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AN EXTENSION OF THE IRT TO A NETWORK MODEL

Maomi Ueno

  The traditional Item Response Theory (IRT) models assume local indepen
dence, which is equivalent to the assumption of unidimensionality. This assump
tion states that a subject's responses to different items in a test are statistically 
independent. For the assumption to be true, a subject's performance on one 
item must not affect. either for better or for worse, his or her responses to any 
other items in the test. The main purpose of this paper is to relax the local 
independence assumption in the traditional IRT models by extending to a net
work model. A new IRT model is defined which assumes probabilistic network 
structures for the assumption of local independence. 

  Another unique feature of the model proposed is that it is a new probabilistic 
network model with the conditional probability parameters depending on a latent 
trait variable. 

  Information criteria AIC and BIC are used to evaluate the performance of 
the model proposed, using actual test data. It shows that the proposed model 
provides better results than the traditional model. 

  In addition, this paper proposes an item selection criterion from the decision 
theoretic approach. The amount of test information is defined as the amount 
of mutual information between a variable for the item and all variables over the 
test, to maximize the prediction efficiency of the subject's responses. The new 
item selection method is used to compare the prediction efficiency between the 
proposed model and the traditional IRT model. The proposed model is shown 
to be more efficient.

1. Introduction 

  Since Lord and Novick (1968) took a modern mathematical statistical approach 
to formulate the basic constructs of the Item Response Theory (IRT), a great deal 
of research effort has been spent in developing their idea from different perspec
tives (e.g., statistical theory, parameter estimation algorithms). Many possible 
IRT models exist, differing in the mathematical form of the item characteristic 

function and/or the number of parameters specified in the model, for example, the 
Rasch model (Ranch, 1960, Rasch, 1961; Rasch, 1966a: Rasch, 1966b), the normal 
ogive model (Lord & Novick, 1968). the two parameters logistic model (Birnbaum. 
1957), and the three parameters logistic model (Birnbaum, 1968). There are more 

general well known IRT models such as the graded response model (Samejima, 
1969), the free response model (Samejima, 1972). the partial credit model (Mas
ters, 1982), and the multi-nominal model (Bock, 1972). All IRT models contain 
one or more parameters describing the subject. 

  Key Words and Phrases: Item Response Model, probabilistic network, Bayesian networks, 
  graphical model, multinomial model, test information. 
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  The IRT rests on the following three basic postulates: (a) The performance of 
a subject on a test item can be predicted (or explained) by a set of factors called 
traits, latent traits, or abilities; (b) the relationship between the subject's item 
performance and the set of traits underlying item performance can be described by 
a monotonically increasing function called an item characteristic function or item 
characteristic curve (ICC); and (c) when the abilities influencing test performance 
are held constant, the subject's responses to any pair of items are statistically 
independent, which is called local independence. It should be particularly noted 
that the assumption (c) states that a subject's responses to different items in a 
test. are statistically independent. For this assumption to be true, a subject's 
performance on one item must not affect, either for better or for worse, his or 
her responses to any other items in the test. Concerning this local independence 
assumption, Junker (1991) proposed an index to represent deviation from the local 
independence assumption, and showed that the parameter estimation often fails 
when the local independence assumption is violated. It could be deduced from his 
result that the true probability structures of actual data are more complex than 
the local independence structure, and that if a more flexible structure in the IRT 
model is developed, the prediction efficiency of the model is improved. 

  In this paper we shall introduce a network structure to relax the local inde

pendence assumption in the traditional IRT model. That is, we shall propose a 
new IRT model with a probabilistic network structure instead of assumption (c) 
of the local independence structure. More concretely, the features of the model 
to be proposed are as follows: 

  1. The proposed IRT model is regarded as one of the probabilistic network 
    models (Pearl, 1988); 

  2. The proposed model is a new probabilistic network model with conditional 

    probability parameters depending on a latent trait variable. 

