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Abstract. The junction tree algorithm is currently the most popular
algorithm for exact inference on Bayesian networks. To improve the time
and space complexity of the junction tree algorithm, we must find an
optimal total table size triangulations. For this purpose, Ottosen and
Vomlel proposed a depth-first search (DFS) algorithm for optimal tri-
angulation. They also introduced several techniques for improvement of
the DFS algorithm, including dynamic clique maintenance and coalescing
map pruning. However, their dynamic clique maintenance might compute
some duplicate cliques. In this paper, we propose a new dynamic clique
maintenance that only computes the cliques that contain a new edge.
The new approach explores less search space and runs faster than the
Ottosen and Vomlel method does. Some simulation experiments show
that the new dynamic clique maintenance improved the running time of
the optimal triangulation algorithm.

Keywords: Optimal triangulation · Junction tree algorithm · Dynamic
clique maintenance

1 Introduction

Bayesian networks are graphical models that encode probabilistic relations
among variables [1]. A Bayesian network is a directed acyclic graph in which
vertices represent random variables, and the arcs represent conditional depen-
dencies. Two vertices that are not connected by an arc represent the two variables
that are conditionally independent of each other. Each variable is associated with
a conditional probability table conditioning on its parents. Bayesian networks
provide a neat and compact representation of joint probability distributions.

Probabilistic inference is an extremely common task that is conducted on
Bayesian networks. However, probabilistic inference using Bayesian network is
known to be NP-hard [2]. The network size limitation of the inference algorithm
obstructs the more widespread application of Bayesian Networks. Many studies
have been undertaken to improve inference algorithms in the past two decades.
The most influential exact inference algorithm is the junction tree propagation
algorithm [3–5]. In this algorithm, a Bayesian network is first converted into a
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special data structure called junction tree; then belief is propagated on that tree.
A junction tree can be formed if and only if the moral graph of the Bayesian
network is triangulated. If the graph is not triangulated, then it is necessary to
add extra edges to it until it becomes so. This process is called triangulation.
A Bayesian network allows several different triangulations. The triangulation
is expected to affect the structure of the junction tree and the performance of
subsequent belief propagation. In this paper, we especially focus on the optimal
triangulation of Bayesian networks. Unfortunately, finding an optimal triangula-
tion is NP-hard [6]. However, this defect is not crucially important because the
triangulation can often be done off-line and can be saved for inference algorithms.

Previous investigations of triangulation problems have been conducted by
researchers from various fields for different purposes. Their triangulation algo-
rithms are designed to optimize various criteria. The commonly used criteria are
the fill-in, the treewidth, and the total table size. Of all these criteria, the total
table size criterion yields the most exact bounds of the memory and time require-
ments of probabilistic inference. Thus, for inference on a Bayesian network, a
triangulation is optimal if the triangulation has the minimum total table size.
Finding an optimal triangulation is important because the junction algorithm
provides the best performance from optimal triangulation. Moreover, optimal
triangulation is required for an embedded system that is often with real-time
computing constraints and with limited memory usage. We solve the optimal
triangulation problem by searching the space of all possible triangulations. This
search is conducted by enumerating all possible elimination orders to find the
order that has the minimum total table size.

To obtain an optimal triangulation for total table size criterion, Ottosen
and Vomlel investigated depth-first search and best-first search algorithms [7].
They claimed that the depth-first search uses less memory than the best-first
search does. Moreover, they demonstrated that the two methods have almost
equal run time in computational experiments. The best-first search with theo-
retically better order does not necessarily run faster than the depth-first search
in practice. Although the depth-first search expands more search nodes than the
best-first search does, the best-first search has heavy overhead costs for main-
taining a priority queue (In this paper, the term “node” is used exclusively for
a point in the search space for the optimal triangulation algorithm. The term
“vertex” is used exclusively for a point in the graph being triangulated.). For
optimal triangulation algorithms, it is necessary to make the overhead as low as
possible when reducing the search space. To reduce the overhead cost, Ottosen
and Vomlel introduced dynamic clique maintenance. In the optimal triangula-
tion algorithm, it is necessary to compute total table size of each search node,
which is a lower bound of the node. Therefore, we must also ascertain the set
of cliques of each node. It is necessary to maintain a set of cliques in a dynamic
graph. The dynamic graph means that the edges can be removed and added but
the set of vertices is invariant. To compute the cliques of the updated graph, a
simple approach is to run the Bron–Kerbosch (BK) algorithm [8] on the graph.
However, the BK algorithm suffers from heavy computational costs. For a graph
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with n vertices, the worst-case running time of the BK algorithm is O(3n/3) [9].
To resolve this problem, Ottosen and Vomlel proposed a dynamic clique mainte-
nance [7], which runs the BK algorithm on a smaller subgraph where all the new
cliques can be found and all the existing cliques are removed. The dynamic clique
maintenance reduced the overhead of each node and made the optimal triangu-
lation algorithm faster. However, the dynamic clique maintenance proposed by
Ottosen and Vomlel might compute some duplicate cliques. The method presents
shortcomings in computational costs as the number of duplicate cliques becomes
large. In the elimination process for triangulating a graph, it is well know that a
new fill-in edge cannot connect to the vertex that has been eliminated. Based on
this observation, Li and Ueno [10] proposed an improved dynamic clique mainte-
nance. The Li and Ueno method reduced the search range of the BK algorithm
by removing eliminated vertices from the graph that the Ottosen and Vomlel
method explores. However, the method still computes many duplicated cliques.
A new clique in the updated graph must include a new edge. However, these
methods might compute some cliques that do not contain a new edge. Those
cliques are computed both in the original graph and in the updated graph.

