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Abstract

In various assessment contexts including entrance examinations, educational

assessments, and personnel appraisal, performance assessment by raters has attracted 

much attention to measure higher order abilities of examinees. However, a persistent 

difficulty is that the ability measurement accuracy depends strongly on rater and 

task characteristics. To resolve this shortcoming, various item response theory (IRT) 

models that incorporate rater and task characteristic parameters have been proposed. 

However, because various models with different rater and task parameters exist, it is 

difficult to understand each model’s features. Therefore, this study presents empirical 

comparisons of IRT models. Specifically, after reviewing and summarizing features 

of existing models, we compare their performance through simulation and actual 

data experiments.

Keywords: Psychology, Information science

1. Introduction

The need to measure practical and higher order abilities such as problem solving, 

critical reasoning, and creative thinking skills has recently increased in various 

assessment contexts (Bernardin et al., 2016; Kassim, 2011; Muraki et al., 2000; 

Myford and Wolfe, 2003; Uto and Ueno, 2016). To measure such abilities,

performance assessment by raters, which evaluates examinees’ outcomes or

processes for performance tasks, has attracted much attention (Muraki et al., 2000; 
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Palm, 2008; Wren, 2009). Performance assessment has been used in various formats 

such as essay writing tests, speaking tests, interview examinations, and group 

discussion tests.

However, difficulty persists that the ability measurement accuracy depends strongly 

on rater and task characteristics (Bernardin et al., 2016; Eckes, 2005; Kassim, 2011; 

Myford and Wolfe, 2003, 2004; Nguyen et al., 2015; Saal et al., 1980; Shah et 

al., 2014; Suen, 2014). Some rater and task characteristics on which the accuracy 

generally depends are rater severity, consistency, range restriction, task difficulty, 

and discrimination. Therefore, improving measurement accuracy requires ability 

estimation considering effects of those characteristics (Muraki et al., 2000; Suen, 

2014; Uto and Ueno, 2016).

For this reason, many item response theory (IRT) models that incorporate rater and 

task characteristic parameters have been proposed (Linacre, 1989; Patz and Junker, 

1999; Patz et al., 1999; Ueno and Okamoto, 2008; Uto and Ueno, 2016). These 

models can estimate the abilities of examinees considering these characteristics. 

Therefore, they are known to provide more accurate ability measurement than 

average or total scores do (Eckes, 2015; Ueno and Okamoto, 2008; Uto and Ueno, 

2016). However, understanding the features and performance of each model is 

difficult because existing models incorporate different rater and task characteristic 

parameters. Although many applications use a specific model to measure examinee 

ability or to analyze rater and task characteristics from actual performance

assessment data (e.g., Eckes, 2005, 2015; Kassim, 2011; Myford and Wolfe, 2004; 

Patz and Junker, 1999; Patz et al., 1999; Rahman et al., 2017; Ueno and Okamoto, 

2008), no report of the relevant literature describes a study that has compared the 

features and performance of existing models.

For that reason, this study presents empirical comparisons of IRT models that 

incorporate rater and task parameters. Specifically, we first review and summarize 

the features of existing models. Then we compare their performance through 

simulation and actual data experiments. To clarify the features and performance 

of those models, the comparisons are conducted while changing the following 

conditions: 1) the numbers of examinees, tasks, and raters, 2) the characteristics 

of raters and tasks (specifically, rater severity, consistency, range restriction, task 

difficulty, and discrimination).

It is noteworthy that Uto and Ueno (2016) conducted a model comparison to 

demonstrate the effectiveness of their proposed model, assuming peer assessment 

situations in which examinees do mutual assessment. The study demonstrated that 

their model provides higher ability measurement accuracy than the other models 

when raters and examinees become numerous. However, in general performance 

assessment situations, the raters are far fewer than the examinees. The study did 
on.2018.e00622
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not evaluate the models in such situations. Additionally, the study ignored the 

effects of task quantity, and ignored how each rater and task characteristic affect 

model performance. Our study compared features and performance of existing 

models considering the effects of various rater and task characteristics with changing 

assessment settings, such as the number of raters, examinees and tasks. Therefore, 

our study is sufficiently different from earlier ones by Uto and Ueno (2016). The 

results of our study are expected to be helpful in elucidating features of existing 

models and in choosing a model that provides better performance in an actual 

assessment situation.

2. Design

2.1. Performance assessment data

We assume that performance assessment data 𝑼 consist of a rating 𝑥𝑖𝑗𝑟 given by rater 

𝑟 ∈  = {1, … , 𝑅} to an outcome of examinee 𝑗 ∈  = {1, … , 𝐽} for performance 

task 𝑖 ∈  = {1, … , 𝐼}. That is, the data 𝑼 are defined as equation (1).

𝑼 = {𝑥𝑖𝑗𝑟 ∣ 𝑖 ∈ , 𝑗 ∈  , 𝑟 ∈ }. (1)

If a rating has been given, then 𝑥𝑖𝑗𝑟 = 𝑘 for some rating category 𝑘 ∈ {1, … , 𝐾}
and 𝑥𝑖𝑗𝑟 = −1 represents missing data. Consequently, 𝑥𝑖𝑗𝑟 ∈  = {−1, 1, … , 𝐾}.

The aim of this study is to measure the ability of examinees accurately from the 

rating data.

2.2. Task and rater biases in performance assessment

As described in Section 1, ability measurement accuracy is known to depend on rater 

and task characteristics (Bernardin et al., 2016; Eckes, 2005; Kassim, 2011; Myford 

and Wolfe, 2003, 2004; Nguyen et al., 2015; Saal et al., 1980; Shah et al., 2014; 

Suen, 2014).

Common rater characteristics on which the accuracy generally depends are the 

following:

1. Severity: The tendency to give consistently lower ratings than are justified by the 

outcomes (Kassim, 2011).

2. Consistency: The extent to which the rater assigns similar ratings to outcomes 

of similar quality (Kassim, 2011).

3. Restriction of range: The tendency to overuse a few restricted rating categories 

(Kassim, 2011; Myford and Wolfe, 2003; Saal et al., 1980).
on.2018.e00622
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Furthermore, typical task characteristics on which the accuracy depends are

presented below.

1. Difficulty: More difficult tasks tend to engender consistently lower ratings.

2. Discrimination: The extent to which different levels of the ability to be measured 

are reflected in the quality of outcomes in the task.

To measure examinees’ ability reflecting these rater and task characteristics, many 

item response theory (IRT) (Lord, 1980) models that incorporate parameters 

representing those characteristics have been proposed. Before reviewing the models, 

the following section describes the traditional IRT models that are the fundamental 

basis for those IRT models.

