. The basic idea behind the MDL is to
make a tradeoff between model simplicity and data fit by the minimizing the length of a
joint description of the model and the data by assuming the model is correct. The MDL
score metric is expressed as

MDL(BS , D) = log p(BS) + lm(Θ|D, BS) − 1
2

n∑
i=1

qi(ri − 1) log N (2.10)

= log p(BS) +
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
− 1

2

n∑
i=1

qi(ri − 1) log N.

2.4 Greedy search

It is known that the search problem for the network structure which maximize the scor-
ing metrics is NP-complete (Chickering, 1995). Therefore, a heuristic search algorithm is
required. In this paper, we employ the following algorithm for the search problems using
the scoring metrics mentioned before.

Cooper and Herskovits (1992) developed a greedy search algorithm that searches for a
network structure that approximately maximizes the scoring metrics. That is, the search
space is the set of all network structures. For each node i, this search algorithm locally
finds a value Πi that maximizes the scoring metrics of the local network structures with
Xi and Πi. The single operation in this search algorithm is the addition of a parent to
a node. The algorithm proceeds as follows: Assume an ordering of nodes such that if Xi

precedes Xj in the order, an arc from Xj to Xi is not allowed. Let Pred(Xi) be the set
of nodes that precede Xi in the ordering. Initially, set the parents Πi of Xi to empty and
compute the scoring metric. Determine the node in Pred(Xi) which most increases the
scoring metric of the local network structure with Xi, Πi, and the node in Pred(Xi). Add
the determined node to Πi. This procedure is continued until the addition of a node does
not increase the scoring metric.
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2.5 CI-based algorithms

2.5.1 MWST

Maximum Weighted Spanning Tree (MWST) (Chow and Lin, 1968) is a CI-based
method that makes a tree structure using the mutual information measure I(Xi, Xj):

I(Xi, Xj) =
∑
xi,xj

p(xi, xj) log
p(xi, xj)

p(xi)p(xj)
(2.11)

MWST makes a tree structure in which each node can only have one parent. The MWST
procedure is:

1. Compute the mutual information measure I(Xi, Xj) for all pairs of nodes.
2. Add to the list all pairs of nodes whose mutual information measure is greater than

a threshold ε.
3. Order the pairs of nodes in the list by the mutual information measure.
4. Examine the first pair of nodes in the list and connect them with a non-directed arc.
5. Examine the next pair of nodes in the list, and connect them with a non-directed arc

unless it forms a loop, in which case discard it and examine the next pair.
6. Repeat step 5 until n − 1 arcs have been connected or all pairs of nodes in the list

have been examined.
7. Select a root node arbitrarily, and set the directions of all arcs to go from the root

node to leaf nodes.

Here, we select a root node according to the ordering of the nodes that we determined
for the greedy search algorithm (the first node is a root node). MWST requires O(n2)
mutual information tests.

2.5.2 Polytree-MWST

Polytree-MWST (Pearl, 1988), which is an extended MWST, makes trees which allow
multiple parents. In this study, we decide beforehand the directions of arcs according to
the ordering of the nodes for the greedy search algorithm to use Polytree-MWST.

The Polytree-MWST procedure is:

1. Compute the mutual information measure I(Xi, Xj) for all pairs of nodes.
2. Add to the list all pairs of nodes whose mutual information measure is greater than

a threshold ε.
3. Order the pairs of nodes in the list by the mutual information measure.
4. Examine the first pair of nodes in the list, and connect them with a directed arc.
5. Examine the next pair of nodes in the list, and connect them with a directed arc

unless it forms a loop, in which case discard it and examine the next pair.
6. Repeat step 5 until n − 1 arcs have been connected or all pairs of nodes in the list

have been examined.

Polytree-MWST also requires O(n2) mutual information tests.
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3. Experiments

This section compares the prediction accuracies of UPSM, BDeu, AIC, MDL, MWST,
and Polytree-MWST operating on actual data sets for collaborative recommendations.