In this paper, we propose a new dynamic clique maintenance algorithm for
optimal triangulation of a Bayesian network. When some new edges are inserted
in a graph for triangulation purpose, we must update the set of cliques. A new
clique in the updated graph must contain a new edge. The idea of our method
is to avoid recomputing the cliques that do not contain a new edge. We only
explore an even smaller subgraph than the graph that the Ottosen and Vomlel
method explores. The subgraph only contains the new edges and their neigh-
boring vertices. We run the BK algorithm on the subgraph where all the new
cliques can be found. The new algorithm explores less search space and runs
faster than the Ottosen and Vomlel method does. The computational cost of
dynamic clique maintenance is inherent in the calculation of the lower bound
at each node. Thereby, the improvement of the dynamic clique maintenance
algorithm can decrease the overhead of each node. Some simulation experiments
show that the new dynamic clique maintenance improved the running time of
the optimal triangulation algorithm.

The remainder of this paper is organized as follows. Section 2 presents the
triangulation problem and describes the formulation of the search space of the
optimal triangulation algorithm. Section 3 reviews the depth-first search algo-
rithm presented in [7]. In Sect. 4, we propose a new dynamic clique maintenance
algorithm. Section 5 provides some experiments that are useful to evaluate the
proposed method. Section 6 concludes the paper.

2 Triangulation Problem

We first introduce some notations and definitions for description of triangula-
tion problem. Then we formulate the search space of the optimal triangulation
algorithm.
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2.1 Notation and Definitions

Let G = (V, E) be an undirected graph with vertex set V and edge set E. For
a set of vertices W ⊆ V, G[W ] = (W, {(v, w) ∈ E|v, w ∈ W}) is the subgraph
of G induced by W. For a set of edges F, V(F) denotes the set of vertices
{v,w|(v,w) ∈ F}.

Two vertices v and w are said to be adjacent if (v, w)∈ E. The neighbors
N (v, G) of a vertex v is the set W⊆ V such that each u ∈W is adjacent to v. The
family FA(W, G) of a set of vertices W is defined as the set (∪w∈W N (w,G))∪W .
Let e = (v,w) ∈ E be an edge, we define the neighbors N (e, G) of an edge e as
the set of vertices U ⊆ V such that each u ∈U is adjacent to v and w. The family
FA(F, G) of a set of edges F is defined as the set (∪f∈F N (f,G) )∪ V(F). Note
the family FA(F, G) of a set of edges F is a subset of the family FA(V(F),
G) of a set of vertices V(F). For example, see the left graph of Fig. 1, we have
F = {(a,c),(b,c)}, and V(F) = {a,b,c}, then FA(F, G) = {a,b,c} is a subset of
FA(V(F), G) = V.