3. Theory

3.1. Item response theory

IRT, a test theory based on probabilistic models, defines the response probability 

of an examinee to a test item as a function of the latent ability of the examinee 

and item characteristics. IRT enables estimation of examinee ability considering 

characteristics of test items (e.g., difficulty and discrimination). Therefore, IRT 

generally realizes more accurate ability measurement than average or total scores 

do. Another advantage of IRT is that the abilities of examinees who took different 

test items can be estimated on the same scale. Based on those advantages, IRT has 

been used in various testing situations (e.g., Carlson and von Davier, 2013; de Ayala, 

2009; Information Technology Promotion Agency, 2017; Reise and Revicki, 2014).

The following subsections describe the two IRT models used as basis models in this 

study: the Graded Response Model (GRM) (Samejima, 1969) and the Generalized 

Partial Credit Model (GPCM) (Muraki, 1997).

3.2. Graded response model

The GRM gives the probability that examinee 𝑗 obtains category 𝑘 in item 𝑖 as 

equations (2) and (3).

𝑃𝑖𝑗𝑘 = 𝑃 ∗
𝑖𝑗(𝑘−1) − 𝑃

∗
𝑖𝑗𝑘
, (2)

where

⎧⎪⎪⎨⎪⎪⎩

𝑃 ∗
𝑖𝑗0 = 1

𝑃 ∗
𝑖𝑗𝑘

=
[
1 + exp (−𝛼𝑖(𝜃𝑗 − 𝑏𝑖𝑘))

]−1
, 1 < 𝑘 < 𝐾 − 1

𝑃 ∗
𝑖𝑗𝐾

= 0.

(3)
on.2018.e00622
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In those equations, 𝜃𝑗 represents the ability of examinee 𝑗, 𝛼𝑖 is the discrimination 

parameter of item 𝑖, and 𝑏𝑖𝑘 is a difficulty parameter that denotes the upper grade 

threshold parameter for category 𝑘 of item 𝑖. Here, the order of the difficulty 

parameters is 𝑏𝑖1 < 𝑏𝑖2 < ⋯ < 𝑏𝑖(𝐾−1).

3.3. Generalized partial credit model

The GPCM gives the probability 𝑃𝑖𝑗𝑘 as equation (4).

𝑃𝑖𝑗𝑘 =
exp

∑𝑘

𝑚=1
[
𝛼𝑖(𝜃𝑗 − 𝛽𝑖𝑚)

]
∑𝐾

𝑙=1 exp
∑𝑙

𝑚=1
[
𝛼𝑖(𝜃𝑗 − 𝛽𝑖𝑚)

]
,

(4)

where 𝛽𝑖𝑘 is a step difficulty parameter that denotes the difficulty of transition 

between category 𝑘 − 1 and category 𝑘 for item 𝑖. Here, the problem of model 

non-identifiability arises in this model. In a non-identifiable model, values of the 

parameters cannot be uniquely determined because different sets of the values 

provide the same response probability (San Martín et al., 2015; van der Linden, 

2016a). The non-identifiability is generally eliminated by fixing some parameter 

values or by fixing a mean over a parameter set (e.g., Muraki, 1992; Uto and Ueno, 

2016; van der Linden, 2016a). In this model, 𝛽𝑖1 = 0 for each 𝑖 is given for model 

identification.

The GPCM is often described by decomposing the step difficulty parameter 𝛽𝑖𝑘 into 

𝛽𝑖 + 𝑑𝑖𝑘 as equation (5).

𝑃𝑖𝑗𝑘 =
exp

∑𝑘

𝑚=1
[
𝛼𝑖(𝜃𝑗 − 𝛽𝑖 − 𝑑𝑖𝑚)

]
∑𝐾

𝑙=1 exp
∑𝑙

𝑚=1
[
𝛼𝑖(𝜃𝑗 − 𝛽𝑖 − 𝑑𝑖𝑚)

]
,

(5)

where 𝛽𝑖 is a positional parameter reflecting the overall difficulty of item 𝑖 and 𝑑𝑖𝑘
is a threshold parameter denoting the difficulty of transition between category 𝑘 −1
and category 𝑘 for item 𝑖. Here, 𝑑𝑖1 = 0 and 

∑𝐾

𝑘=2 𝑑𝑖𝑘 = 0 for each 𝑖 are given for 

model identification.

The GPCM has many sub-models. Specifically, the partial credit model (PCM) 

(Masters, 1982) is a special case of GPCM when 𝛼𝑖 = 1.0 for all items. The 

rating scale model (RSM) (Andrich, 1978) is a special case of the PCM when 𝛽𝑖𝑘 is 

decomposed to 𝛽𝑖 + 𝑑𝑘. Here, 𝑑𝑘 is a category parameter representing the difficulty 

of transition between category 𝑘 − 1 and category 𝑘.

3.4. Interpretation of item parameters in polytomous IRT 

models

This subsection presents a detailed explanation of the item characteristic parameters 

incorporated in the polytomous IRT models. The following explanations are based on 
on.2018.e00622
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Figure 1. Item response curves of the generalized partial credit model for five categories.

the equation (5) form of the GPCM, which has the most numerous item parameters 

of all the models described above.

Figure 1 depicts the item response curves (IRCs) of the GPCM for three items with 

different item parameters. Here, we used parameters 𝛼𝑖 = 1.5, 𝛽𝑖 = 0.0, 𝑑𝑖2 = −2.5, 

𝑑𝑖3 = 0.5, 𝑑𝑖4 = 0.8, and 𝑑𝑖5 = 1.2 for Item 1 (upper-left panel); 𝛼𝑖 = 1.5, 𝛽𝑖 =
1.5, 𝑑𝑖2 = −2.5, 𝑑𝑖3 = 0.5, 𝑑𝑖4 = 0.8, and 𝑑𝑖5 = 1.2 for Item 2 (upper-right panel); 

and 𝛼𝑖 = 0.5, 𝛽𝑖 = 0.0, 𝑑𝑖2 = −2.5, 𝑑𝑖3 = 0.5, 𝑑𝑖4 = 0.0, and 𝑑𝑖5 = 2.0 for Item 3
(lower panel). The horizontal axis shows the latent ability 𝜃. The vertical axis shows 

probability 𝑃𝑖𝑗𝑘.

Figure 1 shows that examinees with lower (higher) ability tend to obtain scores in 

lower (higher) categories.

The difficulty parameter 𝛽𝑖 controls the location of the IRC. As the value of this 

parameter increases, the IRC shifts to the right. One can compare the IRCs for Item 2
with those for Item 1. It denotes that obtaining higher categories is more difficult in 

items with higher difficulty parameter values.

