
A Depth-First Search Algorithm for Optimal Triangulation of
Bayesian Network

Chao Li
University of Electro-Communications, Japan

ricyou@ai.is.uec.ac.jp

Maomi Ueno
University of Electro-Communications, Japan

ueno@ai.is.uec.ac.jp

Abstract

Finding the triangulation of a Bayesian network with minimum total table size reduces
the computational cost for probabilistic reasoning in the Bayesian network. This task
can be done by conducting a search in the space of all possible elimination orders of the
Bayesian network. However, such a search is known to be NP-hard. To relax this problem,
Ottosen and Vomlel (2010b) proposed a depth-first branch and bound algorithm, which
reduces the computational complexity from Θ(β · |V|!) to O(β · |V|!), where β describes
the overhead computation per node in the search space, and where |V|! is the search
space size. Nevertheless, this algorithm entails a heavy computational cost. To mitigate
this problem, this paper presents a proposal of an extended algorithm with the following
features: (1) Reduction of the search space to O ((|V|-1)!) using Dirac’s theorem, and (2)
reduction of the computational cost β per node. Some simulation experiments show that
the proposed method is consistently faster than Ottosen and Vomlel’s method.

1 Introduction

The most influential method for exact inference
in Bayesian networks is the join tree propa-
gation algorithm (Jensen et al., 1990), which
works in two steps: compilation and propaga-
tion. The compilation part of the method

• triangulates the graph (i.e., add extra fill-
in edges such that every cycle of length
greater than three has a chord),

• forms a factor ΦC for each clique C of the
triangulated graph, and

• constructs a junction tree over these
cliques.

The propagation part of the method passes
messages in the whole junction tree. In the
Hugin architecture, the message passing can be
organized so that one passing in each direction

of the links of the junction tree. The compu-
tational cost for each message computation is
proportional to the factor table size of clique.
To reduce the computational cost, we need to
find a triangulation with minimum total table
size, which is the summation of the factor table
sizes of all cliques.

Heuristic algorithms include popular triangu-
lation heuristics like min-degree, and min-fill is
wildly used for triangulation (Darwiche, 2009),
but these heuristics do not guarantee the exact
solution.

Although finding the optimal triangulation
can be conducted by searching all possible elim-
ination orders, the problem is known to be NP-
hard (Wen, 1990). Fortunately, this is not a
critical defect because triangulation can often
be done off-line on specialized servers. More-
over, the triangulation results can be saved for
inference algorithms. To tackle the optimal
triangulation, Gogate and Dechter (2004) used

depth-first search and Dow and Korf (2007)
used best-first search. However, they used
treewidth criterion, which can not guarantee the
minimum TTS.

To obtain the exact solution for TTS cri-
terion, Ottosen and Vomlel (2010b) proposed a
branch and bound algorithm. This algorithm
uses TTS of the current partially triangulated
graph as a lower bound. To compute this lower
bound for each node on the search space, the
cliques of the current graph must be calculated.
For this purpose, Ottosen and Vomlel (2010a)
proposed a dynamic clique maintenance algo-
rithm. Consequently, they reduced the compu-
tational complexity from Θ(β · |V|!) to O(β ·
|V|!), where β describes the per-node overhead
computation and where |V|! is the size of the
search space. However, this method still entails
a heavy computational cost.

To relax this problem, based on
Ottosen and Vomlel (2010b), this paper
presents a proposal of a depth-first search with
the following features:

1. Reduction of search space using Dirac’s
theorem to O((|V|-1)!), and

2. reduction of the computational cost β per
node.

Some simulation experiments show that the pro-
posed method is consistently faster than Ot-
tosen and Vomlel’s method.

2 Preliminaries

We shall use the following definitions and nota-
tions according to Ottosen and Vomlel (2010b).
G = (V, E) is an undirected graph with vertices
V=V(G) and edges E=E(G). For a set of edges
F, V(F) is the set of vertices {u,v | (u,v) ∈ F}.
For a set of vertices W ⊆ V, G[W] is the sub-
graph of G that is induced by W.