3.1 Experiment method

The prediction accuracy comparison used user browsing history data stored in a com-
mercial web server. The web site provides information on recruiting, travel, housing, cars,
qualifications, marriages, restaurants, education, healthcare, medical care, child-rearing,
and so on. The site has over 250,000 pages and over four million users. An unique feature
of the data is that the numbers of visits to most pages are very small; for almost all pages,
the probability of it being visited is much smaller than the probability of it not being vis-
ited. Therefore, we first extracted the 100 pages with the largest numbers of visits from
the 6,042 pages that belong to a certain category on the Web site. We regard whether or
not the page was visited as a random variable for the corresponding node in a Bayesian
network. The variable for each node has one of two values: 0 if the number of visits is zero
and 1 if the number of visits is one or more. Here, the t-th user’s data xt in the dataset
X = {x1, ...,xN} is represented as follows:

xt = {xt
1, ..., x

t
n}, where xt

i =

{
1 : t-th user visited page i

0 : otherwise

The dataset X was divided into training data for learning Bayesian networks and test
data for evaluating the prediction accuracy of the learning algorithms. The training data
was a random sampling of 5,000 users who had visited any of the extracted 100 pages.
The test data was the remaining data of the X that excluded the training data, and its
size was around 15,000.

The experiments compared the six learning algorithms mentioned in section 2. We
used the greedy search procedure using the node order for the scoring-based learning
algorithms. Here, the nodes were placed in descending order according to the number
of visiting users for the pages that correspond to the nodes. For MWST and Polytree-
MWST, the thresholds for the amount of mutual information were set to ε = 0.001. For
BDeu, the prior distribution hyper-parameter was determined to be N ′ = 10.0 (Yang and
Chang, 2002). Figures 1–6 show the structures of the Bayesian networks constructed using
UPSM, BDeu, AIC, MDL, tMWST, and Polytree-MWST, respectively. Table 2 shows the
numbers of arcs in the networks constructed by the learning algorithms. The results in
Table 2 shows that the complexity of the constructed network structure depends on the
learning algorithm.

To compare the prediction accuracies of the learning algorithms, first we randomly
sampled some visiting data from t-th user data xt. This sampled data is used to infer the
visiting probabilities of t-th user data excepting the sampled data by Bayesian network
constructed from the training data and is called as ”observations”. Next we evaluated the
mean squared errors between the visiting probability, which is infered using the observa-
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Figure 1: The network constructed
by UPSM

Figure 2: The network constructed
by BDeu

Figure 3: The network constructed
by AIC

Figure 4: The network constructed
by MDL

Figure 5: The network constructed
by MWST

Figure 6: The network constructed
by Polytree-MWST
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Table 2: Numbers of arcs in networks constructed by the learning algorithms.

Algorithm Number of Arcs

UPSM 261
BDeu 319
AIC 218
MDL 174
MWST 99
Polytree-MWST 99

tions and a Bayesian network constructed by the training data, and the actual data and
repeated this procedure for all the sampled users.

The more details of the experiment procedure are as follows: We randomly sampled M

users from the test data who had visited at least 15 of the extracted 100(= n) pages. Here,
M = 50. For the sampled user t, furthermore, we randomly sampled k (k = 1, . . . , 14)
pages from the pages which user t had visited. The observations et

k corresponding to the
sampled k pages are used for Bayesian inference. That is, the visiting probabilities for all
the pages which are not used as the observations et

k are propagated by the observations
in the constructed Bayesian network.

We obtained the following mean squared error (MSE) between the inferred visiting
probability of page i given observations et

k and actual data xt
i according to Breese et al.

(1998);

MSE(k) ≡ 1
M

M∑
t=1

∑
xt

i∈xt\et
k

(xt
i − p(Xi = 1|et

k))2

n − k
. (3.1)

The experiments were performed on a computer equipped with a Pentium D 3.20-GHz
CPU and 3.50 GB of RAM running Windows XP Professional Service Pack 2.

