
Algorithm for Uniform Test Assembly
Using a Maximum Clique Problem

and Integer Programming

Takatoshi Ishii1(B) and Maomi Ueno2

1 Tokyo University of Science, Tokyo, Japan
t.ishii@rs.tus.ac.jp

2 University of Electro-Communications, Tokyo, Japan
ueno@ai.is.uec.ac.jp

Abstract. Educational assessments occasionally require “uniform test
forms” for which each test form consists of a different set of items, but
the forms meet equivalent test specifications (i.e., qualities indicated by
test information functions based on item response theory). For uniform
test assembly, one of most important issues is to increase the number
of assembled tests. This study proposes a new algorithm, RIPMCP, to
improve the number of assembled tests. RIPMCP applies a maximum
clique algorithm and integer programming for assembling uniform tests.
RIPMCP requires less computational space resources, thus, the proposal
can assemble a greater number of tests than the previous methods on the
same computational environment. Finally, we demonstrate the advantage
of the proposal using simulated and actual data.

Keywords: Uniform test assembly · Maximum clique problem · Integer
programming

1 Introduction

ISO/IEC 23988:2007 [6] is a global standard on the use of IT to deliver assess-
ments to the examinees, and it recommends the use of uniform test forms, which
are also called parallel test forms to secure the test reliability. Uniform test forms
are the set of test forms for which each form comprises a different set of items
but which must have equivalent specifications such as equivalent amounts of test
information based on the item response theory [1,8], equivalent question area,
equivalent average test score, and equivalent time limits. By providing different
forms for each examinee, the e-testing systems employing uniform tests protect
the security of tests and test items. Thus, the number of tests should be larger
than the number of examinees, and one of most important issues in uniform test
assembly is to increase the number of assembled tests.

To increase the number of assembled tests, Ishii and Ueno proposed a max-
imum clique problem (MCP) for test assemblies [4,5]. MCP is a combina-
tional optimization in a graph. They proposed a graph in which the vertices
c© Springer International Publishing AG 2017
E. André et al. (Eds.): AIED 2017, LNAI 10331, pp. 102–112, 2017.
DOI: 10.1007/978-3-319-61425-0 9

Algorithm for Uniform Test Assembly Using a Maximum Clique Problem 103

are described as the generated tests and the edges are the satisfaction of the
testsf constraints. In this graph, the maximum clique indicates the uniform tests
with the maximum number of tests. From extracting the maximum clique, these
methods assemble a greater number of uniform tests than any other traditional
method [9–11]. However, these methods have a major computational space cost.
Thus, there the number of assembled tests is restricted by the calculation cost.

In this paper, we propose a new algorithm, RIPMCP, to reduce the compu-
tational space cost and to increase the number of assembled tests. RIPMCP is a
similar algorithm to the previous algorithm [4,5]. The major difference between
RIPMCP and the previous algorithm is that RIPMCP generates graph structures
for maximum clique searching by solving the integer programming. From this
graph generation, RIPMCP can assemble tests with lower computational space
cost than the previous method [4,5]. Thus, RIPMCP can assemble a greater num-
ber of assembled tests than the previous methods using the same computational
environment. Therefore, the proposed algorithm can utilize the item pool more
efficiently than traditional methods. Finally, we demonstrate the effectiveness of
the proposed methods using simulated and actual data.

2 Item Response Theory

Many previous studies (such as [4,5,9–11]) use item response theory (IRT) [1,8]
to measure the quality of tests for uniform test assembly. This section provides
IRT equations to prepare the later description.

IRT, which describes the relation between item characteristics and exami-
nee abilities, can measure examinee abilities on the same scale even when the
examinees are taking different tests. For IRT, uij denotes the response of item
i (= 1, . . . , n) on examinee j (= 1, . . . , m) as

uij =

⎧
⎨

⎩

1 If the jth examinee answers
ith item correctly,

0 Otherwise.

In the two-parameter logistic model which is one of the most popular IRT
models, the probability of a correct answer to item i by examinee j with ability
θj ∈ (−∞,∞) is assumed as

pi(θj) ≡ p(uij = 1|θj) =
1

1 + exp(−1.7ai(θj − bi))
,

where ai ∈ [0,∞) is the ith item’s discrimination parameter, and bi ∈ (−∞,∞)
is the ith item’s difficulty parameter. This probability is called the item charac-
teristic curve (ICC).