The item discrimination parameter 𝛼𝑖 controls differences in response probabilities 

among the categories. The lower the item discrimination is, the smaller the difference 

is, as shown by the IRCs for Item 3 in Figure 1. Those trends imply that, in a lower 
on.2018.e00622
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discrimination item, the randomness of categories given to a specific examinee is 

increased. Low discrimination items generally engender low ability measurement 

accuracy because the observed data do not necessarily correlate with true ability.

Parameter 𝑑𝑖𝑘 represents the location on the 𝜃 scale at which the adjacent categories, 

𝑘 and 𝑘 − 1, are equally likely to be observed (Eckes, 2015; Sung and Kang, 2006). 

Therefore, when the difference of 𝑑𝑖(𝑘+1) − 𝑑𝑖𝑘 increase, the probability of obtaining 

category 𝑘 increases over widely various ability scales. In Figure 1, 𝑑𝑖3 −𝑑𝑖2 is large 

for Item 1 and Item 2. Therefore, the response probability for category 2 had a high 

value.

3.5. Assumption of IRT

IRT generally requires two major assumptions: Unidimensionality and local

independence (e.g., Nering and Ostini, 2010; Reise and Revicki, 2014; van der 

Linden, 2016a). The assumption of unidimensionality is that one latent ability is 

measured in a test. The local independence assumption implies responses given 

to different items are mutually independent given the ability. Therefore, the joint 

probability of responses to multiple items is equal to the product of the response 

probability to each item conditioning on the ability.

Another assumption of IRT is that all bias factors affecting item responses are 

incorporated into the model. This assumption is necessary to represent the response 

probability for given data precisely (de Ayala, 2009). However, the increase of 

the parameter number requires more data to estimate the parameters and ability 

accurately (e.g., Reise and Revicki, 2014; Uto and Ueno, 2016; Waller, 1981). 

Therefore, we should practically select a model that represents bias factors as 

precisely as possible using the fewest parameters.

4. Model

4.1. IRT models that incorporate rater parameters

The IRT models introduced above are applied to two-way data that consist of 

examinees and test items. However, as described in Subsection 2.1, performance 

assessment data are three-way data consisting of examinees, tasks, and raters. 

Therefore, they are not directly applicable to performance assessment. To resolve 

that difficulty, many IRT models that incorporate rater characteristic parameters have 

been proposed (e.g., Linacre, 1989; Patz and Junker, 1999; Patz et al., 1999; Ueno 

and Okamoto, 2008; Uto and Ueno, 2016). In the models, the item characteristic 

parameters are regarded as task characteristic parameters. The following subsections 

describe these models. It is noteworthy that the following IRT models also assume 
on.2018.e00622
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unidimensionality and local independence, as explained in the previous subsection 

(Eckes, 2015; Esfandiari et al., 2013; Ilhan, 2016).

4.2. Many-faceted Rasch model

The many-faceted Rasch model (MFRM) (Linacre, 1989) is a traditional IRT model 

that incorporates rater and task parameters. Although several MFRM variations are 

known to exist (Eckes, 2015; Myford and Wolfe, 2003, 2004), the most common 

formation is defined as a PCM that incorporates a rater severity parameter. The 

MFRM provides the probability that rater 𝑟 responds with category 𝑘 to examinee 

𝑗’s outcome for task 𝑖 as equation (6).

𝑃𝑖𝑗𝑟𝑘 =
exp

∑𝑘

𝑚=1
[
𝜃𝑗 − 𝛽𝑖 − 𝛽𝑟 − 𝑑𝑚

]
∑𝐾

𝑙=1 exp
∑𝑙

𝑚=1
[
𝜃𝑗 − 𝛽𝑖 − 𝛽𝑟 − 𝑑𝑚

]
,

(6)

where positional parameter 𝛽𝑖 denotes the difficulty of task 𝑖, positional parameter 

𝛽𝑟 denotes the severity of rater 𝑟, and 𝑑𝑘 is a category parameter that represents the 

difficulty of transition between categories 𝑘 − 1 and 𝑘. Here, 𝛽𝑟=1 = 0, 𝑑1 = 0 and ∑𝐾

𝑘=2 𝑑𝑘 = 0 are given for model identification.

A unique MFRM feature is that it is defined by the fewest parameters in existing 

IRT models with task and rater parameters. The accuracy of parameter estimation 

generally increases as the number of parameters per datum decreases (Bishop, 2006; 

Reise and Revicki, 2014; Uto and Ueno, 2016; Waller, 1981). Consequently, MFRM 

can estimate model parameters from a small dataset more accurately than the other 

models can.

By contrast, the MFRM relies on the assumption that all tasks have the same 

discriminatory power, although this assumption is not practically satisfied (DeCarlo, 

2005; Patz and Junker, 1999; Patz et al., 1999; Ueno and Okamoto, 2008; Uto and 

Ueno, 2016). To relax this constraint, extensions of GPCM and GRM, which allow 

the discrimination power to differ among tasks, have been proposed.

4.3. GPCM and GRM extensions that incorporate rater 

parameters

One model proposed by Patz and Junker (1999) is a GPCM that incorporates a rater 

severity parameter. The model provides response probabilities 𝑃𝑖𝑗𝑟𝑘 as equation (7).

𝑃𝑖𝑗𝑟𝑘 =
exp

∑𝑘

𝑚=1
[
𝛼𝑖(𝜃𝑗 − 𝛽𝑖𝑚 − 𝜌𝑖𝑟)

]
∑𝐾

𝑙=1 exp
∑𝑙

𝑚=1
[
𝛼𝑖(𝜃𝑗 − 𝛽𝑖𝑚 − 𝜌𝑖𝑟)

]
,

(7)

where 𝛼𝑖 is a discrimination parameter for task 𝑖, 𝛽𝑖𝑘 is a step difficulty parameter that 

denotes the difficulty of transition between categories 𝑘 − 1 and 𝑘 in task 𝑖, and 𝜌𝑖𝑟
on.2018.e00622
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reflects the severity of rater 𝑟 for task 𝑖. Here, 𝛽𝑖1 = 0 and 𝜌𝑖0 = 0 are given for model 

identification. A unique feature of this model is the incorporation of a different rater 

severity for each task. When the severity of raters is likely to change between tasks, 

the model will fit the data well.

Ueno and Okamoto (2008) proposed a GRM that incorporates rater severity 

parameters. In this model, the response probabilities are given as equations (8)

and (9).

𝑃𝑖𝑗𝑟𝑘 = 𝑃 ∗
𝑖𝑗𝑟(𝑘−1) − 𝑃

∗
𝑖𝑗𝑟𝑘

, (8)

where

⎧⎪⎪⎨⎪⎪⎩

𝑃 ∗
𝑖𝑗𝑟0 = 1,

𝑃 ∗
𝑖𝑗𝑟𝑘

=
[
1 + exp(−𝛼𝑖(𝜃𝑗 − 𝑏𝑖 − 𝜀𝑟𝑘))

]−1
, 1 < 𝑘 < 𝐾 − 1

𝑃 ∗
𝑖𝑗𝑟𝐾

= 0.