  In Section 2 we review probabilistic networks and develop a new network IRT 
model in Section 3. Section 4 used the probability propagation to discuss the 
prediction efficiency of IRT models. Section 5 defines the EVSI (expected sam
ple information) for Bayesian networks. In Section 5, we discuss a method of 
the marginal maximum likelihood estimation to estimate the item parameter vec
tor. Numerical examples are provided in Section 7. We end with conclusion and 
discussion. 

2. Probabilistic Network 

  This paper proposes a new Item Response Theory (IRT model) from the prob
abilistic network approach. First, this section introduces the probabilistic net
work(see. e.g.. Pearl. 1988; Lauritzen, 1996) as follows: 

   Let X = {Xl, X2, ... , XN} be a set of N discrete variables; each can take 
values in the set {0, ... 1 r2  1}. We write x2 = K when we observe that variable



xi is state K. We use p(xi = K y = K'. ~) to denote the probability of xi = K 

given the observation y = K' with background knowledge ~. When we observe the 
state for every variable in set X, we call this set of observations an instance of X. 
We use p(X I Y, ~) to denote the set of probabilities for all possible observations 
of X. given all possible observations of Y. 

  A probabilistic network represents a joint probability distribution over domain 
U by encoding assertions of conditional independence as well as a collection of 

probability distributions. From the chain rule of probability, we know 
N 

             p(x1, x2, ... , xN I ) = fl p(xi x1, x2, ... , xi-1, )• (1) 
                                                  i=1 

  For each variable xi, let Hi C {x1.... , xi_ 1 } be a set of variables that renders 
xi and {x1, .... xi_1 } conditionally independent. Here, x1, ... , xi_1 are called 

parent nodes. That is, 

                 p(Xi I x1, x2, ... , xi-1, ) = p(xi I Hi, ) (2) 

The probabilistic network model is represented as a pair (BS. Bp) of network 
structures where BS encodes the assertions of conditional independence in the 
above equation and Bp is a set of conditional probability parameters. In particular 
BS is a directed acyclic graph such that (1) each variable in U corresponds to a 
node in BS, and (2) the parent nodes of the node corresponding to xi are the 
nodes corresponding to the variables in Hi. (In the remainder of this paper, we 
use xi to refer to both the variables and their corresponding nodes in the graph.) 
Associated with nodes xi in BS are the probability distributions p(Xi Hi. ~)• 
Combining (1) and (2), we see that any network for U uniquely determines a 
joint probability distribution for U. That is, 

N 

                p(xl, x2, ... , xryi I Bs) _ p(xi Hi, BS) (3) 
                                                          i=1 

  Figure 1 shows an example of the probabilistic network model with variables 

{x1,... , x5}. In this case, the joint probability distribution of the probabilistic 
network model is given by 

             p(xl, x2, .... X5 I Bs) 

                 p(x1 x2, x5)p(x2 I x5)p(X3 X2, x4, x5) 
               Xp(x4 I x5)p(x5)• 

  The probabilistic network model is usually parameterized as the multinomial 
model(see. e.g., Suzuki, 1993). This approach assumes that the conditional prob
abilities {p(xi ~ Hi, Bs)} are constant over the subject, and represent the condi
tional probabilities as a set of parameters. This paper will propose a probabilistic 

network model where the conditional parameters depend on latent variables which 

reflect individual characteristics.



Figure 1: An example of the probabilistic networks

3. Network IRT Model 

  In this section, the IRT model is extended to the network model. 
  Let the subject J's response pattern to N items be 

                     uj = (ujl; uj2, . , uji, , uj N) t (4) 

where 
                          1 for a correct response 

                  2Gij =                           0 f
or an incorrect response 

  Let the subject j 's latent ability parameter be Oj, then the joint probability 
of a score matrix U = (uij) for n subjects is given by 

n 

                 p(U a. ) _ p(uj l ej ) (5) 
                                         j=1 

where 

                    i : a parameter vector for an item i. 