Using this probability, we can define the item reliability that measures how
accurately the item can estimate the examinee’s ability levels θ. The ith item
reliability Ii(θj) based on the two-parameter logistic model is defined as

Ii(θ) = a2
i pi(θ)(1 − pi(θ)).

104 T. Ishii and M. Ueno

This function is a Fisher information metric calculated from the ICC. Further-
more, on the condition called the local independence, the probability of one item
being used is not related to any other item(s) being used and that response to
an item is each and every examinees’ independent decision, the test reliability
of tests is described as the sum of the information functions of the items in the
test form. The test information function ITest(θ) of a test Test is defined as

ITest(θj) =
∑

i∈Test

Ii(θj).

By using this measure, a test administrator can estimate how accurate a
test form is. In traditional uniform test assembly methods (e.g. [9,11]), the test
information function is treated discretely: the test information function has been
compared on some points Θ = {θ1, . . . , θk, . . . , θK} in ability level θ. In this
paper, we treat the test information function in the same way.

3 Maximum Clique Algorithm for Uniform Test
Assembly

Ishii and Ueno proposed the MCP for uniform test assembly [4,5]. The clique
problem is a combinational optimization in graph theory [2,7]. A graph is rep-
resented as a pair G = {V,E}, where V denotes a set of vertices, and E denotes
a set of edges. The clique problem seeks a special structure called the clique
from a given graph. A clique is a set of vertices for which each pair of vertices
is connected. The MCP searches for the clique which has the maximum number
of vertices in the given graph. Letting G = {V,E} be a finite graph and letting
C ⊆ V be the clique, then the MCP is formally defined as follows:

maximize |C|
subject to

∀v, w ∈ C, {v, w} ∈ E
(clique constraint).

(1)

In this study [5], they employed the MCP to search for the maximum number
of uniform tests. In general, uniform tests are defined as a set of tests that has
following specifications:

1. any test satisfies all test constraints;
2. any two tests satisfy the overlapping constraint. (i.e. any two test forms have

fewer overlapping items than the allowed number in the overlapping con-
straint).

Accordingly, the assembling of the maximum number of uniform test forms
can be described as the maximum clique extraction from the following corre-
sponding graph:

V =
{

s : s ∈ S, Feasible test ssatisfies all test constraints
except for the overlapping constraint from a given item pool

}

E =
{{s, s′} : The pair of s and s’satisfies the overlapping constraint

}
.

Algorithm for Uniform Test Assembly Using a Maximum Clique Problem 105

Here, the test constraints include a constraint for the number of items and
a test information function. Letting Lθk

be a lower bound and letting Uθk
be a

upper bound for test information function on ITest(θk), a constraint for the test
information function is written as the following equation:

Lθk
≤ ITest(θk) ≤ Uθk

. (2)

In addition, if we let O be the allowed number in the overlapping constraint
and both s and s′ be tests which are the sets of items, the overlapping constraint
is defined as follows:

∀s,∀s′ ∈ V, (3)
|s ∩ s′| ≤ O. (4)

The proposed MCP seeks the maximum set of feasible test forms in which
any two test forms satisfy the overlapping constraint. Therefore, this set of tests
is the maximum number of uniform tests from a given item pool.

Fig. 1. Maximum clique algorithm for uniform test assembly.

Figure 1 presents an example of uniform test form assembly using the MCP.
The graph G has six feasible test forms T1–T6 with nine satisfactions of the over-
lapping constraint and the maximum uniform tests Cmax = {T1,T2,T3,T4},
that is the maximum number of tests in which any pair of tests satisfies the
given overlapping constraint.

Unfortunately, this problem for assembling uniform tests cannot be solved
exactly because it has heavy computational time and space costs. To solve the
problem, in previous work [5] an approximate algorithm called RndMCP was
proposed.

This algorithm has the following three parameters for computational costs:

106 T. Ishii and M. Ueno

C1 is the number of feasible tests assembled in Step 1;
C2 is the time limit of Step 3;
C3 is the total time limit of the test assembly.

This algorithm contains the following four stpdf.