Two vertices u and v are connected in G if an
edge exists between them. A graph G is com-
plete if all pairs of vertices {u,v}(u �=v) are con-
nected in G. A set of vertices W⊆V is complete
in G if G[W] is a complete graph. If W is com-
plete and no complete set U exists such that W

Figure 1: Left: Initial graph G = (V,E). Right: Up-
dated graph G’ by adding one edge {C,D}. We have
C(G) = {{A,B,C},{B,D},{D,E},{C,E}} and C(G’) =
{{A,B,C},{B,C,D},{C,D,E}}. In this example, we have
RC(G,G’) = {{B,D},{D,E},{C,E}} and NC(G,G’) =
{{B,C,D},{C,D,E}}.

⊂ U, then W is a clique. (Remark: Any com-
plete set is sometimes called a clique. Therefore,
what we defined as a clique is called a maxi-
mal clique.) The set of all cliques of a graph
is denoted as C(G). The set of all cliques that
intersect a set of vertices W is denoted as C(W,
G).

The neighbors nb(v,G) of a vertex v ∈ V is
the set W ⊂ V such that each u ∈ W is con-
nected to v. The neighbors nb(W,G) of a set of
vertices W are those vertices from V\W, which
are connected to at least one vertex v ∈ W. The
family fa(W,G) of a set of vertices W is the set
nb(W,G)∪W.

If G’ = (V,E∪F) is the graph resulting
from adding a set of new edges F to G, then
RC(G,G’) = C(G) \ C(G’) is the set of removed
cliques, and NC(G,G’) = C(G’)\ C(G) is the set
of new cliques. Figure 1 presents these concepts.

An undirected graph is triangulated (or
chordal) if every cycle of length four or more
has a chord that is an edge of the graph joining
two non-adjacent vertices of the cycle. A trian-
gulation of G is a set of edges T such that T ∩
E= ∅ and the graph H = (V,E ∪ T) is triangu-
lated. We denote the set of all triangulations of
a graph G for T (G). For example, in Figure 1,
the graph on the left is not triangulated because
there exists a cycle {B,C,D,E} of length four in
which a chord does not exist. The graph on the

Figure 2: Search tree for exploring all elimination or-
ders of the graph.

right is triangulated because the edges {{C,D}}
is a triangulation T for the graph on the left.

The elimination of a vertex v ∈ V of G =
(V,E) is the process of removing v from G and
making nb(v,G) a complete set. This process
induces a partially triangulated graph H = (V,
E∪F), where F is the set of fill-in edges. If F =
∅, then v is a simplicial vertex. An elimination
order π = {v1, v2, . . . , vn} is a permutation of
vertices specifying an ordering for eliminating
all vertices V of G. A prefix τ of an elimination
order π is a sequence of vertices that occurs at
the beginning of π. If all vertices are eliminated
in G according to an elimination order π, then
the union of all the fill-in edges induces a trian-
gulation T of G. Consequently, each triangula-
tion T of G corresponds to at least one elimina-
tion order. We can explore the space T (G) by
investigating all possible elimination orders.

The table size of a clique C is given as ts(C)
=

∏
(v∈C) |sp(v)|, where sp(v) denotes the state

space of the variable corresponding to v in the
Bayesian network. Finally, the TTS of a graph
H is given as tts(H) =

∑
C∈C(H) ts(C).

3 Previous works

3.1 Depth-first branch and bound
algorithm for triangulation

To find the optimal triangulation, we investi-
gate all possible elimination orders. Branch and
bound is a general efficient algorithm for find-

Figure 3: Example of the vertex elimination and par-
tially triangulated graphs induced by an elimination or-
der that starts with sequence {A,B}. Left: Initial graph.
Middle left: Partially triangulated graphs correspond to
elimination order prefix {A}. Middle right: Partially tri-
angulated graphs correspond to elimination order prefix
{A,B}. Right: Final triangulated graph.

ing the optimal solution of a triangulation prob-
lem. To employ this algorithm, we must branch
a search tree and compute a lower bound for
each node.