3.2 Results

The results of the experiments are shown in Table 3 and Fig. 7. In Fig. 7, the horizontal
axis indicates the number of observations and the vertical axis indicates the MSE values
between the inferred visiting probability of page i given observations et

k and actual data
xt

i.
The MSE values for the learning algorithms tend to monotonically decrease as the num-

ber of observations increases. This means the prediction accuracy of the Bayesian network
certainly improved as a result of adding observations for Bayesian inference. More specif-
ically, the MSE values for BDeu decrease as the number of observations increases up to
five, but they show no large change for five or more observations.

When the number of observations was one, there was no large difference between the
MSEs of the learning algorithms. As the number of observations increases, the MSEs
gradually become classified into the three groups.

The first group consists of MWST and Polytree-MWST, and it has the best prediction
accuracy over the number of observations. The second group consists of UPSM, AIC



148 M. Ueno and T. Yamazaki

Table 3: Mean squared errors. Lower scores indicate better performance.

Number of observations UPSM BDeu AIC MDL MWST PolytreeMWST

1 0.1360 0.1423 0.1356 0.1408 0.1256 0.1304

2 0.1272 0.1368 0.1277 0.1297 0.1122 0.1133

3 0.1142 0.1308 0.1172 0.1216 0.0975 0.0995

4 0.1096 0.1236 0.1147 0.1103 0.0884 0.0929

5 0.1028 0.1196 0.1069 0.1034 0.0803 0.0834

6 0.1020 0.1192 0.1011 0.1008 0.0750 0.0775

7 0.0968 0.1210 0.0990 0.0941 0.0709 0.0693

8 0.0960 0.1191 0.0957 0.0882 0.0621 0.0668

9 0.0907 0.1193 0.0944 0.0850 0.0595 0.0618

10 0.0910 0.1180 0.0935 0.0815 0.0534 0.0581

11 0.0891 0.1211 0.0898 0.0776 0.0519 0.0540

12 0.0875 0.1224 0.0871 0.0742 0.0454 0.0532

13 0.0858 0.1166 0.0852 0.0688 0.0421 0.0454

14 0.0844 0.1192 0.0822 0.0664 0.0393 0.0440

Figure 7: Mean squared errors. Lower scores indicate better performance.

and MDL, and it has the second-best prediction accuracy. The third group consists of
BDeu and it has the worst prediction accuracy. Thus, the results show the CI-based
algorithms (MWST and Polytree-MWST) are superior to the scoring-based algorithms
(UPSM, BDeu, AIC, and MDL). We will discuss why the scoring-based algorithms are
less effective in the next section.
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Table 4: Running time (seconds) of the learning algorithm and the probabilities propagation
algorithm.

Algorithm Learning Time (second) Probabilities Propagation Time (second)

UPSM 1522 6.5
BDeu 5697 25
AIC 659 2.4
MDL 385 0.89
MWST 42 0.034
Polytree-MWST 42 0.033

Table 4 lists the mean computing time required by each algorithm for learning the
Bayesian networks and for the visiting probabilities propagation. For the probabilities
propagation, we used the Message Passing algorithm (Pearl, 1988) for the networks con-
structed by MWST and Polytree-MWST since the networks are singly connected, and used
theLoopy Belief Propagation algorithm (Weiss, 1997) for the networks constructed by the
other algorithms since these networks are multiply connected. We know that compared
with the other algorithms, MWST and Polytree-MWST have much shorter computation
times for learning Bayesian networks and for probabilities propagation.

4. Why are the scoring-based algorithms less effective?

The results of the previous section indicate that the CI-based algorithms (MWST,
Polytree-MWST) have better prediction accuracy than the scoring-based algorithms
(UPSM, BDeu, AIC, and MDL). Thus, we believe that use of MWST or Polytree-MWST
is optimum for collaborative filtering using Bayesian networks.

Let us consider why the prediction accuracies of a Bayesian network learned by the
scoring-based algorithms were lower.