Step 1: This step assembles C1 feasible tests, and stores those tests.
Step 2: This step builds graph structures by checking the number of overlap-

ping items between any two stored tests. If the number of overlapping items
between two vertices (tests) is less than a given O, those vertices are con-
nected.

Step 3: This step extracts the maximum clique from the structure built by Step
2. Step 3 is aborted by the calculation time C2. By comparing the size of
the extracted clique and current maximum clique, this step stores the larger
clique as the current maximum clique.

Step 4: If the calculation time is less than C3, go to Step 1; otherwise return
the current maximum clique.

RndMCP repeatedly extracts the maximum number of uniform tests from a
subgraph of the global corresponding graph. Therefore, in the case where C1 is
larger than the size of the maximum clique in the global corresponding graph,
RndMCP asymptotically extracts the maximum clique as the maximum number
of uniform test forms from the global corresponding graph.

The computational time cost of RndMCP is C3 and the space cost is O(C1
2).

Therefore, it is possible to extract uniform tests in a limited computing environ-
ment by controlling computational time and space costs.

However, when this algorithm assembles |C| uniform tests, this algorithm
requires at least O(|C|2), because the extracted uniform tests are a subset of the
C1 tests assembled by Step 1. Therefore, this algorithm has a problem of requir-
ing a calculation cost proportional to the square of the number of configuration
tests.

4 Uniform Test Assembly Using the Maximum Clique
Algorithm and Integer Programming

To reduce the computational space cost and to increase the number of assembled
tests, we propose a new algorithm: RIPMCP. By employing integer programming
to generate a subgraph, the proposal divides the extraction of the maximum
clique from the global graph into repeated extractions from subgraphs.

In the corresponding graph, the edges describe the satisfactions of the over-
lapping constraint which implies that there are fewer overlap items between two
connected vertices. Therefore, the searching of a vertex connected with a certain
vertex becomes an optimization problem with a constraint for the connection.

RIPMCP has the same constraint parameters for computational costs as Ishii
and Ueno’s method [4,5], and contains the following five stpdf.

Step 1: This step sets the current searching clique Q as empty, and the current
maximum clique Qmax as empty.

Algorithm for Uniform Test Assembly Using a Maximum Clique Problem 107

Fig. 2. Integer programming problem for assembling the feasible test.

Step 2: This step assembles C1 tests by solving the integer programming prob-
lem. Figure 2 shows the integer programming problem. This problem contains
the test constraints and overlapping constraints. The solution vertex (test)
is feasible and has fewer overlapping items between each test in the current
searching clique. Then, this step stores those tests.

Step 3: This step builds graph structures by checking the number of overlap-
ping items between any two stored tests. If the number of overlapping items
between two vertices (tests) is lower than a given O, those vertices are con-
nected.

Step 4: This step extracts the maximum clique from the structure built by Step
3. Step 4 is aborted by the calculation time C2. Then, this step adds the
maximum clique solution to the current searching clique Q. By comparing
the size of the current searching clique Q and the current maximum clique
Qmax, this step stores the larger clique as the current maximum clique Qmax.

Step 5: If the calculation time is less than C3, go to Step 2; otherwise output
the current maximum clique Qmax. If the integer programming is in Step 2,
go to Step 1.

RIPMCP is similar to the RndMCP algorithm. RndMCP randomly assembles
feasible tests as vertices and searches for the maximum clique from those vertices.
The proposal randomly assembles feasible tests but those tests are connected to
all vertices in the current searching clique Q. Thus, Q∪ the clique in those
feasible tests is also the clique in the global corresponding graph. Then, the

108 T. Ishii and M. Ueno

Fig. 3. Searching image of the proposed method.

proposal searches for the maximum clique from those vertices, and adds that
maximum clique to the current searching clique Q.

Figure 3 presents a searching image of the proposal. In Fig. 3, the search
will be conducted in the order (a)→(b)→(c)→(d). First, the proposed method
sets Q := φ and randomly assembles the C1 tests V that satisfy the given
test constraint by solving the integer programming problem. Then, the method
constructs the corresponding graph G by checking the overlap constraint among
assembled tests in V . In Fig. 3(a), the proposal searches for the maximum clique
in the random tests V . The proposal adds the found clique to the current clique
Q. For the first time, this step is the same as the first step of the RndMCP
method.