First, we generate the search tree as follows.
Each node corresponds to an elimination order
prefix τ . Each edge corresponds to a partic-
ular vertex being eliminated. Herein, we use
the term ”node” exclusively for a point in the
search tree, and the term ”vertex” exclusively
for a point in the graph being triangulated.
The exploration begins with root node r on the
search tree, which corresponds to no vertex hav-
ing been eliminated from G. The goal nodes cor-
responding to all vertices have been eliminated.
Figure 2 depicts an example of a search tree.

To compute a lower bound for each node in
the search tree, we must calculate the following
with each node t:

• t.H = (V,E∪F): Original graph with all fill-
in edges F accumulated according to the
elimination order prefix t.τ .

• t.R: Remaining vertices V\W, where W are
the all vertices of τ .

• t.C: A set of cliques for H.

• t.tts: Total table size for the graph H,
which is a lower bound for node t.

To compute t.tts, we must calculate all the
cliques t.C. For this purpose, we can use a stan-
dard algorithm such as the well-known Bron–
Kerbosch algorithm (BK algorithm) (Cazals
and Karande, 2008). The following example

shows how we explore the leftmost path in Fig-
ure 2.

Example 1. Figure 3 depicts the vertex elimi-
nation process according to the leftmost path in
Figure 2. The path follows the elimination or-
der prefix {A,B}. The root node r corresponds
to the graph on the left (initial graph), where
no vertex has been eliminated. We can compute
r.C = {{A,B,C},{B,D},{D,E},{C,E}} using the
BK algorithm. The TTS (assuming binary vari-
ables) is 3· 22+23 = 20, which is a lower estimate
of the TTS of the triangulated graph (Ottosen
and Vomlel, 2010b).

The successor node t of r (corresponding to
the elimination of vertex A) corresponds to the
graph on the middle-left. The graph is the same
as the initial one, so we can derive tts=20.

Then we explore successor note t’ of t (corre-
sponding to the elimination of vertex B). There-
fore, the relevant graph corresponds to middle-
right including the fill-in edge {C, D}. This pro-
cess continues until the graph is triangulated.
Finally, the cliques of the triangulated graph
are C = {{A,B,C},{B,C,D},{C,D,E}}, and their
TTS is 3· 23 = 24.

We explained the search tree and how to com-
pute a lower bound for each node. The branch
and bound algorithm for optimal triangulation
can be implemented in O(|V|) space and O(|V|!)
time.

Ottosen and Vomlel (2010b) improved the
naive branch and bound algorithm by adding
the following pruning rules: (1) Graph re-
duction techniques called the simplicial vertex
rule (Bodlaender et al., 2005), and (2) prun-
ing based on a coalescing map, by using the
fact that the remaining graph H[V\W] is the
same irrespective of the order the vertices in
W have been eliminated(Dow and Korf, 2007).
Although the Branch and Bound theoretically
runs in O(|V|!), it merely hits the upper bound.
Ottosen and Vomlel (2010b) pointed out that
their Branch and Bound with coalescing of
nodes actually runs in O(2|V |) time.

Algorithm 1 shows Ottosen’s algorithm. The
algorithm operates as follows: We initialize the
best solution with the minimum fill-in heuris-

Algorithm 1 Depth-first search with coalesc-
ing and upper-bound pruning.