A graph G is complete if all pairs of vertices (u,v) (u �= v) are adjacent in
G. A set of vertices W ⊆ V is complete in G if G[W] is a complete graph. If
W is a complete set and no complete set U exists such that W ⊂ U, then W
is a clique. (Remark: Any complete set is called a clique in some literatures.
In that case, what we have defined as a clique is called a maximal clique.)
The set of all cliques of graph G is denoted as C(G). For a set of vertices
W ⊆ V, C(W, G) denotes the set of cliques that intersects W. Let G’= (V,
E ∪F) (F ∩E = ∅) be the right graph obtained by adding a set of new edges F
to G = (V, E), RC(G,G’) = C(G)\C(G’) denotes the set of removed cliques, and
NC(G,G’) = C(G)\C(G) denotes the set of new cliques. For example, in Fig. 1,
let G be the graph on the left, and G’ be the graph obtained by adding edge (c,d)
to G, then in this example, we can compute C(G)= {{a,b,c},{b,d},{d,e},{c,e}}
and C(G’) = {{a,b,c},{b,c,d},{c,d,e}}. Therefore, we have RC(G,G’) = {{b,d},
{d,e},{c,e}} and NC(G,G’) = {{b,c,d},{c,d,e}}.

Fig. 1. Left: Initial graph G= (V, E). Right: Updated graph G’ obtained by adding
one edge (c,d) to G.
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The table size of a clique C is defined as ts(C) =
∏

(v∈C) |sp(v)|, where
sp(v) denotes the state space of the variable corresponding to v in the
Bayesian network. The total table size (TTS) of a graph G is defined as
tts(G) =

∑
C∈C(G) ts(C).

A undirected graph G is said to be triangulated if every cycle of length greater
than 3 has a chord, that is an edge connecting two nonconsecutive vertices in the
cycle. A triangulation of G is defined as a set of edges T such that T∩E = ∅ and
graph H = (V, E∪T) is triangulated. For example, in Fig. 1, the graph on the left
is not triangulated because a chord-less cycle {b,c,e,d} exists. The graph on the
right is triangulated because the edge (c, d) is added, which is a triangulation
for the graph on the left.

Elimination of a vertex v∈V from graph G = (V, E) is the process of adding
necessary edges F to make the set N (v, G) complete, then removing v and all
the incident edges from G. The edges F that are added during the elimination
process are called fill-in edges. If F = ∅, then v is called a simplicial vertex of
G. An elimination order for graph G is a total ordering π of the vertices of
G, where π(i) denotes the i-th vertex in the ordering. Let τ be the partial
elimination order, which is a sequence of vertices. Let V(τ) denotes the set of
vertices presented in τ . Let T be all the fill-in edges that result from eliminating
vertices from graph G according to order π. We will then use Gπ to denote the
graph that results from adding these fill-in edges T to G = (V, E) and write
Gπ = (V, E∪T). Given any elimination order π, if all vertices are eliminated
sequentially from G according to π, then the union of all the fill-in edges is a
triangulation of G and Gπ is a triangulated graph.

We present one example for elimination of vertices from a moral graph of
Asia [4] Bayesian network in Fig. 2. Consider an elimination order starting with
the sequence 〈D,S〉. Because eliminating vertex D does not add fill-in edge, D is
a simplicial vertex. This process induces two associated graphs (filled-in graph
and remaining graph). Let τ = 〈X〉 denote the partial elimination order, We also
refer to the filled-in graph Gτ as partially triangulated graph, which is shown in
Fig. 2(a). The remaining graph Gτ [V/V(τ)] (V(τ) = {D}) is shown in Fig. 2(b).
Then we eliminate vertex S. Eliminating vertex S adds a fill-in edge (L,B). This
process also induces two associated graphs. Let partial order τ ′ be the vertex
sequence 〈D,S〉, F = {(L,B)} be all fill-in edges when we eliminated along τ ′. The
corresponding partially triangulated graph Gτ ′

= (V, E∪ F) is shown in Fig. 2(c).
The corresponding remaining graph Gτ ′

[V/V(τ ′)] (V(τ ′) = {D,S} ) is shown in
Fig. 2(d). If we continue to eliminate vertices until no vertex was left. The final
partially triangulated graph (also called filled-in graph) is a correct triangulated
graph such that there is no chordless cycle on it. Therefore, triangulation using
vertex elimination is simple, but the determination of a good elimination order
is the most important step. In this paper, we try to find the order π that induces
a triangulated graph with minimum total table size.
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Fig. 2. Example of eliminating vertices from the moral graph of Asia network.