Next, the proposal assembles the C1 tests V that satisfy the test constraint
and the overlap constraint between all tests in the current clique Q by solving the
integer programming problem. Then, the proposal constructs the graph structure
and extracts the maximum clique in the graph. In case (b), a vertex in the found
clique MCQ(V) has edges to all vertices in the current clique Q. Therefore,
Q ∪ MCQ(V) is a clique in the global corresponding graph. Thus, the method
sets Q ∪ MCQ(V) as the next current clique Q.

Third, the proposed method tries to assemble the C1 tests V in the same way.
However, in case (c), the integer programming problem has no solution. In other
words, the current clique Q is the maximal clique in the global corresponding

Algorithm for Uniform Test Assembly Using a Maximum Clique Problem 109

graph. To repeat these stpdf, the proposed method tries to search for the maxi-
mum cliques. Then, this algorithm initializes Q = φ (case (d)), and repeats those
stpdf.

The computational cost of the proposal is the same as RndMCP. The com-
putational time is C3 and the space cost is O(C1

2). However, the extracted
uniform tests are not subsets of the C1 tests assembled by Step 2. Therefore,
when this algorithm assembles |C| uniform tests, this algorithm requires O(|C|)
space cost for storing clique vertices.

5 Experiments

To demonstrate the advantage of our proposal, we conducted an experiment.
We compared the number of assembled test forms of our proposal with those of
traditional methods [5,9–11].

We compared each method with the simulated and actual item pools that
have 500–2000 items. The items in the simulated item pools have the discrim-
ination parameter a and the difficulty parameter b based on IRT. We set the
discrimination parameter a as log2 a ∼ N(0, 12), and the difficultly parameter
b ∼ N(0, 12). Table 1 shows the details of the actual item pools.

We set the test constraints as follows.

1. The test includes 25 items.
2. The allowed numbers of overlapping items are 0 and 10.

The information constraint is described by the lower and upper bounds of the
test information function I(θk) and are listed in Table 2.

Table 1. Details of the actual item pool.

Item pool size Parameter a Parameter b

Range Mean SD Range Mean SD

978 0.12–3.08 0.43 0.20 −4–4.55 −0.22 1.16

Table 2. Constraints for test assembly.

I(θ) (Lower bound/Upper bound)

θ = −2.0 θ = −1.0 θ = 0 θ = 1.0 θ = 2.0

2/2.4 3.2/3.6 3.2/3.6 3.2/3.6 3.2/3.6

We used a time limitation of test assembly of 24 h for all methods. For
RndMCP [5] and our proposal, we determined the computational cost constraint
C1 as 100,000, C2 as 3 h, and C3 as 24 h. For BST [11] and our proposal, We
used CPLEX [3] for the integer programming problem.

110 T. Ishii and M. Ueno

Table 3. The numbers of assembled tests for
each methods.

item pool

size

OC BST GA BA RndMCP RIPMCP

500 0 12 3 5 10 18

5 20 23 96 4380 20,547

1000 0 21 4 6 17 33

5 40 17 104 46,305 58,760

2000 0 53 8 12 32 69

5 80 22 104 96,876 102,666

978 (actual) 0 24 9 9 16 35

5 39 283 371 40,814 55,658

Table 4. The number of assembled
tests in 168 h.

OC RndMCP RIPMCP

2000 5 96,949 134,383

10 99,999 136,318

978 (actual) 5 45,955 96,787

10 99,999 132,451

In the table, “BST” denotes big shadow method [11], “GA” denotes [10],
“BA” denotes [9], and “RndMCP” denotes [5]. Our proposal is listed as
“RIPMCP”.

Table 3 shows the number of test forms assembled using our proposal and
the traditional methods for the item pool size and the overlapping constraint. In
traditional methods, with the exception of “OC = 0” cases, RndMCP assembles a
greater number of test forms than the other methods. This is because the aim of
BST, GA, and BA is not to maximize the number of assembled tests. In the case
of “OC = 0,” BST assembles a greater number of tests than RndMCP. Moreover,
in the case of “item pool size = 2000, OC = 5,” the number of assembled tests
by RndMCP converged to 100,000. The reasons were that the C1 size was too
small for this test assembly setting.