(9)

In those expressions, 𝑏𝑖 represents the difficulty of task 𝑖, 𝜀𝑟𝑘 denotes the difficulty 

in obtaining category 𝑘 for rater 𝑟. Here, 𝜀𝑟1 < 𝜀𝑟2 < ⋯ < 𝜀𝑟𝐾−1. Additionally, 

𝜀11 = −1.0 is given for model identification. The model has the unique feature that 

it can represent the range restriction characteristics of raters. The characteristics can 

be represented by 𝜀𝑟𝑘, as explained in Subsection 5.1.

Uto and Ueno (2016) proposed another GRM that incorporates rater parameters. In 

this model, the response probabilities are given as equations (10) and (11).

𝑃𝑖𝑗𝑟𝑘 = 𝑃 ∗
𝑖𝑗𝑟𝑘−1 − 𝑃

∗
𝑖𝑗𝑟𝑘

, (10)

where

⎧⎪⎪⎨⎪⎪⎩

𝑃 ∗
𝑖𝑗𝑟0 = 1,

𝑃 ∗
𝑖𝑗𝑟𝑘

=
[
1 + exp(−𝛼𝑖𝛼𝑟(𝜃𝑗 − 𝑏𝑖𝑘 − 𝜀𝑟))

]−1
, 1 < 𝑘 < 𝐾 − 1

𝑃 ∗
𝑖𝑗𝑟𝐾

= 0.

(11)

In those equations, 𝛼𝑟 reflects the consistency of rater 𝑟, 𝜀𝑟 represents the severity of 

rater 𝑟, and 𝑏𝑖𝑘 denotes the difficulty in obtaining category 𝑘 for task 𝑖 (with 𝑏𝑖1 <

𝑏𝑖2 < ⋯ < 𝑏𝑖𝐾−1). Here, 𝛼𝑟=1 = 1 and 𝜀1 = 0 are assumed for model identification. 

The model has two features: 1) it incorporates a rater consistency parameter; and 

2) the parameters are the second fewest when the number of raters is large. Therefore, 

the model is expected to be suitable when the rater consistency varies and when the 

raters become numerous.

4.4. Hierarchical rater model

The models above are defined as IRT models incorporating the rater characteristic 

parameters directly. As another modeling approach, hierarchical rater models (HRM) 

have been proposed (DeCarlo et al., 2011; Lu and Wang, 2006; Patz et al., 1999). 
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HRMs assume the existence of a latent ideal rating 𝜉𝑖𝑗 for each outcome.

Furthermore, they define the rating process as a two-stage process. Concretely, 

a HRM proposed by Patz et al. (1999) hierarchy connects two rating processes using 

an IRT model and a signal detection model. In the first stage, examinee 𝑗’s outcome 

for task 𝑖 has ideal rating 𝜉𝑖𝑗 is to be obtained from the following PCM.

𝑝(𝜉𝑖𝑗 = 𝑘|𝜃𝑗, 𝛽𝑖,𝒅𝑖) =
exp

∑𝑘

𝑚=1
[
𝜃𝑗 − 𝛽𝑖 − 𝑑𝑖𝑚

]
∑𝐾

𝑙=1 exp
∑𝑙

𝑚=1
[
𝜃𝑗 − 𝛽𝑖 − 𝑑𝑖𝑚

] (12)

Here, 𝑑𝑖1 = 0 and 
∑𝐾

𝑘=2 𝑑𝑖𝑘 = 0 for each 𝑖 are assumed for model identification.

Then, in the second stage, rater 𝑟’s response 𝑥𝑖𝑗𝑟 to examinee 𝑗’s outcome for task 𝑖

is assumed to be obtained from the following signal detection model (Peterson et al., 

1954) given the ideal rating 𝜉𝑖𝑗 as equation (13).

𝑝(𝑥𝑖𝑗𝑟 = 𝑘|𝜉𝑖𝑗) ∝ 𝑒𝑥𝑝

⎧⎪⎨⎪⎩

−
[
𝑘 − (𝜉𝑖𝑗 + 𝜎𝑟)

]2
2𝜓2

𝑟

⎫⎪⎬⎪⎭
, (13)

where 𝜎𝑟 denotes a rater’s severity and the reciprocal of 𝜓2
𝑟

denotes a rater’s 

consistency.

A unique feature of the HRM is its incorporation of an ideal rating for each outcome. 

Another feature is the incorporation of the rater consistency parameter, which has 

been used only in Uto and Ueno (2016).

4.5. Other statistical models

Several statistical models that are applicable to performance assessment data without 

IRT models have also been proposed (e.g., Goldin, 2012; Piech et al., 2013). 

However, those models cannot estimate examinee ability because they have no 

variable representing ability. Therefore, we are not concerned with these non-IRT-

based models.

5. Analysis

As described above, IRT models with various rater and task characteristic parameters 

have been proposed. However, no relevant studies have clarified their features and 

performance, as explained in Section 1.

For that reason, we present empirical comparisons of the IRT models. First, the 

following subsections present summaries of IRT model features. Then we compare 

their performance through simulation experiments. Hereinafter, we designate the 
on.2018.e00622
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Table 1. Task and rater characteristics in each model, and the number of parameters.

Model Task characteristics Rater characteristics Number of parameters

MFRM Difficulty Severity 𝐼 +𝐾 +𝑅 + 𝐽 − 2

Patz1999
Discrimination

Severity for each task 𝐼(𝐾 + 𝑅 − 1) + 𝐽
Difficulty for each category

Ueno2008
Discrimination Severity 2𝐼 + 𝑅(𝐾 − 1) − 1 + 𝐽
Difficulty Range restriction

Uto2016
Discrimination Severity

𝐼𝐾 + 2(𝑅 − 1) + 𝐽
Difficulty for each category Consistency

HRM Difficulty for each category
Severity

𝐼(𝐾 − 1 + 𝐽 ) + 2𝑅 + 𝐽
Consistency

models of (6) as MFRM, (7) as Patz1999, (8) as Ueno2008, (10) as Uto2016, and 

(12) and (13) as HRM.

5.1. Comparison of task and rater characteristics assumed in 

each model

In this section, we explain the rater and task characteristics considered in the IRT 

models. Table 1 summarizes the characteristics presented in each model.

Table 1 shows that all the models can reflect task difficulty and rater severity. 

However, as described in Section 4, each model has the following unique features:

1. MFRM is the simplest model that incorporates only task difficulty and rater 

severity parameters.