                      _ (C1, ~2.... . ~ ... t )t, 

and 

                          0=(01.09 .... ej ... ,en) 

  For the traditional IRT model, from the assumption of local independence, the 

joint probability distribution p(uj 10j, ~) is given by 

                                                 .N 

       p(uj ej, ~) = fl p(uij = 1 0j, i)UZ' [1  p(uij = 1 0j, i)11-uz; (6) 
                               i=1



Figure 2: The structure of the local independence model

Figure 3: The structure of the network model

Although there are some IRT models, we will consider the following two-parameter 
logistic model here. 

  That is, p(uij = l Iej, ~i) is given by 

1 

             p(uij = 1 eji) = 1 + exp( -1 .7ai(9j  bi)) (7) 

with ~i = (ai, bi)t 
  Here, the probabilistic structure of the traditional IRT model is shown in 

Figure 2 from the probabilistic network approach. 

  From the model structure BS shown in Figure 3. we obtain 

                                 i\ 2'n i 

       p(uj IOj. ~. BS) = fl 11 p(uij I iijk. ej, ~i)uijk (g) 
                                 i=1 k=1 

                                   N 2'n i 

                              p(uij = 1 2tijk. Bj. ~i)uij 'uijk 
                                  i=1 k=1 

                           x [1  p(itij = 1luijk. ej, bi)]uij'(1-uijk)



where 
                 1 for the subject i's k-th response pattern 

         Uijk = to parent node items of item i 
                0 for the other patterns 

            mi the number of parent. node items of item i, 
           UZjk : a subject J's k-th response pattern 

                   to parent node items of item i. 
             i a parameter vector for uzjk. 

                    _ ( 1,~2, ..,c.....,c2mi)t• 

  For the probabilistic structure shown in Figure 3, the joint probability distri
bution is given by 

   p(ul, u2, .... u4, ej, BS) 
    = p(ul I U2, ~l, ej)p(u2 I ~2, ej)p(U3 U2, u4, ~3, ej)p(u4 I ~4, ej)p(ej ), 

where 

                      Oj,N(O.12). 

  The proposed model is a new IRT model that assumes probabilistic network 
structures. This model integrates the probabilistic structure into the IRT model. 
Moreover, it should be noted that this model is also a. new probabilistic network 
model with a latent trait. Whereas the traditional probabilistic network model 
implicitly assumes that the probabilistic structure is invariable for the subjects, 
the model proposed assumes that the conditional probabilities of the probabilistic 
network model can change corresponding to the subject's trait. 

4. Probability Propagation 

  When the true probability structure of the IRT model is a network structure, 
the traditional IRT model loses much information, and therefore, can not provide 
a reliable prediction for a subject's unknown responses. This paper evaluates the 

proposed model from the aspect of prediction efficiency. The remaining problem is 
how to evaluate the prediction efficiency of the IRT models. This section provides 
a method which predicts a subject's unknown responses from observed data. For 
this purpose, it is well known that the probability propagation technique (Pearl, 
1988) is efficient. Probability propagation is a technique to predict unknown 
events from observed data by using probabilistic networks. That is, when the 
observation ui,, which is a child node of node i, is given , the probability p(ui BS) 
is propagated to p(ui ui,, BS) using Bat'es' theorem. 

             p(ui ui,, Bs) = p(uii ui. Bs)p(ui Bs) (9)                          E
u, p(ui, I ui, Bs)p(ui I Bs) 

When the observation ui, which is a parent node of node i'. is given, the prior 
probability p(ui' I BS) is replaced with the conditional probability p(ui' ui. Bs).



These procedures are propagated over the network. However, this algorithm can 
not be applied to the proposed method because the proposed IRT model has a 
latent variable. Therefore, we propose a probability propagation method for the 
IRT model in the following algorithm that combines the Monte Carlo integration 
with the Newton-Raphson method. 