2.2 Search Space of the Optimal Triangulation Algorithm

To find the optimal triangulation, we can conduct a search in the space of all
possible elimination orders of the moralized graph of Bayesian network [7]. For
this purpose, we generate a search graph that includes all elimination orders for
a Bayesian network. Figure 3 depicts the search graph for a network with five
vertices. The search graph is a tree with root node corresponding to the start
search node and leaf nodes corresponding to all distinct elimination orders. In
this search tree, each node is labeled using a partial elimination order τ . We also
associate the intermediate partially triangulated graph with each node for rea-
sons of computational convenience in the optimal triangulation algorithm. Each
leaf node is labeled using a complete order and is associated with a triangulated
graph. For a node labeled τ , the successor node can be generated by the elimi-
nation of a vertex from remaining graph Gτ [V/V(τ)]. Given the search tree, we
can explore all possible elimination orders to find the order that has minimum
total table size.

3 The Optimal Triangulation Algorithm

This section presents a review of the depth-first search algorithm for optimal
triangulation presented by Ottosen and Vomlel [7].

3.1 The Depth-First Search Algorithm for Optimal Triangulation

The naive depth-first branch and bound algorithm for optimal triangulation
operates as follows. First, we initialize the upper bound (UB) on total table size
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Fig. 3. Search tree of the optimal triangulation algorithm for a graph of five vertices.

(TTS) with the triangulation using minimum fill-in heuristic, which greedily
selects the next vertex to eliminate if the vertex leads to add the minimum fill-
in edges. Next, it traverses all search tree nodes in a depth-first manner. For each
tree node, we calculate the TTS of the partially triangulated corresponding to
the node. The TTS is a lower bound of a search node because by adding an edge
to graph G, the TTS of G cannot decrease [7]. If we find a node of which TTS
is greater than the TTS of UB, then we prune all the successors from the node.
On the other hand, if we find a leaf node (labeled using a complete ordering)
that is better than UB, we update the UB by replacing the leaf node to UB.
The search continues until all nodes have been explored. It is noteworthy that
the algorithm performs a search in the space of all elimination orders.

We intend to use the TTS upper bound for pruning nodes in depth-first
search triangulations. Therefore, we must compute the TTS of each node in
the search tree. The TTS is easy to compute if we know the cliques of the
partially triangulated graph corresponding to the node. Therefore, we must also
associate the set of cliques with each node. In the Ottosen and Vomlel algorithm
[7], for computing the TTS lower bound, each node t is represented as a tuple
(τ ,H,C,tts,R).

– t.τ : an ordered list of vertices representing the partial elimination order.
– t.H = (V, E∪ F): partially triangulated graph obtained by adding all fill-in

edges accumulated along the τ to the original moral graph.
– t.C: A set of cliques for H, C(H).
– t.tts: Total table size of graph H, which is a lower bound for node t.
– t.R: The remaining graph, R = H[V\V(τ)], where V(τ) denotes the set of ver-

tices that lie in τ .

To compute t.tts, we must calculate all the cliques t.C first. For this purpose,
we can use a standard clique enumeration algorithm such as the well-known
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Fig. 4. Example of the vertex elimination and partially triangulated graphs induced
by an elimination order that starts with sequence {a,b}. Left: Initial graph. Middle
left: Partially triangulated graphs correspond to elimination partial order {a}. Middle
right: Partially triangulated graphs correspond to the elimination partial order {a,b}.
Right: Final triangulated graph.

Bron–Kerbosch algorithm (BK algorithm) [8]. Below, we present an example to
explain the lower bound and related computations.

Example 1. Fig. 4 depicts the vertex elimination process according to the left-
most path in Fig. 3. The path corresponds to sequential elimination of vertices a
and then b. The root node r corresponds to the graph on the left in Fig. 4(initial
graph), where no vertex has been eliminated. We can compute the cliques of the
root node’s graph r.C = {{a,b,c},{b,d},{d,e},{c,e}} using the BK algorithm. In
this case, the TTS (assuming all binary variables) is 3· 22+23 = 20, which is a
lower estimate of TTS of optimal triangulation.

The successor node t of r (induced by elimination of vertex a) corresponds
to the graph on the middle-left in Fig. 4. The partially triangulated graph t.H is
the same as the initial one. Therefore, we can derive t.tts = 20.

We expand the successor node t’ of t (corresponding to the elimination of ver-
tex b). The induced partially triangulated graph t’.H corresponds to the middle-
right graph in Fig. 4, which includes the fill-in edge (c, d). This process continues
until the graph is triangulated. The resulting triangulated graph corresponds to
the right graph in Fig. 4, which is the same as t’.H. Finally, the cliques of the
triangulated graph are t’.C = {{a,b,c},{b,c,d},{c,d,e}}. Their t’.tts is 3· 23 = 24.
In this example, we can see that the TTS of a node is never higher than the TTS
of its successor nodes. This key property makes sure the correctness of applying
branch and bound technique in the optimal triangulation algorithm.