2. Patz1999 allows the rater’s severity to differ among tasks.

3. Ueno2008 is the only model that can consider the range restriction characteristic 

of raters. Ueno2008 relies on the assumption, however, that the difficulty of 

obtaining each category is the same over all the tasks, although Patz1999, 

Uto2016, and HRM allow them to be different.

4. Uto2016 and HRM can reflect differences in rater consistency.

To explain how the rater characteristics are represented by each model parameter, the 

IRCs of Patz1999, Ueno2008, and Uto2016 for raters with different characteristics 

are presented in Figure 3.

As described before, all models represent rater severity. Specifically, it is represented 

by 𝛽𝑟 in MFRM, 𝜌𝑖𝑟 in Patz1999, 𝑑𝑟𝑘 in Ueno2008, 𝜖𝑟 in Uto2016, and 𝜎𝑟 in HRM. 

As the parameter values increases, the IRC shifts to the right, which indicates that 

raters tend to assign low scores consistently. This point is presented in Figure 2 for 

the Patz1999 model. Here, we used the lower severity value 𝜌𝑖𝑟 = −1.0 for the left 
on.2018.e00622
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Figure 2. Item response curves of Patz1999 for two raters with different rating severity.

Figure 3. Item response curves of Ueno2008 for two raters with different range restriction characteristics.

panel and the higher value 𝜌𝑖𝑟 = 1.0 for the right panel. Other model parameters were 

the same. Figure 2 shows that the IRC of the severe rater is further right than that 

of the lenient rater. Furthermore, Patz1999 allows a change of rater severity among 

tasks, although the other models incorporate the assumption that the rater severity is 

constant among tasks.

The range restriction characteristic is described only by Ueno2008. In the model, the 

parameter 𝜖𝑟𝑘 represents the characteristic. When 𝜖𝑟𝑘 and 𝜖𝑟(𝑘−1) are brought closer 

together, the probability of responding with category 𝑘 decreases. Conversely, as 

the difference 𝜖𝑟𝑘 − 𝜖𝑟(𝑘−1) increases, the response probability for category 𝑘 also 

increases. Figure 3 depicts the IRCs of the Ueno2008 for two raters with different 

𝜖𝑟𝑘 values. We used 𝜖𝑟1 = −2.5, 𝜖𝑟2 = 0.0, 𝜖𝑟3 = 1.0, and 𝜖𝑟4 = 3.0 for the left 

panel. It has larger values of 𝜖𝑟2 − 𝜖𝑟1 and 𝜖𝑟4 − 𝜖𝑟3. The response probabilities for 

categories 2 and 4 are increased in the IRC. For the right panel, we set 𝜖𝑟1 = −3.0, 

𝜖𝑟2 = −2.0, 𝜖𝑟3 = 0.5, and 𝜖𝑟4 = 2.0. The IRC shows that the response probability 

for category 3 is increased because 𝜖𝑟3 − 𝜖𝑟2 has a larger value. The points presented 

above illustrate that the parameter 𝜖𝑟𝑘 reflects the range restriction characteristic.

Rater consistency is represented in Uto2016 and HRM by 𝛼𝑟 and 1∕𝜓2
𝑟

. The lower 

the rater consistency parameter is, the smaller the differences in the response 

probabilities between the rating categories are. That fact reflects that a rater with 
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Figure 4. Item response curves of Uto2016 for two raters with different rating consistency.

a lower consistency parameter has a stronger tendency to assign different ratings to 

examinees with similar ability levels. Figure 4 presents IRCs of Uto2016 for two 

raters with different consistency levels. Here, the higher consistency value 𝛼𝑟 = 2.0
is assigned to the left panel. The lower value 𝛼𝑟 = 0.8 is assigned to the right panel. 

As a result, in the right IRC, the differences in the response probability among the 

categories are small.

The interpretation of task characteristics is similar to that of the item characteristic 

parameters explained in Subsection 3.4.

From the above, it is apparent that the previous models represent different types of 

rater and task characteristics.

5.2. Comparison of the numbers of parameters

The accuracy of parameter estimation generally decreases as the number of

parameters per datum increases, as explained in Subsection 3.5. As the parameter 

estimation accuracy decreases, the accuracy of ability measurement generally 

declines (Uto and Ueno, 2016). Therefore, the number of parameters in a model 

is an important point for elucidating model features. For that reason, this subsection 

compares the numbers of parameters in the various models.

The last column of Table 1 shows the number of parameters in each model. The result 

shows that the MFRM has the fewest parameters. Therefore, the MFRM is expected 

to give the most accurate parameter estimation. However, as described earlier, the 

MFRM can represent only few rater and task characteristics. Therefore, if complex 

characteristics are assumed to occur in an assessment situation, then the MFRM 

might not fit the rating data.

In the other models, Uto2016 has the fewest parameters for numerous raters, such 

as for 2(𝑅 + 1) > 3𝐼 given 𝐼 ≥ 2 and 𝐾 = 5. Conversely, when the number of 

tasks is greater than the number of raters, specifically, 2(𝑅 +1) < 3𝐼 , Ueno2008 has 
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the fewest parameters. When the number of examinees is larger than the number of 

raters or items, HRM has the largest number of parameters because the number of 

ideal rating parameters 𝜉𝑖𝑗 is increased.

5.3. Comparisons of parameter estimation accuracy

This subsection presents investigation of how the number of parameters affects 

the accuracy of parameter estimation and ability measurement. The number of 

parameters in each model is determined by the number of examinees, raters, and 

tasks, as explained before. Therefore, we evaluate the accuracy of each model with 

changing of their numbers. This experiment is conducted using simulation data to 

evaluate only the effects of the number of parameters, and to obtain data with various 

numbers of examinees, raters, and tasks. The procedures of this experiment are 

described below.

1. True parameters of MFRM, Patz1999, Uto2016, Ueno2008, and HRM were 

generated randomly for the following settings.

(a) 𝐽 = 100, 𝑅 = 10, 𝐼 = 5, 𝐾 = 5
(b) 𝐽 = 100, 𝑅 = 5, 𝐼 = 10, 𝐾 = 5
(c) 𝐽 = 100, 𝑅 = 5, 𝐼 = 5, 𝐾 = 5
(d) 𝐽 = 50, 𝑅 = 5, 𝐼 = 5, 𝐾 = 5
(e) 𝐽 = 30, 𝑅 = 30, 𝐼 = 5, 𝐾 = 5
Here, the model parameters were drawn from the distributions in equations (14), 

(15), (16), and (17).

log 𝛼𝑖 ∼ 𝑁(0.1, 0.4) (14)

log 𝛼𝑟, log𝜓𝑟 ∼ 𝑁(0.0, 0.5) (15)

𝛽𝑖, 𝛽𝑟, 𝛽𝑖𝑘, 𝜀𝑟, 𝜌𝑖𝑟, 𝑑𝑖𝑘, 𝑑𝑘, 𝑏𝑖, 𝜎𝑟, 𝜃𝑗 ∼ 𝑁(0.0, 1.0) (16)

𝑏𝑖𝑘, 𝜖𝑟𝑘 ∼𝑀𝑁(𝝁,𝜮)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝝁 = {−1.50,−0.75, 0.75, 1.50},

𝜮 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.25 0.16 0.16 0.16

0.16 0.25 0.16 0.16

0.16 0.16 0.25 0.16

0.16 0.16 0.16 0.25

⎞⎟⎟⎟⎟⎟⎟⎠

(17)

2. Rating data 𝑼 were sampled randomly from each model given the true 

parameters.