  1. Generate 9(q) ti g(9 T(q-1)), where g(9 T(q-1)) is the normal density 
     function with a parameter vector -r (q-1) _ (µ(q-1), 072(9-1j)I The initial 

    value of -r (q-1) is •r (0) _ (0, 12)t 

  2. Generate uZq) (= 0, 1) P(uj I uZq-1), u(q-1), 9(q-1)). 
          u(q) : the q-th binary data generated from 

    where P(uj I u(q-1) u(q-1) 19(q-1) ) 
           ip a set of the parent nodes of node i, 

           is : a set of the child nodes of node i, 

    and P(uj u(q-1), uZq-1), 9(q-1)) is calculated by 

      P(Uj u(q-1) uZq-1) 0(q)) 
               = P(Uj = 1 uZq-1), 0(q), bi, Bs) 

                x 11 P(Uj = 1 uZq-1), 8(q) I ~i , Bs) 
                        i'Eil 

              = P(Uj = 1 I u(q-1), 0(q)~i, BS) 

                X P(u(q-1) ui = 1, 0(q), ~i, BS)P(ui = 1) (10) 
              i'Ei, Eui P(2Gi~ 12Gi, 9(q), BS)P(ui                                      (q-1) ) 

    We can obtain the q-th Monte Cairo random pattern 
    u(q) = (uiq), U2(q), • • • , u(q), ... , u(;)) by calculating the above procedure for 

   i. 

  3. Estimation of -r(q) 
    We can obtain the MAP estimates p(q) which maximize the following pos

    terior g(9(q) u(q),): 

               g(9(q) I u(q), ~) a p(u(q) 19(q). ~)g(9 

    Finally, the estimation procedure of the 9 is shown as follows: 

          02{10g U(q),~)} -1 a{logg(OT I u(q),~)}          a
T+l = eT                         020

T 090T 

    By iterating these procedures T times until the gradient is smaller than 
    10-5. the obtained final value of 9T+1 is the estimated value of µ(q) .



    Although -2(q) should be estimated as usual. the asymptotic variance of the 

    mode of 8 is used here to avoid the convergence problem. That is. 

                                                           -1 

                 472(q) = a{lob9(OT u(q).~)}2 (12) 
                             329T 

  The procedure from 1 to 3 is iterated t times. In addition, the marginal 

posterior probabilities are obtained as follows by considering only s(< t) times 
results: 

1                   P(ui = 1 up ) _  U iq), (13) 

s 

                                                     q=t-s+l 

1 

                       _ ~(q) (14) 

                                             q=t-s+l 

1                        Q`_ Y 2(q) (15) 

s 

                                             q=t-s+l 

  Consequently, we can obtain the propagated posterior P(ui = 1 ~ti,, B8). It 
should be noted that the proposed method can provide the propagation in the 

traditional probabilistic network structure and the traditional IRT procedure. 

5. Amount of Test Information from Information Theory 

  The amount of test information with Bayesian networks has been already pro

posed in the Test Theory with probabilistic networks (Ueno, 1994). In Bayesian 
decision theory, the value of the data is evaluated by the expected value of sample 
information (EVSI). EVSI is the difference between the expected value given data 
x and the expected value given no data (Shigemasu. 1985). It is defined as follows: 

          EVSI = f {max f utility(a, O)p(B x)de}dx 
                                        a O 

                  max f utility(a, 9)p(8)d8. (16) 
                                      a O 

where a indicates the action. utility(a, 8) is the utility function and e indicates 
the parameter space. The integral is the Stielties integral. Shigemasu (1988) has 
already proposed some educational evaluation by using EVSI. However, now we 
will consider the EVSI for Bayesian networks, EVTIN(Expected Value of Test 
Information with Networks); the problem is how to define the utility utility(a, 0). 
A joint probability over the network is shown in (8). 

  When we obtain observations u1, u2.... , UN', N' (< N), the predictive distri
bution for UN'+1, UN'+2..... UN-N' is given by 

         p(UN'+1, UN'+2, .... UN-N' Iul, u2..... TIN'. BS) (17) 

      _ fP(UN'+l. UN'-f-2 , ... , UN-N' I ul. u2..... UN' r Bs)p(T IU. BS)dT.