1: function TriangulationByDFS(G)
2: Let s =(G,C(G),tts(G),V)
3: EliminateSimplicial(s)
4: if |V(s.R)|=0 then
5: return s
6: Let best=MinFill(s) � upper bound
7: map = ∅ � Coalescing map
8: ExpandNode(s,best,map) return best

9: procedure ExpandNode(n,&best,&map)
10: for all v ∈ V(n.R) do
11: Let m = Copy(n)
12: EliminateVertex(m,v)
13: EliminateSimplicial(m)
14: if |V(m.R)|=0 then
15: if m.tts<best.tts then
16: Set best = m
17: else
18: if m.tts≥best.tts then
19: continue
20: if map[m.R].tts≤m.tts then
21: continue
22: Set map[m.R] = m
23: ExpandNode(m,best,map)

Figure 4: Example of the upper bound pruning. The
number in circle is TTS of node. We first generate a sub-
optimal solution according to the minimum fill-in heuris-
tic, which is the elimination order beginning from A,B
then use this upper bound 24 to prune the other nodes of
which TTSs are more than or equal to this upper bound.

tic, set best.tts as the upper bound, and then
start a branch and bound algorithm to seek a

Algorithm 2 maintenance of cliques by local
search

1: procedure Update(G,&C,tts,F)
2: set G’=(V,E∪F)
3: Let U = V(F)
4: for all C ∈ C(G) do
5: if C ∩ U �= ∅ then
6: Set tts = tts -ts(C)
7: Set C = C \C
8: let Cnew = FindCliques(G[fa(U,G’)])
9: for all C ∈ Cnew do

10: if C ∩ U �= ∅ then
11: Set tts = tts + ts(C)
12: Set C = C ∪ C

better solution. When we find a node of which
the lower bound of TTS is greater than best.tts,
we prune the node. Figure 4 describes an ex-
ample of the pruning procedure. If we find a
better ordering, we update the best solution.
The procedure EliminateVertex (·) simply elim-
inates a vertex from the remaining graph R and
updates the cliques and TTS of the partially
triangulated graph. The procedure EliminateS-
implicial (·) removes all simplicial vertices from
the remaining graph.

3.2 Dynamic clique maintenance

To compute t.C for each node t, we can
use a standard algorithm like the BK algo-
rithm, which compute all cliques of a graph.
Ottosen and Vomlel (2010b) pointed out that
recomputing all cliques is unnecessary and pro-
posed the following dynamic clique maintenance
algorithm.

The general idea behind the algorithm is sim-
ple. Instead of searching for all cliques in the
whole graph, simply run a clique enumeration
algorithm on a smaller subgraph where all the
new cliques appear and existing cliques disap-
pear. This dynamic clique maintenance method
is presented in Algorithm 2. As a side benefit,
it also updates the TTS and the current graph.
Algorithm 2 is derived based on the following
theorem:

Theorem 1 (Ottosen and Vomlel,2010a). Let
G = (V,E) be an undirected graph, and let G’

Algorithm 3 Clique maintenance with reduced
search.

1: procedure Update(G,&C,tts,F,W)
2: set G’=(V,E ∪ F)
3: Let U = V(F)
4: for all C ∈ C(G) do
5: if C ∩ U �= ∅ then
6: if C ∩ W = ∅ then
7: Set tts = tts -ts(C)
8: Set C = C \C
9: let Cnew = FindCliques(G[fa(U,G’)\W])

10: for all C ∈ Cnew do
11: if C ∩ U �= ∅ then
12: Set tts = tts + ts(C)
13: Set C = C ∪ C

= (V,E ∪ F) be the graph resulting from adding
a set of new edges F to G. Let U = V(F). The
C(G’) can be found by removing the cliques from
C(G) that intersect with U and adding cliques of
G’[fa(U,G’)] that intersect with U.

Example 2. Consider the middle-right graph
in Figure 3. We update the graph G = (V,E)
on the middle-left with the set of fill-in edges
F ={{C,D}}(line 2 in Algorithm 2). The set U
= {C,D} and fa(U,G’) = {A,B,C,D,E}. We it-
erate through the existing cliques and remove
those that intersect with U (lines 4–7), and
then add all the cliques found in the subgraph
G’[fa(U,G’)] (lines 8–12) but which also inter-
sect with U. We can observe that RC(G,G’)
∪ {A,B,C} are removed and that NC(G,G’) ∪
{A,B,C} are added. The clique {A,B,C} is re-
moved and added again using this algorithm.