3. From the sampled data, the parameters of each model were estimated. This 

study used an expected a posteriori (EAP) estimation with the Markov Chain 

Monte Carlo (MCMC) algorithm (Fox, 2010; Patz and Junker, 1999;
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Table 2. RMSE for rater and task parameters calculated in the simulation experiment.

𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟓𝟎 𝑱 = 𝟑𝟎
𝑹 = 𝟏𝟎 𝑹 = 𝟓 𝑹 = 𝟓 𝑹 = 𝟓 𝑹 = 𝟑𝟎
𝑰 = 𝟓 𝑰 = 𝟏𝟎 𝑰 = 𝟓 𝑰 = 𝟓 𝑰 = 𝟓

MFRM .054 (.048) .070 (.069) .069 (.056) .096 (.091) .103 (.082)

Patz1999 .106 (.094) .118 (.109) .107 (.095) .161 (.137) .178 (.154)

Ueno2008 .108 (.089) .073 (.074) .119 (.102) .161 (.130) .189 (.189)

Uto2016 .088 (.091) .078 (.081) .105 (.091) .130 (.110) .127 (.114)

HRM .252 (.283) .335 (.493) .477 (.467) .349 (.331) .223 (.252)

Uto and Ueno, 2016) because it is generally more robust for complex models 

than the other methods are (e.g., marginal maximum likelihood estimation 

or maximum a posteriori estimation) (Baker and Kim, 2004; Bishop, 2006; 

Fox, 2010). Here, the EAP estimates were calculated as the means of samples 

obtained from the 10,000 period to the 20,000 period at intervals of 100.

4. The root mean square error (RMSE) between the estimated parameters and 

true parameters was calculated. In our experiments, the accuracy of parameter 

estimation and ability measurement were evaluated using RMSE. Lower RMSE 

values indicate higher accuracy. This index has generally been used for

evaluation of accuracy (e.g., Ilhan, 2016; Martin-Fernandez and Revuelta, 2017; 

Uto and Ueno, 2016; Wollack et al., 2002).

5. After repeating the procedures described above 10 times, the average and 

standard deviation of the RMSE values were calculated.

Table 2 presents the average and standard deviation (in parentheses) of RMSE over 

all raters and task characteristic parameters in each model. The results show that 

a lower number of parameters produces higher accuracy of parameter estimation. 

Specifically, MFRM having the fewest parameters achieved the highest accuracy. 

Also, HRM having the most parameters had the lowest accuracy among all settings. 

In addition, when the number of raters increased, Uto2016 having the second fewest 

parameters revealed the second highest accuracy. Conversely, when the number of 

tasks increased, Ueno2008 has the second fewest parameters and achieved the second 

highest accuracy.

Furthermore, in all models except for HRM, the parameter estimation accuracy 

increases as the number of examinees increases. The accuracy of HRM did not 

increase because the number of parameters becomes large when examinees are 

numerous, as described in Subsection 5.2. Here, the accuracy of HRM increased 

as the number of raters increased because the increase of the number of parameters 

with the number of raters is low.

In addition, Table 3 presents the average and standard deviation (in parentheses) of 

RMSE for the ability. It shows that accuracy improves as the number of raters or 

tasks increases in all the models. In traditional IRT models, an increase of test items 
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Table 3. RMSE for ability calculated in the simulation experiment.

𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟓𝟎 𝑱 = 𝟑𝟎
𝑹 = 𝟏𝟎 𝑹 = 𝟓 𝑹 = 𝟓 𝑹 = 𝟓 𝑹 = 𝟑𝟎
𝑰 = 𝟓 𝑰 = 𝟏𝟎 𝑰 = 𝟓 𝑰 = 𝟓 𝑰 = 𝟓

MFRM .148 (.112) .158 (.125) .205 (.162) .226 (.170) .137 (.095)

Patz1999 .152 (.114) .153 (.122) .182 (.143) .190 (.157) .175 (.110)

Ueno2008 .166 (.130) .150 (.116) .211 (.161) .214 (.151) .151 (.115)

Uto2016 .159 (.129) .155 (.117) .177 (.125) .193 (.147) .145 (.107)

HRM .371 (.299) .302 (.239) .379 (.290) .385 (.295) .403 (.316)

has a positive effect on improving the accuracy of ability measurement (e.g. Baker 

and Kim, 2004; van der Linden and Pashley, 2000). Our experimentally obtained 

result is consistent with this fact.

Furthermore, Table 3 shows that HRM presented the worst accuracy. The reason 

for this is the fact that the accuracy of parameter estimation in the model was 

extremely low. Comparison of the other models reveals that when the number of 

raters becomes large such as in the setting (e), MFRM and Uto2016 incorporating 

lower dimensional rater parameters presented higher ability measurement accuracy. 

In the other settings, all the models except for HRM exhibited comparable accuracy 

because their parameter estimation accuracy was high, although they were slightly 

different.

5.4. Model comparison for diverse characteristics of raters and 

tasks

The previous section demonstrated that the accuracy of parameter estimation and 

ability measurement depends on the number of parameters when the true model 

generating data is known. However, when the true model is unknown, the accuracy of 

ability measurement also depends on whether the model can precisely represent the 

rater and task characteristics appearing in an assessment process, as we discussed 

in Subsection 3.5. Consequently, this subsection presents evaluation of the effects 

of each rater and task characteristic for the accuracy. This experiment is also 

conducted through simulation to generate data with biases of specific rater and task 

characteristics.

In this experiment, rating data are first sampled from the MFRM, which is the 

simplest model. Then the data are transformed while reflecting each bias of rater and 

task characteristic listed in Table 4. Here, each rule is applied to randomly selected 

60% raters or tasks, assuming more than half raters or tasks have the characteristics 

related to the rule. In each rule, 70% ratings in the data of each selected rater or 

task are transformed to biased data. When the number of categories 𝐾 = 5, the 

chance level that a rating matches an ideal rating is 20% even if ratings are provided 

randomly. In practice, a percentage of data greater than this is expected to be a 
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Table 4. Transformation rules corresponding to assessment settings in which some rater and task 
characteristics are assumed to be present.