Now, we consider the log-predictive joint distribution 

                 log p(UN'+1, UN'+2, .... UN-N' I u1, u2, ... , UN'. Bs) 

as the utility function. We then have 

    EVTIN(uN'N, u1N'. BS) 

       _ f {maxfP(uN/NU1N/Bs) , (18) 
            u ° 

X log p(UN'NOIu1N', BS)d uN'N P(u1N' Bs)du1N' 

                  maax f p(UN'N BS) log p(uN'N I BS)duN'N, 
O i where u1N' _ {ul, u2, .... UN' } and UN'N = {UN'+1, UN'+2, ... , UN-N'} . 

  Thus, we see that EVTIN is a measure that selects the unknown node set, 

i.e., the test items that are the best predictor for future observations. 

  We should note that the expression of EVTIN is similar to the amount of 

mutual information. However, the EVTIN has some unique features, among 

them, non-symmetricity and consistency (Ueno, 1996a.b). 

6. Parameter Estimation 

  The parameter vector ~i can be estimated by Marginal Maximum Likelihood 
Estimation(MMLE) as follows: The following marginal log likelihood can be max
imized by the method proposed by Bock (1981) : 

                            +x 

                = log P(ui 18 , ~i)g(9 -r)dO, (19) 

x where g(9j r) is the normal distribution with the hyper parameters r = (µ, a2) 

(µ=0.a2=1). 
  The marginal maximum likelihood equation 

                      00/0~i = 0 

can be solved as follows. Here, we use the following simplified notation to avoid 
complicated formulae: 

                  Pijkl = P(UI = 1 uijk, Xl, ~i, BS), 

                 Qijkl = 1  P(ui = 1 uijh;, XI, ~i1 BS).



E-Step 

                               N ~7 n 2""'j u2j'uijk                      llj=1 =l(Pijkl)                f
jkl I:q n ~2mj (1-uij) uijk 

                     i 1=1 ~j=111k=1(Qijkl) 

                        X (Qi k1)(1-u'j)'uijkA(Xl) 20                            (P
ijkl)uij'utjk . UijkA(Xi) 

and 

                                                                   u2j                           N 
lln 2'nj •uijk                r )=1 f1k=1 uij ' uijk(Pijkl)                      ~k Q n 2"'j (1-2lij )'uijk 

                    i E1=1 Hj=1 Hk=1(Qijk1) 

                        X (Qijki)(1-uij)'uijkA(X1) (
Pijkl)uij'uijk . uijkA(Xl) (21) 

where A(Xl ), (l = 1, ... , q) indicates the weights of the Hermite-Gauss quadrature. 

M-Step Choose ~i such that the following posterior expectation is maximized: 

                          q n mj 

          log(L) = 1: 1: E [rjki lob Pijkl + fjkl log Qijkl] (22) 
                             1=1j=1k=1 

Consequently, we can obtain the conditional probability parameters. 

7. Numerical Examples 

7.1 Parameter estimation 

  In this study. we conducted a mathematical test of the structure described 
in Figure 4 to 428 junior high school students. The content of the test items. 

corresponding to the nodes in Figure 4. are shown as follows: 

  1. Represent the following numbers with positive or negative signs. 

       • The number which is 7 less than 0. 

       • The number which is 8 greater than 0. 

  2. Calculate the following: (+6) + (-11) + (-21) 

  3. Calculate the following: (+8)  (+6) + (-12)  (-6) 

  4. Calculate the following: (-4) x (-7) x 25 

  5. Calculate the following: (-4) = ( 3) x 5 = (-3) 

  6. A person bought eight notebooks, each of which costs a yen, and paid 1000 

     yen. Represent the amount of change by a literal formula.



7. Represent the following expression without using the symbols times and 

   :axb-c 

8. When a = -3, calculate -a + 8. 

9. Subtracting 2 from 6 times a certain number x, the result is equal to 4 times 

   the result of x plus 3. Represent the foregoing relation by an equation. 