However, the BK algorithm suffers from heavy computational cost. For a
graph with n vertices, the worst-case running time of the BK algorithm is
O(3n/3). Indeed, the BK algorithm engenders many redundant computations.
To tackle this problem, Ottosen and Vomlel [7] proposed a more efficient algo-
rithm for computation of the set of cliques C in a dynamic graph. We will explain
the dynamic clique maintenance algorithm in Sect. 3.2.

We explained the search tree of depth-first search and how to compute a lower
bound for each node. The depth-first search algorithm presented by Ottosen and
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Algorithm 1. Depth-first search with coalescing and upper-bound pruning.
1: function TriangulationByDFS(G)
2: Let s= (G,C(G),tts(G),V)
3: EliminateSimplicial(s) � Simplicial vertex rule
4: if |V(s.R)|=0 then
5: return s
6: Let best=MinFill(s) � Best path
7: Let map= ∅ � Coalescing map
8: ExpandNode(s,best,map) � Start recursive call return best

9: procedure ExpandNode(n,&best,&map)
10: for all v∈ V(n.R) do
11: Let m=Copy(n)
12: EliminateVertex(m, v) � Update graph, cliques and TTS
13: EliminateSimplicial(m) � Simplicial vertex rule
14: if |V(m.R)|=0 then
15: if m.tts<best.tts then
16: Set best=m
17: else
18: if m.tts≥best.tts then
19: continue � Branch and bound
20: if map[m.R].tts≤m.tts then
21: continue
22: Set map[m.R]=m
23: ExpandNode(m,best,map)

Vomlel can be implemented in O(|V|) space and O(|V|!) time. A pseudo code
of the Ottosen and Vomlel algorithm is shown in Algorithm1. The Eliminate
Vertex(m,v) procedure eliminates vertex v from the remaining graph of node m.
To prune unnecessary search nodes further, Ottosen and Vomlel also introduced
the following pruning rules: (1) Graph reduction techniques called the simplicial
vertex rule [11,12], and (2) pruning based on a coalescing map. The procedure
EliminateSimplicial(m,v) sequentially removes all simplicial vertices from the
remaining graph of node m. Coalescing map uses O(n2) memory space to prune
unnecessary search nodes; see [13] for details. Although it is well known that
the depth-first search runs in O(|V|!) time, the algorithm combined with these
techniques described above merely hits the upper bound. Ottosen and Vomlel
[7] claimed that their algorithm runs in O(2|V |) time in practice.

3.2 Previous Works on Dynamic Clique Maintenance

Ottosen and Vomlel [7] observed that recomputing all cliques of a graph using the
BK algorithm is unnecessary. Then they proposed the following dynamic clique
maintenance algorithm. The main idea behind the algorithm is the following.
Instead of searching for all cliques in the whole graph, as the BK algorithm
does, their algorithm runs a clique enumeration algorithm simply on a smaller
subgraph on which all the new cliques can be found and all the existing cliques are
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Algorithm 2. Dynamic clique maintenance proposed by Ottosen and Vomlel.
1: procedure CliqueUpdate(G, C(G), F)
2: Let G’= (V, E∪F)
3: C(G’)= C(G)
4: Let U=V(F)
5: for each clique C∈ C(G) do � Remove old cliques
6: if C∩U �= ∅ then
7: Set C(G’)= C(G’)\{C}
8: let Cnew =BKalgorithm(G’[FA(U, G’)])
9: for each clique C∈ Cnew do � Add new cliques
10: if C∩U �= ∅ then
11: Set C(G’)= C(G’)∪ {C}

removed. This dynamic clique maintenance is presented in Algorithm 2, where G
is the initial graph, C(G) is the set of cliques of G, F signifies the fill-in edges, and
G’ is derived by adding F to G. BKalgorithm(G) returns a set of cliques of the
graph G. The Ottosen and Vomlel algorithm is derived based on the following
theorem:

Theorem 1 ([7]). Let G= (V, E) be an undirected graph, and let G’= (V,
E∪F) be the graph result from adding a set of new edges F to G. Let U=V(F),
and let C(G’)= C(G). We remove the cliques of C(U,G) from C(G’) and add
cliques of C(U,FA(U, G’)]) to C(G’) ,then C(G’) is the set of all cliques of G’.