DPSM including UPSM and BDeu is known to converge to MDL (2.13) (Bouckaert,
1994; Suzuki, 1993, 1998). Hence, we can treat DPSM as the same as the MDL criteria
for the purpose of this discussion. MDL and AIC have a log-likelihood term, but this term
is considered to be less effective for large networks.

In a classification problem for a class variable C with attributes A1, . . . , An, Friedman
et al. (1997) showed that the prediction accuracy of a Bayesian network classifier trained
by a scoring metric using the following log likelihood is not good:

l(Θ|X, BS) =
N∑

t=1

log p(ct|at
1, . . . , a

t
n) +

N∑
t=1

log p(at
1, . . . , a

t
n), (4.1)

where Θ is a set of conditional probabilities parameters, X is the dataset used for learning
and X = {x1, . . . ,xN}, ct is the t-th learning dataset value of C, which is the class vari-
able, and at

1, ..., a
t
n represent the l-th learning dataset values of the attributes A1, . . . , An.

In Eq. (4.1), if the number of attributes increases, the probability of the second term
on the right side, p(at

1, . . . , a
t
n), becomes smaller, and log p(at

1, . . . , a
t
n) becomes larger in

the negative direction. In contrast, the probability of the first term on the right side,
p(ct|at

1, . . . , a
t
n), does not decrease as the number of attribute increases. Accordingly, the
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value of log p(ct|at
1, . . . , a

t
n) becomes smaller than log p(at

1, . . . , a
t
n) in the negative direc-

tion. If the number of attributes is large, this difference becomes very large. Thus, the
serious error of the first term on the right side is hidden by the value of the second term
on the right side and is hardly reflected in the log likelihood. Accordingly, it is difficult to
select the optimum structure for representing the relations of the class variable and the
attributes, and the prediction accuracy often suffers. If we try to rewrite the log likelihood
equation for the general Bayesian network by writing xt

i as the value of node Xi of the
t-th learning data and writing Πt

i as the value of the parent node set of node Xi, we get

l(Θ|X, BS) =
N∑

t=1

n∑
i=1

log p(xt
i|Πt

i). (4.2)

Moreover, the likelihood for the local structure B′
S given a fixed node i, which is used

in the greedy search algorithm, is

l(Θ|X, B′
S) =

N∑
t=1

log p(xt
i|Πt

i) +
N∑

t=1

log p(Πt
i). (4.3)

Regarding l(Θ|X, B′
S), equation (4.3) means that when a given node has many parent

nodes, the second term on the right side becomes larger in the negative direction the first
term than the first term. Accordingly, the value of the first term is obscured by the second
term and so is not well reflected in the log likelihood l(Θ|X, B′

S). Therefore, when a given
node has a large number of parent nodes, the prediction accuracy of that node is often not
good. In addition, the greedy search, which uses an ordering of the nodes and is generally
used in the structure search, searches the parents node set of a node by computing the
log likelihood l(Θ|X, B′

S). In that case, it is possible for a node to have a large number of
parents when learning a Bayesian network that has a large number of nodes, so it might
not be possible to correctly estimate a structure that represents the relations of nodes to
their parent nodes through the entire network. For that reason, when the greedy search is
used to learn a Bayesian network with a large number of nodes, the prediction accuracy
of all of the network nodes might not be good. In other words, when the greedy search is
employed, learning algorithms that make a lot of arcs in the network tend to have lower
prediction accuracy than those that make fewer arcs. The results in Table 2 and in Fig. 7
confirm this conclusion. That is, the order of the number of arcs made by the learning
algorithms in Table 2 is the same as the order of the prediction accuracies of the learning
algorithms in Fig. 7. These analyses can be summarized as follows:

1. For large networks, the scoring-based algorithms have lower accuracy of prediction
than the CI-based algorithms.

2. When the scoring-based algorithms use a greedy search to learn a large network, the
algorithms that make a lot of arcs tend to have lower prediction accuracy than ones
that make fewer arcs.
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5. Modified learning algorithm for massive datasets

The prediction accuracy comparison experiments revealed that MWST and Polytree-
MWST are superior to the scoring-based algorithms in both prediction accuracy and
computation time. Nevertheless, the amount of computation still requires O(n2) for these
algorithms, so computation time also becomes very large if we try to learn a Bayesian net-
work from a massive dataset. To cope with this problem, this section proposes a modified
MWST algorithm which employs a traditional data mining technique, the “a priori” algo-
rithm (Agrawal et al., 1993; Agrawal and Srikant, 1994), to quickly calculate the amount
of mutual information from massive datasets.