10. Solve the equation x + 8 = -2. 

11. Solve the equation -4x = -6. 

12. Solve the equation 4x + 7 = -5. 

13. Solve the equation 5x = 7x  4. 

14. Solve the equation 5x  6 = -4x + 3. 

15. Adding 2 to 5 times a certain number x, the result is equal to 3 times the 

   result of subtracting 6 from x. Determine the some of x.

Figure 4: The structure of the expanded IRT model

  Based on the data, we estimated the parameters ~Z . whose results are presented 
in Tables 1 and 2. Here SE denotes the standard error of an estimator. It is 

known that the likelihood of a model with more parameters is greater than that 

of a model with less parameters. According to AIC and BIC, the extended IRT



model is seen to be a more efficient model than the traditional two-parameter IRT 

model.

Table 1: The estimated parameters of the extended IRT model

  Item characteristic curves (ICC) can be drawn in the proposed model as 
in the traditional IRT model. Figure 5 shows the ICCs of the proposed IRT 
model for item 2 and item 11. The upper figures indicate the ICCs in the tra



ditional model, the middle figures indicate the ICCs in the proposed model, and 

the lower figures indicate the marginal ICCs reflecting the network structure 

                          corresponding to the upper figures in the tra

ditional IRT model. It is seen that this marginal ICC can reflect the true ICC 

better. The figures on the left indicate the ICCs given the correct answer to the 

parent node item, and the figures on the right indicate the ICCs given the wrong 
answer to the parent node item.

Table 2: The estimated parameters for the 2-parameter IRT model

  From the tables, it can be seen that most of the estimated values of param

eter ai for the proposed model are larger than the corresponding values of the 

traditional IRT model. This indicates that the standard error of the estimated 

9 can be estimated to be smaller than the standard error of the traditional IRT 

model by adding the structure knowledge to the traditional IRT model. However, 

it should be noted that since there are more parameters bi in the proposed model 

than in the traditional IRT model, the standard errors of the estimators for bi 

in the proposed model are estimated to be larger than those in the traditional 

model. 

  On the other hand, the marginal ICCs of the proposed model shown in the 

lower figures are more precisely estimated than the traditional ICCs shown in 

the upper figures. although the ICCs for the proposed model shown in the lower 

figures are similar to the ICCs of the traditional model shown in the upper figures.



Figure 5: Examples of ICCs



  Next, we demonstrate an example of the probability propagation shown in 
the Section 3. Figure 6 shows the probability propagation when we observe the 

subject's response for item 5. It is shown that the prior probabilities for the other 
items are propagated to the posterior probabilities. Thus, we can estimate the 

subject's knowledge structure.

Figure 6: An example of the probability propagation

7.2 Some comparisons of the test construction processes 

  In this section, we use EVTIN to propose the test construction method, and 
make comparisons with other test construction methods. Let EVTIN(n'+1) be the 
value of EVTIN for the number of items N. Ueno (1994) proved that EVTIN(n') 
is monotonically increasing, i.e., 

             EVTIN(n') < EVTIN(n'+i) (n' = 1, ... , n  1). (23) 

Using this consequence. we propose the following test construction procedure in 
this study: 

  1. Given n', select an item set that maximizes the value of EVTIN(n'+1) 

  2. Iterate the procedure 1 for n' = 1,2,... until the following convergence 
     criterion is met:. 

                    EVTIN(n'+i)  EVTIN(n') < ~. (24) 

  For the following model, we compare the test construction process:



CASE 1 the extended IRT Model, 

CASE 2 the traditional probabilistic network model, and 

CASE 3 the traditional IRT model. 

  Figure 7 shows the values of EVTIN for each case. The horizontal axis de

notes the number of items, and the vertical axis denotes the maximum values of 

El' 'TIN. The figure shows that the values of EVTIN increase monotonically as 

does the number of items and finally converge. It is interesting to note that each 

slope of the curves is in order CASE 1. CASE 2, CASE 3, the values of EVTIN 

converge at 9 items for CASE 1. converge at 10 items for CASE 2, and converge 

at 13 items for CASE 3 in the case of = 0.01. It is seen from these figures 

that the original 15 items can be reduced to 9 items in CASE 1, to 10 items in 

the CASE 2, and to 13 items in CASE 3, which demonstrates the efficiency of a 

network model including domain structure knowledge.