The example shows that the algorithm some-
times removes and adds the same cliques again.
Although Ottosen’s approach reduces the search
range of the expensive enumeration algorithm
FindCliques(·) to a small subgraph, the method
might have a potential performance problem
such as duplicated cliques becoming very nu-
merous. In the next section, we present a new
algorithm that avoids this duplicated search.

4 Extended clique maintenance
algorithm

In this section, we describe improvements of the
clique maintenance algorithm that were made
to perform clique enumeration algorithm on
a smaller subgraph G[fa(U,G)\W] than that
of Ottosen and Vomlel (2010a). The clique
enumeration algorithm is exponential with |V|.
Therefore, this reduction of the search range is
important. The proposed algorithm is described
in Algorithm 3, where W is the set of vertices
that have been eliminated.

The following example explains the algo-
rithm:

Example 3. Consider again the middle-right
graph in Figure 3. In our algorithm, the search
range is limited to fa(U,G)\W = {B,C,D,E}.
In this example, we only add cliques NC(G,G’)
and remove cliques RC(G,G’).

Xiang and Lee (2006) describes a set of ver-
tices called a crux which is central to their
method for learning network structure. The al-
gorithm described above may also be used to
efficiently calculate the crux.

The correctness of this algorithm can be
derived from the result below. Lemma 1
proves that our algorithm adds all new cliques
NC(G,G’). Lemma 2 proves that our algorithm
removes all new cliques RC(G,G’). Theorem 2
proves that our algorithm correctly updates the
cliques for new graph.

Lemma 1. Let G, G’, F, and U be given as
presented in Theorem 1. W are the vertices that
have been eliminated. If C∈NC(G,G’), then C⊆
fa(U,G’)\W.

Proof. Let C be a new clique, it must include at
least a new edge, i.e. C includes a vertex v ∈U.
Because C is complete, all vertices w∈C\U must
be connected to the vertex v, i.e. C⊆ fa(U,G’).

Presuming that C∈ C(G’), which intersects
with W, it must include a new edge, all vertices
u∈W have been made simplicial by vertex elim-
ination, which is a contradiction. Therefore, a
new clique C⊆fa(U,G’)\W.

Lemma 2. Let G, G’, F, U, and W be given as

in Lemma 1. If C∈ RC(G,G’), then C intersects
with U and disjoints with W.

Proof. Let C ∈ RC(G,G′). Assuming that C
∩ U = ∅, then for each v ∈ nb(C,G), C �
nb(v,G’)(otherwise C can not be a clique in G).
Therefore, C is still a clique in G’, which is a
contradiction.

Let C∈ RC(G,G’). Under assumption C∩W �=
∅, for each w ∈C∩W, no v ∈nb(C,G’) exists such
that nb(v,G’) includes w. Therefore, C is still
a clique in G’, which is a contradiction. There-
fore, all remove clique C intersects with U and
disjoint with W.

Theorem 2. Let G, G’, F, U, and W be given
as presented in Lemma 1. The C(G’) can be
found by removing the cliques from C(G) that
intersects with U and disjoints with W, and then
by adding cliques of G’[fa(U,G’)\W] that inter-
sect with U.

Proof. (1) We first show that all cliques in
NC(G,G’) are added. From lemma 1, the sub-
graph G’[fa(U,G’)\W] includes all cliques in
NC(G,G’). Furthermore, any new clique C must
intersect with U (otherwise it could not include
a new edge). Therefore, we add all cliques in
NC(G,G’).

(2) We show that all cliques in RC(G,G’) are
removed. From lemma 2, if C ∈ RC(G,G’), then
C ∩ W = ∅ and C ∩ U �= ∅. Therefore, we
remove all potential cliques in RC(G,G’).

(3) We consider that we can also remove a
clique C ∈ C(G’) ∩ RC(G). Because C inter-
sects with U and disjoints with W, then C ⊆
fa(U,G’)\W, and C will be added again when
we add cliques from G’[fa(U,G’)\W] that inter-
sects with U.