5.1 Hybrid algorithm combined MWST and a priori algorithm

Most of the data subject to collaborative filtering is purchasing history data taken from
a massive dataset. For this kind of data, if Xi = 1 means the selection of item i and Xi = 0
means non-selection of item i, then p(Xi = 1) tends to be very small and p(Xi = 0) tends
to be very large. Note that Xi = 0 is missing data rather than observed data. There-
fore, the data for which Xi = 1 should be used with priority, with the result that item
i for which p(Xi = 1) is large is highly reliable. The MWST requires a calculation of
the amount of mutual information I(Xi, Xj)(i = 1, ..., n; j = 1, ..., n; i �= j) between any
two variables pairs (Xi, Xj)(i = 1, ..., n; j = 1, ..., n; i �= j) for all variables. Furthermore,
p(Xi = 1, Xj = 1), p(Xi = 1, Xj = 0), p(Xi = 0, Xj = 1), and p(Xi, = 0, Xj = 0) are
needed in order to obtain I(Xi, Xj)(i = 1, ..., n, j = 1, ..., n, i �= j). As mentioned before,
p(Xi = 1, Xj = 0), p(Xi = 0, Xj = 1), and p(Xi = 0, Xj = 0) are missing data because
they include Xi = 0, or Xj = 0. Thus, p(Xi = 1, Xj = 1) should be used with priority.
In other words, if we observe data such as p(Xi = 1, Xj = 1) = 0, it means that we have
no information about the variable pair (Xi, Xj). That is, it means nothing to calculate
the amount of mutual information about data such as p(Xi = 1, Xj = 1) = 0. Hence, the
proposed algorithm prunes variable pairs such as p(Xi = 1, Xj = 1) = 0 before calculating
the amount of mutual information to reduce the computational cost for learning Bayesian
networks. The remaining problem is how to quickly prune the variables pairs for massive
datasets.

The “a priori” algorithm (Agrawal et al., 1993; Agrawal and Srikant, 1994) is used
in data mining to prune infrequent variables. The algorithm computes frequent itemsets
from a transactions database over multiple iterations. Each iteration involves (1) can-
didate generation and (2) candidate counting and selection. Utilizing knowledge about
infrequent itemsets obtained from previous iterations, the algorithm prunes a priori those
candidate itemsets that cannot become frequent. After discarding every candidate itemset
that has an infrequent subset, the algorithm enters the candidate counting step.

The a priori algorithm is outlined as follows. Let Fk be the set of frequent itemsets of
size k, let Ck be the set of candidate itemsets of size k, and let F1 be the set of frequent
items. We start from k = 1.
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1. for all items in frequent itemset Fk repeat steps 2-4.
2. Generate new candidates Ck+1 from Fk.
3. for each transaction T in the database, and increment the count of all candidates in

Ck+1 that are contained in T .
4. Generate frequent itemsets Fk+1 of size k from candidates in Ck+1 with a threshold

support.

The final solution is
⋃

k Fk. Here, “support” and “confidence” are technical terms of the
association rule: “support” means the joint probability of all variables in the itemsets,
and “confidence” means the conditional probability of the target variable given the other
variables in the itemsets. A key observation is that every subset of a frequent itemset is
also frequent. This implies that a candidate itemset in Ck+1 can be pruned if even one of
its subsets is not contained in Fk. Next, the a priori algorithm searches the itemsets of
which the confidence is more than a threshold. Namely, it prunes the itemsets of which
the support is less than a threshold and then searches the itemsets of which confidence is
high in the remaining itemsets.