Figure 7: The values of EVTIN

Next we consider the Fisher information 1j(9j) in the test theory. We have 

          Ii (0j) _ {P'(u, = 1 0j)}2 (25)                P(
uz=lIej){1-P(uj=lIe,)}'



where P' (ui = 1 I O j) denotes the first-order partial derivatives of P (ui = 1 I 9j). 
The amount of test information with N items is then given as 

              N {P'(ui, = 1 I 0j)}2 (26)            I(9
j) P(ui = 1 ej){1  P(ui = 1 I ej)} 

When we have no knowledge of the values of O j, we estimate it as follows: 

               I = f Ii (Bj)9(ej T)d6j. (27) 
                                        2=i 

We define this case as CASE4. The values of Ii (6j) are shown in Table 2. The 
item patterns that are selected in CASE1 to CASE4 are shown in Tables 3-6. 
respectively.

Table 3: CASE1

Table 4: CASE2

  It can be seen from these tables that while the EV T I N selects different item 

patterns for each of the test item numbers, the Fisher information selects the 
same item pattern for each of the test item numbers.



Table 5: CASE3

Table 6: CASE4

7.3 Prediction efficiency 

  In this section, we will evaluate the prediction efficiency for the network model. 
That is, we evaluate how the model can predict the response for the unknown items 
by using data. 
  Let yj = {yij, ... , ykj, .... ym,'j } be a subject j's response data for the test 

constructed by EV T I N, then we can obtain the parameters ~. 9 and { P2 j } _ 

{P(u2j = 1 I y3)}, (i = 1'.-M" , j = 1, ... , n) for n subjects. where 

          _ 1 if the subject Ys response for ith item is correct        Yip 0 if the subject j's response for ith item is wrong 

  Let yj = {yij, ... , y2j, ... , y(m-m,)j } be the subject J's response except for 

y2, and then we define the square error E2 between the data and the posterior 
probability P(u2j 9j, y2) as follows: 

                           m-m.' 

              Ej = {y2j  P(u2j I y3) J'/ (m  m') 
                                    i=1



                = (yj  PJ)(yj  Pj)t/(m  m'). (28) 

The whole distance between data and a model can be defined as 

                                               n. 

                       E _ Ej /n. (29) 
                                        j=1 

We also evaluate the IRT model in the same way and the results are shown in 

Table 7. From the results, we can say that the prediction efficiency of the extended 

model with a domain structure is better than the traditional model with a simple 

independence structure.

Table 7: The comparisons of prediction efficiency

8. Conclusion and Discussion 

  In this paper, we extended the IRT model to the network model to relax the 

conditional independence assumption. The numerical experiments showed that 

the extension is successful. Here we did not employ the traditional evaluation 

approach based on the estimated latent variable 9. The latent variable as an 

ability measure has a certain problem in evaluating model adequacy as pointed 

out by Fischer (1995) and Ramsay (1996). Thus, this paper mainly discussed 
prediction of a subject's unknown responses. This approach is considered to 
be efficient for cognitive assessment. It can infer the items which the subject 
understands correctly or misunderstands. 

  The new model proposed here, however, has a drawback because it does not 
work for a large number of items for NP-hard problems. Concerning this problem, 
Ueno (1998b) derived the following analytical result: When N oc and n --+ oc. 
it holds that 

    p(.1, V2.... , 2tAr I 9j, ) 
            N 1 u~~ 1 1-uii 

            1 + exp(-ai9j + bi) 1 + exp(-ai91 + bi)               i=1 

From this result, we would say that the traditional IRT is better for a large number 

of items. and the network model is better for a small number of items. It would be



meaningful to investigate for how many items the IRT model would be preferable. 
In addition, construction of a structure BS derived by BIC or NIDL. which enjoys 

a strong consistency property, is an area for further investigation. 
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