Fig. 5. A sequence of graphs corresponding to eliminating of vertices D and S. (L,B)
is the fill-in edge.

Next, we provide an example to trace Algorithm 2.

Example 2. Consider the left graph G in Fig. 5. C(G) is the set of cliques of G,
{{A,T}, {T,L,E}, {E,X}, {S,L}, {S,B}, {B,D,E}}. We add fill-in edges F = {(L,
B)} to graph G, resulting in new graph G’(corresponding to the right graph in
Fig. 5). The set U = {L,B} and we let C(G’) = C(G).

First, we iterate through the cliques in C(G’) to remove the cliques that
intersect with U, which is the set of cliques {{T,L,E}, {S,L}, {S,B}, {B,D,E}}.
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Next, we run the BK algorithm on a subgraph G’[FA(U, G’)]. Thereby, we
obtain Cnew = {{T,L,E}, {S,L,B}, {L,B,E}, {B,D,E}}.

Finally, we add to C(G’) all the cliques found in the subgraph G’[FA(U,
G’)] that intersect with U. Now the C(G’) = {{A,T}, {E,X},{T,L,E}, {S,L,B},
{L,B,E}, {B,D,E}}, which is the cliques of new graph G’.

Algorithm 3. Dynamic clique maintenance proposed by Li and Ueno (2012).
1: procedure CliqueUpdate1(G, C(G), F, W)
2: Let G’= (V, E∪F)
3: C(G’)= C(G)
4: Let U=V(F)
5: for each clique C∈ C(G) do � Remove old cliques
6: if C∩U �= ∅ then
7: if C∩W= ∅ then
8: Set C(G’)= C(G’)\{C}
9: let Cnew =BKalgorithm(G’[FA(U, G’)\W])
10: for each clique C∈ Cnew do � Add new cliques
11: if C∩U �= ∅ then
12: Set C(G’)= C(G’)∪ {C}

The example shows that the algorithm sometimes removes and adds the same
cliques again. Although the Ottosen and Vomlel method reduces the search range
of the BK algorithm from the whole graph to a small subgraph G’[FA(U, G’)],
the method might present shortcomings in performance when the number of
duplicated cliques becomes large. In this example, we observed that vertex D
has been eliminated. It is well known that a new fill-in edge cannot connect to the
vertex that has been eliminated. The neighbors of D are invariant in G and G’.
Therefore, any clique containing D in the initial graph should remain a clique
in the updated graph. Generally, no clique containing one of the eliminated
vertices should be calculated again. Based on this observation, Li and Ueno
[10] proposed an improved dynamic clique maintenance. The improved dynamic
clique maintenance is shown in Algorithm 3, where G, C(G), F are defined in the
same manner as presented in Algorithm 2, and W is the set of vertices that have
been eliminated before. The improved dynamic clique maintenance runs BK
algorithm on the graph G’[FA(U, G’)\W], which is a subgraph of G’[FA(U,
G’)] which the Ottosen and Vomlel method explores. As the BK algorithm is
the most time consuming part in the dynamic clique maintenance procedure.
For a graph with n vertices, the worst-case running time of the BK algorithm is
O(3n/3). Therefore, this reduction of the search range is important to improve
the performance of the dynamic clique maintenance. In the Li and Ueno method,
when we remove an old clique C, one more conditional check is necessary to
ascertain whether clique C is disjoint W. This check is usually not a problem
because the complexity of comparison of cliques is constant if we store a clique
using BitSet Object in JAVA programming language.
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4 Proposed Dynamic Clique Maintenance

In the depth-first search triangulation algorithm, it is necessary to compute the
TTS lower bound of each search node. Therefore, the computational cost of
dynamic clique maintenance is inherent in calculation of the lower bound at
each node. To lower the overhead cost in the triangulation algorithm, we must
compute the cliques of each graph efficiently.