Settings Transformation procedure

(A) Raters with low 
consistency exist

For 60% of raters 𝑟, 𝑼 𝑟 is transformed to 𝑼 ′
𝑟

by changing 70% of 
the ratings to randomly selected rating categories.

(B) Low discrimination 
tasks exist

For 60% of tasks 𝑖, 𝑼 𝑖 is transformed to 𝑼 ′
𝑖

by changing 70% of 
the ratings to randomly selected rating categories.

(C) Raters with strong 
range restriction exist

Two categories 𝑘′ and 𝑘′′ (where 𝑘′ > 𝑘′′) were first selected 
randomly. For 60% of raters 𝑟, 𝑼 𝑟 is transformed to 𝑼 ′

𝑟
by 

changing 70% of the ratings to 𝑘′ if the rating is more than the 
average point of 𝑼 ′

𝑟
, and changing it to 𝑘′′ otherwise.

(D) Difficulty to obtain 
each category differs 
among tasks

Two categories 𝑘′ and 𝑘′′ (where 𝑘′ > 𝑘′′) were first selected 
randomly. For 60% of tasks 𝑖, 𝑼 𝑖 is transformed to 𝑼 ′

𝑖
by changing 

70% of the ratings to 𝑘′ if the rating is more than the average point 
of 𝑼 ′

𝑖
, and changing it to 𝑘′′ otherwise.

(E) Rater severity differs 
among tasks

We first selected 𝑘′′′ ∈ {−𝐾 + 1, ⋯ , −1, 1, ⋯ , 𝐾 − 1} randomly. 
For 60% of task 𝑖 and rater 𝑟, 𝑼 𝑖 is transformed to 𝑼 ′

𝑖𝑟
by changing 

70% of rating 𝑥′
𝑖𝑗𝑟

∈ 𝑼 𝑖𝑟 to 𝑥′
𝑖𝑗𝑟

= 𝑥𝑖𝑗𝑟 + 𝑘′′′ (where 𝑥′
𝑖𝑗𝑟

= 1 if 
𝑥′
𝑖𝑗𝑟
< 1, and 𝑥′

𝑖𝑗𝑟
= 𝐾 if 𝑥′

𝑖𝑗𝑟
> 𝐾).

(F) All the above 
characteristics exist

All the above transformation rules are applied simultaneously.

valid rating. Consequently, in the rules, 30% data are not changed; 70% data are 

transformed.

Using the data, the experiment compares the models based on the information 

criterion and the ability measurement accuracy. As described in Subsection 3.5, 

realizing accurate ability measurement can be facilitated by selection of an optimal 

model that can precisely represent bias factors using the fewest parameters. The 

information criterion generally selects a model with an appropriate tradeoff between 

goodness of fit to data and model complexity. Therefore, a model selected by the 

information criteria is expected to provide higher accuracy of ability measurement.

As information criteria, we use the Akaike Information Criterion (AIC, Akaike, 

1974), the Widely Applicable Information Criterion (WAIC, Watanabe, 2010), 

the Bayesian Information Criterion (BIC, Schwarz, 1978), and the log Marginal 

Likelihood (ML). Of those, AIC and WAIC select a model that minimizes the 

generalization error, which is regarded as the prediction error for future data. ML 

and BIC realize consistent model selection, which means that the probability of 

selecting the true model goes to 1.0 as the data size approaches infinity. Both AIC 

and BIC have been used widely for IRT model selection because they are easily 

calculated (Fox, 2010; Nering and Ostini, 2010; Reise and Revicki, 2014; Uto and 

Ueno, 2016; van der Linden, 2016b). Both WAIC and ML have recently become 

popular with the widespread use of MCMC (e.g., Almond, 2014; Eric, 2008; Luo and 

Al-Harbi, 2017; Uto et al., 2017b; Vehtari et al., 2017) because they are calculable 

using MCMC samples (Newton and Raftery, 1994; Watanabe, 2010). Also, WAIC 
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and ML are expected to provide better results than AIC and BIC do because WAIC 

is a generalization of AIC, and because BIC is an asymptotic approximation of ML. 

In those criteria, the model which maximizes the score is regarded as the optimal 

model.

The procedures of this experiment were the following.

1. For 𝐽 = 100, 𝑅 = 5, 𝐼 = 5, and 𝐾 = 5, the true parameters of MFRM were 

selected randomly following the distributions in equation (16).

2. Given the true parameters, rating data 𝑼 were sampled from MFRM.

3. Data 𝑼 were transformed to 𝑼 ′ by applying a rule in Table 4. In Table 4, 𝑼 𝑟 =
{𝑥𝑖𝑗𝑟 ∣ 𝑟 fixed} ⊂ 𝑼 , 𝑼 𝑖 = {𝑥𝑖𝑗𝑟 ∣ 𝑖 fixed} ⊂ 𝑼 , 𝑼 𝑖𝑟 = {𝑥𝑖𝑗𝑟 ∣ 𝑖, 𝑟 fixed} ⊂ 𝑼 .

4. From each of the processed datasets 𝑼 ′, we estimated the parameters of MFRM, 

Patz1999, Ueno2008, Uto2016, and HRM by MCMC.

5. The models were ranked based on results of model selections using information 

criteria.

6. RMSEs between the true ability and the ability estimates obtained from each 

model were calculated.

7. After repeating the procedure described above 10 times, we calculated the 

average and standard deviation of the ranks and RMSEs.

Table 5 presents the average and standard deviation (in parentheses) of the estimated 

ranks and the RMSEs. In the table, bold typeface text represents the lowest rank and 

RMSE. Results show that the model performance depends strongly on whether the 

model can represent the rater and task characteristics appearing in an assessment 

process, in addition to the number of model parameters. Specifically, the following 

findings were obtained from the results.

• For data (A), in which raters with lower consistency exist, Uto2016 was selected 

as the optimal model by all information criteria. Furthermore, the model 

presented the highest accuracy of ability measurement. The result indicates 

that the model can appropriately represent the characteristics of raters with low 

consistency, and that it can estimate the ability considering its effects. Results 

show that HRM did not present high performance, although it also has the rater 

consistency parameter. The reason is that the parameter estimation accuracy is 

extremely low, as explained in the previous section.

• For data (B), in which tasks with lower discrimination exist, Patz1999 had the 

highest information criteria and ability measurement accuracy. Furthermore, 

Uto2016 and Ueno2008 had similar ability measurement accuracy. The results 

suggest that the incorporation of task discrimination parameters is necessary to 

improve the accuracy when varying task discrimination is assumed.
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Table 5. Performance of models in various assessment settings.