5 Search graph reduction

In this section, we exploit the following theorem
to reduce the search tree:

Theorem 3. (Dirac, 1961) A triangulated
graph with at least two nodes has at least two
simplicial nodes.

Theorem 3 is applicable directly to depth-first
search, as shown in algorithm 4.

Algorithm 4 Depth-first search with pruning.

1: Insert lines 1–8 of Algorithm 1
2: procedure ExpandNode(n,&best,&map)
3: Let u = SelectOneVertex(n.R)
4: for all v ∈ V(n.R)\u do
5: Let m = Copy(n)
6: EliminateVertex(m,v)
7: EliminateSimplicial(m)
8: Insert lines 14–23 of Algorithm 1

Table 1: Results for random Bayesian networks.

vertices proposed Ottosen’s
(second) (second)

30 5.62 12.08
35 20.77 33.82
40 46.39 97.3
45 85.37 187.29
50 220.08 418.68
55 1256.17 2158.18
60 36324 None

Recalling that a node represents an elimi-
nation order prefix, then for an arbitrary ver-
tex u which is to be eliminated next, according
to Theorem 3, we can prune the correspond-
ing node (line 4 in Algorithm 4). This prun-
ing based on the fact: For any elimination or-
der prefix τ={ v1, v2, . . . , vi−1, t}, there exists
another τ ’={ v1, v2, . . . , vi−1, t’} (t’ �=t) can en-
gender the same triangulation. As a result, the
search tree size can be reduced from |V|! to
|V-1|!. As Ottosen and Vomlel (2010b) pointed
out, the Branch and Bound with coalescing of
nodes actually runs in O(2|V |) time. Therefore,
the actual runtime in this study is improved
from O(2|V |) to O(2|V−1|).

6 Experiments

In this section, we present experimental results
obtained from running our algorithm on random
Bayesian networks (Ide and Cozman, 2002) and
on benchmark graphs from the Bayesian net-
work repository. For comparison, we also solve
each triangulation problem using Ottosen’s al-
gorithm. The algorithms were implemented us-
ing Java. All experiments were conducted on a
Xeon-5675 3.0 GHz processor (Intel Corp.) with
12 GB of RAM.

Table 2: Results for Bayesian networks from the repos-
itory.

BN vertices proposed Ottosen’s
(second) (second)

Insurance 27 4.201 6.872
Water 32 21.696 65.682

Mildew 35 19.915 67.433
Alarm 37 0.006 0.012

Hailfinder 56 21.871 70.004
HEPAR2 70 0.054 0.115

WIN95PTS 76 158.259 299.181

All graphs that are described in Table 1 were
generated using the BNGenerator system im-
plemented by Ide and Cozman (2002). We gen-
erated 10 random graphs respectively for 30,
35, 40, 45, 50, 55 and 60 vertices. Each value
in Table 1 shows the average time for the 10
graphs given the number of vertices, where
“None”　 indicates that the algorithm obtained
no solution in 24 hours. Additionally, we used
seven well-known graphs in the Bayesian net-
work repository. The results are presented in
Table 2. The experiment results show that our
algorithm is about 2 or 3 times faster than Ot-
tosen et al.’s algorithm. The results also show
that our algorithm can obtain the solution when
|V| = 60 and the Ottosen et al.’s algorithm can
not obtain it in 24 hours.

Figure 5 shows the log–log plot of running
time of proposed algorithm and that of Ot-
tosen’s algorithm for all random and repository
networks, on which the x-axis is the our run-
ning time for triangulation, and the y-axis is
Ottosen’s running time. The values above the
line indicate that our proposed method is supe-
rior to Ottosen’s method. From Figure 5, our
proposed algorithm is shown to be constantly
faster than Ottosen’s approach for both random
Bayesian networks and repository networks.