Algorithm 4. Proposed dynamic clique maintenance.
1: procedure CliqueUpdate2(G, C(G), F)
2: Let G’= (V, E∪F)
3: C(G’)= C(G)
4: Let W=FA(F, G’)
5: for each clique C∈ C(G) do � Remove old cliques
6: if C ⊆ W then
7: Set C(G’)= C(G’)\{C}
8: C(G’)= C(G’)∪BKalgorithm(G’[W]) � Add new cliques

In Sect. 3.2, we have demonstrated by example that the Ottosen and Vomlel
approach might compute some duplicated clique. To resolve this problem, we
propose a new dynamic clique maintenance algorithm. The main idea of our
method is to avoid recomputing the cliques that do not contain a new edge.
When some new edges are inserted to a graph, a new clique must contain a
new edge. We find that all new cliques and removed cliques are included in the
vertex set FA(F, G’), where F is the set of new edges. Therefore, we can only
run the BK algorithm on the subgraph G[FA(F, G’)]. The proposed dynamic
clique maintenance algorithm is shown in Algorithm4, where U, G, F, C(G)
are defined in the same manner as presented in Algorithm2, and W = G[FA(F,
G’)] denotes the family of a set of edges F. The new algorithm is based on the
following Theorem:

Theorem 2. Let G= (V, E) be an undirected graph, and let G’= (V, E∪F) be
the graph resulting from adding a set of new edges F to G. Let U=V(F), and let
C(G’)= C(G). We remove all the cliques included in FA(F, G’) from C(G’) and
add cliques of C(G’[FA(F, G’)]) to C(G’), then C(G’) is the set of all cliques
of G’.

Proof. If a clique C is a new clique in G’, C∈ NC(G,G’), then C must contain
at least one new edge f ∈F; otherwise C is not a new clique. Because C contains
a new edge, any vertex v ∈C must be a neighbor of one of the new edges. For
any vertex v∈C, v must in the set FA(F, G’). Therefore, C⊆ FA(F, G’). That
is to say, all the new cliques can be found on the subgraph G[FA(F, G’)].

If a clique C is a removed clique, C ∈ RC(G,G’), then there exists a new clique
K such that C⊆ K. Because the only way we remove a clique is by replacing the
old clique by a new clique K such that C⊆ K. From the result presented above,



164 C. Li and M. Ueno

a new clique K⊆ FA(F, G’). Therefore, each removed clique C is included in
FA(F, G’).

We remove all the old cliques by removing all the cliques included in FA(F,
G’) from C(G’), and then add all the new cliques which can be found on the
subgraph G[FA(F, G’)] to C(G’). Then, C(G’) is the set of all cliques of G’.

The following example explains the algorithm:

Example 3. Consider the graph G and updated graph G’ in Fig. 5. C(G) is
the set of cliques of G, {{A,T}, {T,L,E}, {E,X}, {S,L}, {S,B}, {B,D,E}}. We
let C(G’) = C(G). We first compute a family of edge set F, W =FA(F, G’),
W = {S,E,L,B}. Next, we remove from C(G’) all the cliques that are included in
W, which is the set of cliques {{S,L}, {S,B}}.

Then, we run the BK algorithm on a subgraph G’[W]. We obtain
Cnew = {{S,L,B}, {L,B,E}}. In the Ottosen and Vomlel method, we run the
BK algorithm on G’[FA(U, G’)], where FA(U, G’) = {S,T,E,D,L,B}. However,
in our new method, we run the BK algorithm on G’[W], where W = {S,E,L,B}.
It can be easily proved that vertex set W =FA(F, G’) is always a subset of
FA(V(F), G’) that is used in Ottosen and Vomlel algorithm. Our method makes
the BK algorithm explore less search space for updating cliques than the Ottosen
and Vomlel method does. The BK algorithm is the most time-consuming part for
the dynamic clique maintenance. Therefore, this reduction of the search range
is important to improve the performance of the dynamic clique maintenance.

Finally, we simply add all new cliques Cnew to C(G’). In the Ottosen and
Vomlel approach, it is necessary to check each clique in G’[FA(U, G’)] to ascer-
tain whether it intersects with U, or not. However, we relax this conditional check
in our algorithm. In this example, we only remove cliques RC(G,G’) and add
cliques NC(G,G’). On the other hand, the Ottosen and Vomlel method removes
some duplicated cliques and adds those again.

The new dynamic clique maintenance algorithm performs the BK algorithm
on W = G[FA(F, G’)], which is a subgraph of G’[FA(U, G’)] on which the
Ottosen and Vomlel method does. The clique enumeration algorithm (BK algo-
rithm) entails exponential costs with the number of vertices. In the dynamic
clique maintenance algorithm, the running of BK algorithm is the most time
consuming part. Therefore, the reduction of search range is effective to reduce
calculation costs of dynamic clique maintenance. In the Ottosen and Vomlel app-
roach, a newly found clique has to be check whether it intersects U, or not. Our
method relaxes this conditional check and simply adds the all new cliques found
in W. To conclude, the new algorithm explores less search space and runs faster
than the Ottosen and Vomlel method does. We demonstrate the performance
superiority of the new algorithm by simulation experiments in Sect. 6.