The proposed algorithm employs the a priori algorithm’s pruning technique for MWST.
That is, the main idea is to use the amount of mutual information instead of the confidence
in the a priori algorithm. The proposed algorithm is shown in Fig. 8.

First, the algorithm quickly prunes variables pairs such as support p(Xi = 1, Xj = 1)
less than a threshold by using the a priori algorithm, and then it prunes variables pairs
such as the amount of mutual information I(Xi, Xj) < ε, from the remaining variables
pairs. The algorithm prunes variables such as support P (Xi = 1) < δ1 and then prunes
the variables pairs such as support p(Xi = 1, Xj = 1) < δ2. Note that the amount of
mutual information can be calculated using the previously calculated values of supports
p(Xi = 1) and p(Xi = 1, Xj = 1) .

5.2 Experiments and results

We performed experiments to evaluate the learning time and the prediction accuracy
of the hybrid algorithm. For the training data, 10,000 users’ data were randomly sam-
pled from among the users who had visited any of the 6042 pages that had been selected
from the Web site in section 4. The variable for each node had two values that simply
indicated whether or not the page had been visited: 0 for zero visits or 1 for one or
more visits. Using the training data, we constructed three Bayesian networks: one was
trained by the ordinary MWST, one was trained by the hybrid algorithm with thresholds
“δ1 = 0.00017”(= 1/6042, the probability of random sampling a node) and “δ2 = 0.001”,
and the other one was trained by the hybrid algorithm with t thresholds “δ1 = 0.00017”
and “δ2 = 0.0001”. The threshold for the amount of mutual information for MWST
was ε = 0.001, as in section 4. The network constructed by the hybrid algorithm with
“δ1 = 0.00017” and “δ2 = 0.0001” is shown in Fig. 9. The prediction accuracies were
evaluated with test data for 50 users who had visited 15 or more of the 6042 pages. The
evaluation method was the one described in section 4.1. For the network constructed by
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Let n be the number of items
Let N be the number of users
Let Xi be the binary (0 or 1) variable corresponding to i-th item viewed or not
Let U = {X1, ...,Xn}
Let L ⊂ U, V ⊂ U
Let xt

i be Xi’s value of t-th user’s data
Let xt = {xt

1, ...x
t
n} be the t-th user’s data

Let Count[Xi] be the number of Xi = 1 for all user’s data
Let Count[Xi, Xj ] be the number of Xi = 1 and Xj = 1 for all user’s data
Let MWST (I,X) be a function for MWST algorithm for variable set I and dataset X,
return a Bayesian network B
Input Dataset X = {x1, ...,xN}
Output a Bayesian network B

1: for (t = 1 : N) do
2: for (i = 1 : n) do

3: if xt
i = 1 then

4: Count[Xi] = Count[Xi] + 1
5: end if
6: end for
7: end for
8: for (i = 1 : n) do
9: if (Count[Xi]/N) ≥ δ1 then

10: V ← Xi

11: end if
12: end for
13: for (t = 1 : N) do
14: for (each Xi ∈ V ) do
15: for (each Xj ∈ V \Xi) do

16: if j > i and xt
i = 1 and xt

j = 1 then

17: Count[Xi, Xj ] = Count[Xi, Xj ] + 1
18: end if
19: end for
20: end for
21: end for
22: for (each Count[Xi, Xj ]]) do
23: if (Count[Xi, Xj ]/N) ≥ δ2 then
24: if Xi /∈ L then
25: L← Xi

26: end if
27: if Xj /∈ L then
28: L← Xj

29: end if
30: end if
31: end for
32: return MWST (L,X)

Figure 8: Hybrid algorithm combining MWST and a priori algorithm

the hybrid algorithm, if a randomly selected observation node was not connected to any
other nodes, the observation was not used for probabilities propagation in the network.
The computer used in the experiment was the same as described in section 4. The learning
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Figure 9: The network constructed by the hybrid algorithm.

time for the algorithms and the number of arcs in the obtained networks are shown in
Table 5.