7 Conclusions

The existing state-of-the-art algorithms for op-
timal triangulation are depth-first search and
best-first search. Ottosen and Vomlel (2010b)
pointed out that depth-first search is better
than best-first search and proposed a depth-
first search algorithm of which the complexity
is O(β · |V|!), where β is the per-node overhead

Figure 5: Comparison of the running times of Ottosen’s
method and the proposed method. X-axis shows results
obtained using our method; the y-axis shows those ob-
tained using Ottosen’s method. Values above the line
indicate that our method is faster.

computation. We developed a new algorithm
for the optimal triangulation of a Bayesian net-
work. The proposed algorithm improves the
computational complexity of the Ottosen’s al-
gorithm in two ways.

For reduction of the computational cost β
per node (section 4), we developed a new algo-
rithm for maintaining the cliques of a dynamic
graph. The new method is superior to Ottosen’s
method because it searches cliques on a smaller
local graph than Ottosen’s method does. This
improves the computation cost from β to γ,
where γ is strictly smaller than β.

For search tree shrinkage (section 5), we re-
duced the size of search tree from |V|! to (|V|-1)!
using Dirac’s theorem.

The complexity of our proposed triangulation
algorithm is O(γ · (|V|-1)!). Some numerical
experiments demonstrated that the proposed
method improves the traditional method.

For the future work, we will investigate other
implementations of search graph reduction, e.g.
the way proposed in (Bodlaender et al., 2006)
may improve our algorithm in running time.

References

H. L. Bodlaender, A. M.C.A. Koster, and F. V. D.
Eijkhof. 2005. Preprocessing rules for triangu-

lation of probabilistic networks. Computational
Intelligence, 21(3):286–305.

H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster,
D. Kratsch, and D. M. Thilikos. 2006. On exact
algorithms for treewidth. In Proceedings of the
14th conference on Annual European Symposium,
volume 14, pages 672–683.

F. Cazals and C. Karande. 2008. A note on the
problem of reporting maximal cliques. Theoretical
Computer Science, 407:564 – 568.

A. Darwiche. 2009. Modeling and reasoning with
Bayesian networks. Cambridge University Press.

G. A. Dirac. 1961. On rigid circuit graphs. Ab-
handlungen aus dem Mathematischen Seminar
der Universitat Hamburg, 25:71–76.

P. A. Dow and R. E. Korf. 2007. Best-first search
for treewidth. In Proceedings of the 22nd National
Conference on Artificial Intelligence, volume 2,
pages 1146–1151. AAAI Press.

V. Gogate and R. Dechter. 2004. A complete any-
time algorithm for treewidth. In Proceedings of
the 20th Conference on Uncertainty in Artificial
Intelligence, pages 201–208, Arlington, Virginia,
United States. AUAI Press.

J. S. Ide and F. G. Cozman. 2002. Random gen-
eration of bayesian networks. In Proceedings of
the 16th Brazilian Symposium on Artificial Intel-
ligence: Advances in Artificial Intelligence, pages
366–375.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen.
1990. Bayesian updating in causal probabilistic
networks by local computations. Computational
Statistics Quarterly, 4:269–282.

T. J. Ottosen and J. Vomlel. 2010a. Honour
thy neighbour—clique maintenance in dynamic
graphs. In Proceedings of the Fifth European
Workshop on Probabilistic Graphical Models, vol-
ume 2010-2. HIIT Publications.

T. J. Ottosen and J. Vomlel. 2010b. All roads lead
to rome—new search methods for optimal trian-
gulation. In Proceedings of the Fifth European
Workshop on Probabilistic Graphical Models, vol-
ume 2010-2. HIIT Publications.

W. Wen. 1990. Optimal decomposition of belief net-
works. In Proceedings of the Sixth Conference An-
nual Conference on Uncertainty in Artificial In-
telligence (UAI-90), pages 245–256.

Y. Xiang and J. Lee. 2006. Learning decomposable
markov networks in pseudo-independent domains
with local evaluation. Machine Learning, 65:199–
227.