5 Experiments

We conducted computational experiments to evaluate the performance of our
proposed dynamic clique maintenance. We also compared our algorithm with the
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Fig. 6. Comparison of the running times of the Ottosen and Vomlel method (OandV),
the Li and Ueno method (LandU2012) and the proposed method for dynamic clique
maintenance.

Ottosen and Vomlel method (OandV)[7], and the Li and Ueno (LandU2012)[10].
All algorithms described in this paper were implemented in the Java language
in the same manner. All experiments were conducted on a 3.0 GHz processor
(Xeon-5675; Intel Corp.) with 12 GB of RAM.

5.1 Dynamic Clique Maintenance

This section presents a comparison of several dynamic clique maintenance meth-
ods. For this purpose, we generated 40 random Bayesian networks each for 20,
30, 40, and 50 vertices with various density using BNGenerator1. For each graph
in the dataset, we triangulated the graph 1,000 times by sequentially eliminat-
ing all vertices (with different random elimination order on each run). The set
of cliques of the graph is updated after each vertex is eliminated. We chose this
experimental scenario because it shows the expected speedup of our proposed
method for the triangulation problem. Figure 6 shows the total running time of
1,000 times triangulation for all random Bayesian networks in the dataset. It is
clear that the proposed dynamic clique maintenance is faster than OandV and
LandU2012.

5.2 Optimal Triangulation

This section describes the experimentally obtained results for the optimal trian-
gulation algorithm for total table size criteria. To examine the effectiveness of our
1 http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator/.

http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator/
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Table 1. Comparison of depth-first search triangulation algorithms among various
dynamic clique maintenance methods.

Bayesian networks DFS DFS-1 DFS-2

Name V Time (s) Time (s) Time (s)

Insurance 27 1.656 1.134 0.776

Water 32 10.415 6.247 4.767

Mildew 35 13.285 8.193 5.246

Alarm 37 0.013 0.010 0.006

Hailfinder 56 8.869 7.493 4.337

WIN95PTS 76 60.082 44.122 27.146

proposed dynamic clique maintenance in the optimal triangulation algorithms,
we implemented the following algorithm:

DFS: depth-first search (DFS) optimal triangulation algorithm obtained by
introducing OandV dynamic clique maintenance.

DFS-1: improved DFS obtained by introducing LandU2012 dynamic clique
maintenance.

DFS-2: improved DFS obtained by introducing the proposed dynamic clique
maintenance.

We used six well-known graphs in the Bayesian network repository2. The run-
ning times of optimal triangulation algorithms are presented in Table 1. Results
show that our proposed dynamic clique maintenance dramatically improves the
running time of triangulation. This result suggests that the proposed method
can extend the available network size of Bayesian network inference.

6 Conclusion

In this paper, we proposed a fast clique maintenance algorithm for optimal tri-
angulation of Bayesian Networks. The performance of the proposed algorithm
was compared with the state-of-the-art, the Ottosen and Vomlel method, and
the Li and Ueno method. Theoretically analysis and experiments reveal that the
new method is superior to the previous proposed method.

Given graph G, new edges F, and eliminated vertex set W, consider the
problem of updating cliques of new graph. The Ottosen and Vomlel method
runs BK algorithm on G’[FA(V(F ), G’)]. The Li and Ueno method runs BK
algorithm on G’[FA(V(F ), G’)\W]. The proposed method runs BK algorithm on
G’[FA(F, G’)]. The proposed method is faster than the Li and Ueno method. The
Li and Ueno method is faster than the Ottosen and Vomlel method. The main
reason for the results is that the BK algorithm suffers from heavy computational
cost and the proposed method reduces search space for BK algorithm because
G’[FA(V(F ), G’)] ⊇ G’[FA(V(F ), G’)\W] ⊇ G′[FA(F,G′)].
2 http://compbio.cs.huji.ac.il/Repository/networks.html.

http://compbio.cs.huji.ac.il/Repository/networks.html
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The Li and Ueno method (2012) assumes eliminating processes in which
some edges are added in a step-by-step manner. Application of the method in
other areas such as protein interaction network is expected to create a problem.
However, the proposed method does not assume this eliminating process. The
proposed dynamic clique maintenance is more generally applicable.
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