Table 5 shows that the hybrid algorithm is much faster than the ordinary MWST algo-
rithm. The hybrid algorithm with “δ2 = 0.001” is about 25 times faster than the ordinary
MWST algorithm. Moreover, the hybrid algorithm with “δ2 = 0.0001” is over ten times
faster than the ordinary MWST algorithm.

The results of prediction performance are shown in Fig. 10. “MWST” in Fig. 10 indi-
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Figure 10: Mean squared error for MWST and hybrid algorithm. Lower scores indicate better
performance.

Table 5: Number of arcs in the obtained networks and running time of the learning algorithm.

Algorithm Number of Arcs Learning Time (second)

MWST 6041 39489
Hybrid (δ2=0.001) 315 1522
Hybrid (δ2=0.0001) 1475 3899

cates the ordinary MWST algorithm, “δ2 = 0.001” and “δ2 = 0.0001” indicate the hybrid
algorithms with thresholds “δ2 = 0.001” and “δ2 = 0.0001”, respectively. The horizontal
axis is the number of observations, and the vertical axis is the MSE values between the
inferred visiting probability of page i given the observations et

k and the actual data xt
i for

the 50 users. The results show that the MSEs of the hybrid algorithm with “δ2 = 0.0001”
are almost the same as those of the ordinary MWST, and the learning time of the hybrid
method is reduced by less than 1/10th that of the ordinary MWST (see Table 5). This
result shows the validity of the hybrid algorithm for massive datasets. In addition, Fig. 10
and Table 5 also show the trade-off between prediction accuracy and computational cost
(learning time). In actual situations, it is important to search for the optimum threshold
values to adapt to the required conditions.

6. Web based Reccomender System

We installed the proposed hyblyd algorithm on a web based reccomender system shown
in Fig. 11. This system has 60 window flames which are classified by categories. The cat-
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Figure 11: Web based reccomender system

egories are 1. Recruiting, 2. Travel, 3. Housing, 4.Cars, 5. Qualifications, 6. Marriages,
7. Restaurants, 8. Education, 9. Healthcare, 10. Medical care, 11. Child-reaing, and so
on. There are about 5,000 pages which provide the corresponding commercial information
in each category. However, each category window can present only seven web page links.
Therefore, the system searchs and presents the page links of which visiting probabilities
are in the top seven for each category using a user’s browsing history data as observations
of Bayesian network. Thus, the system can addaptively construct commercial web pages
according to the user’s past history data.

7. Conclusion

This paper proposed a collaborative filtering method for massive datasets based on
Bayesian networks. We first compared the prediction accuracy of four scoring-based
learning Bayesian networks algorithms (AIC, MDL, UPSM, and BDeu) and two CI-based
learning Bayesian networks algorithms (MWST and Polytree-MWST) using actual mas-
sive datasets. The results showed (1) for large networks, the scoring-based algorithms have
lower prediction accuracy than the CI-based algorithms, and (2) when the scoring-based
algorithms uses a greedy search to learn a large network, the algorithms that make a lot
of arcs tend to have lower prediction accuracy than the algorithms that make fewer arcs.
Next, we proposed a learning algorithm based on MWST for collaborative filtering of
massive datasets. The proposed algorithm employs a traditional data mining technique,
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“a priori algorithm”, to quickly calculate the amount of mutual information from massive
datasets. We compared the original MWST algorithm and the proposed algorithm using
actual data, and our comparison showed the effectiveness of the proposed algorithm.

The remaining problems are as follows:

1. There are still doubts as to how the obtained results are affected by the kind of
learning algorithms or by the kind of probabilities propagation algorithm (Murphy
et al., 1999). If we use the junction tree algorithm (Jensen, 1996) instead of the loopy
belief propagation algorithm, (Weiss, 1997) the results might change.

2. It is not clear how the method of determining the node ordering affects the prediction
accuracy of the constructed networks.

The future works are to solve the above problems and to conduct experiments with
other datasets to obtain results that are more general. We will also try to find a way to
determine appropriate threshold values of the proposed algorithm.
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