On the other hand, the proposal assembled a greater number of tests than
RndMCP in all cases. In more detail, the difference in the number of tests
between RndMCP and our proposal was small in the situation that the number
of assembled tests are nearly 100,000. This might be caused by the fact that the
integer programming in our proposal takes a lot of time when the number of
assembled tests is large. Moreover, the number of assembled test by RndMCP
does not exceed C1; therefore, setting a larger time limit might increase the
difference in the number of tests between RndMCP and our proposal in that
situation.

To confirm this, finally we compared the number of assembled tests by
RndMCP and our proposal, under the situation of setting the time limit as
168 h (7 days). For RndMCP [5] and our proposal, we determine the computa-
tional cost constraint C1 as 100,000, C2 as 3 h, and C3 as 168 h (7 days). We
examined item pools sizes 2000 and 978 and OC = 5 and 10.

Table 4 lists the number of assembled tests at time 168 h for both methods.
Figure 4 plots the number of assembled tests for calculation time in the situation
of item pool size 2000 and OC = 5. From Table 4 and Fig. 4, the proposed method
can assemble a greater number of tests than RndMCP, and the difference in the
number of assembled tests might increase with calculation time. In all situations,
the number of assembled tests by RndMCP did not increase with calculation
time; however, the number of assembled tests using our proposal did increase.

Algorithm for Uniform Test Assembly Using a Maximum Clique Problem 111

Fig. 4. Relation between the calculation time and the number of assembled tests.

6 Conclusion

We have proposed an algorithm that assembles a greater number of uniform
tests than traditional methods. The proposal applies integer programming and
the MCP for assembling uniform tests.

To demonstrate the performance of the proposed method, we have conducted
an experiment using simulated and actual data. To summarize the results, the
proposed method assembled a greater number of uniform tests than the tradi-
tional methods. Moreover, the results suggested that the difference in numbers of
assembled tests between proposal and Ishii and Ueno’s method [5] was increased
by extending the calculation time.

Future works will include assessing this method in practical uses, and improv-
ing the algorithm to increase the number of assembled tests.

References

1. Baker, F., Kim, S.: Item Response Theory: Parameter Estimation Techniques, 2nd
edn. Statistics: A Series of Textbooks and Monographs. Taylor & Francis (2004)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

3. ILOG: ILOG CPLEX User’s Manual 11.0
4. Ishii, T., Songmuang, P., Ueno, M.: Maximum clique algorithm for uniform test

forms. In: The 16th International Conference on Artificial Intelligence in Education,
pp. 451–462 (2013)

5. Ishii, T., Songmuang, P., Ueno, M.: Maximum clique algorithm and its approxi-
mation for uniform test form assembly. IEEE Trans. Learn. Technol. 7(1), 83–95
(2014)

6. ISO/IEC: ISO/IEC 23988:2007 Information technology - A code of practice for the
use of information technology (IT) in the delivery of assessments (2007)

112 T. Ishii and M. Ueno

7. Karp, R.M.: Reducibility among combinatorial problems. Complex. Comput. Com-
put. 40(4), 85–103 (1972)

8. Lord, F.M., Novick, M.R.: Statistical Theories of Mental Test Scores. Addison-
Wesley Series in Behavioral Science. Addison-Wesley Pub. Co., MA (1968)

9. Songmuang, P., Ueno, M.: Bees algorithm for construction of multiple test forms
in e-testing. IEEE Trans. Learn. Technol. 4, 209–221 (2011)

10. Sun, K.T., Chen, Y.J., Tsai, S.Y., Cheng, C.F.: Creating irt-based parallel test
forms using the genetic algorithm method. Appl. Measur. Educ. 2(21), 141–161
(2008)

11. van der Linden, W.J.: Liner Models for Optimal Test Design. Springer, New York
(2005)

	Algorithm for Uniform Test Assembly Using a Maximum Clique Problem and Integer Programming
	1 Introduction
	2 Item Response Theory
	3 Maximum Clique Algorithm for Uniform Test Assembly
	4 Uniform Test Assembly Using the Maximum Clique Algorithm and Integer Programming
	5 Experiments
	6 Conclusion
	References