Setting Model AIC WAIC BIC ML RMSE(𝜽)

(A) MFRM 4.50(.45) 4.20(.36) 3.90(.09) 4.90(.09) .478(.048)

Patz1999 2.10(.09) 2.10(.09) 2.10(.09) 2.10(.09) .404(.042)

Ueno2008 2.89(.10) 2.89(.10) 2.89(.10) 2.89(.10) .394(.036)

Uto2016 1.00(.00) 1.00(.00) 1.00(.00) 1.00(.00) .295(.028)

HRM 4.30(.21) 4.60(.24) 4.90(.09) 3.90(.09) .478(.068)

(B) MFRM 4.80(.16) 4.70(.21) 3.90(.09) 4.90(.09) .548(.058)

Patz1999 1.00(.00) 1.00(.00) 1.00(.00) 1.00(.00) .353(.025)

Ueno2008 3.00(.00) 3.00(.00) 3.00(.00) 3.00(.00) .392(.047)

Uto2016 2.00(.00) 2.00(.00) 2.00(.00) 2.00(.00) .373(.026)

HRM 4.00(.20) 4.10(.29) 4.90(.09) 3.90(.09) .635(.115)

(C) MFRM 4.00(.00) 4.00(.00) 4.00(.00) 4.30(.21) .318(.069)

Patz1999 2.60(.24) 2.60(.24) 2.60(.24) 2.60(.24) .258(.035)

Ueno2008 1.00(.00) 1.00(.00) 1.00(.00) 1.00(.00) .236(.031)

Uto2016 2.40(.24) 2.40(.24) 2.40(.24) 2.40(.24) .255(.035)

HRM 5.00(.00) 5.00(.00) 5.00(.00) 4.70(.21) .385(.047)

(D) MFRM 4.00(.00) 4.00(.00) 4.00(.00) 4.40(.24) .318(.057)

Patz1999 1.50(.25) 1.50(.25) 1.60(.24) 1.50(.25) .259(.026)

Ueno2008 3.00(.00) 3.00(.00) 3.00(.00) 3.00(.00) .286(.028)

Uto2016 1.50(.25) 1.50(.25) 1.40(.24) 1.50(.25) .252(.027)

HRM 5.00(.00) 5.00(.00) 5.00(.00) 4.60(.24) .408(.054)

(E) MFRM 4.40(.24) 4.60(.24) 4.00(.20) 4.90(.09) .419(.065)

Patz1999 1.00(.00) 1.00(.00) 1.00(.00) 1.00(.00) .285(.029)

Ueno2008 2.89(.10) 2.89(.10) 2.89(.10) 2.89(.10) .343(.055)

Uto2016 2.10(.09) 2.10(.09) 2.10(.09) 2.10(.09) .350(.050)

HRM 4.40(.44) 4.20(.36) 4.80(.16) 3.90(.09) .711(.162)

(F) MFRM 4.90(.09) 4.90(.09) 4.80(.16) 4.90(.09) .735(.051)

Patz1999 1.00(.00) 1.00(.00) 1.00(.00) 1.00(.00) .671(.069)

Ueno2008 3.00(.00) 3.00(.00) 3.00(.00) 3.00(.00) .708(.066)

Uto2016 2.00(.00) 2.00(.00) 2.00(.00) 2.00(.00) .691(.102)

HRM 3.90(.09) 3.90(.09) 4.00(.20) 3.90(.09) .876(.062)

• For data (C), Ueno2008 presented the highest performance. The result indicates 

that the use of Ueno2008 is recommended when raters with strong range 

restriction exist because only this model can represent the relevant characteristic.

• For data (D), in which the difficulties in obtaining each category differ among 

tasks, Uto2016 and Patz1999 presented equally high performances because 

these models can represent this characteristic. Although HRM can also represent 

this characteristic, it showed poor performance because the parameter estimation 

accuracy was extremely low, as discussed before.

• For data (E), in which the severity of raters changed among the tasks, Patz1999 

presented the best performance because only this model can represent the 

relevant characteristic. According to the result, Patz1999 is expected to perform 

well when interactions between raters and tasks are assumed to exist.

• For data (F), for which all the above rater and task characteristics exist, all 

models presented extremely low ability measurement accuracies because no 

model can incorporate all those rater and task characteristics simultaneously. 
on.2018.e00622

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00622
http://creativecommons.org/licenses/by/4.0/


Article No~e00622

20 https://doi.org/10.1016/j.heliy

2405-8440/© 2018 The Authors. Pub
That result suggests that another model with a higher dimensional rater and task 

parameters will be required for such circumstances.

5.5. Actual data experiments

Summarizing the discussion in the simulation experiments, we conclude that the 

IRT models performance depends strongly on 1) the number of parameters and 2) the 

assumed rater and task characteristics. This section validates the conclusions through 

model applications to two actual datasets.

5.5.1. Actual data

This study uses the following two rating datasets obtained from subject experiments.

1. Report assessment data: The data consist of ratings provided by five raters to 

reports that were submitted by 30 university students for five tasks. Here, the 

tasks were provided during an e-learning course. The raters were course tutors.

2. Peer assessment data: The data consist of ratings assigned to essays written by 

30 university students for four writing tasks. Here, all the students assessed each 

other.

In both assessments, the ratings were conducted using a rubric consisting of five 

rating categories.

5.5.2. Descriptive statistics

To analyze what types of rater and task characteristics can be assumed in each 

dataset, this subsection presents an analysis based on descriptive statistics.

Rater severity is usually evaluated by the averaged ratings of each rater (Saal et 

al., 1980). A rater can be regarded as severe if the averaged rating is less than the 

midpoint of the rating scale. Task difficulty is also evaluated by the averaged rating 

assigned for each task. Range restriction can be assessed from the rate of appearance 

of each category. Raters might have range restriction characteristics if they have 

overused a few categories. Rater consistency is often estimated as the point-biserial 

correlation between the ratings given by a rater and the total ratings given by all the 

raters excluding the rater (DeMars, 2010). In classical test theory, the correlation is 

known as item–rest correlation (I-R correlation) (Bechger et al., 2003). A higher I-R 

correlation signifies that the rater is consistently giving ratings that are correlated 

well with the true ability level. Similarly, the I-R correlation between the ratings on 
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Table 6. Descriptive statistics for the report assessment data.

Avg. I-R Cor Appearance rate
for each category

Average scores of raters
for each task

1 2 3 4 5 1 2 3 4 5

Rater 1 1.820 0.781 9.8 32.9 30.1 19.6 7.7 1.852 1.933 1.704 1.483 2.133

Rater 2 1.962 0.785 6.3 30.8 33.6 19.6 9.8 1.741 2.033 1.778 2.103 2.100

Rater 3 2.268 0.651 2.0 10.1 51.5 34.3 2.0 2.375 2.167 2.321 2.167 2.667

Rater 4 2.507 0.652 0.0 3.5 49.3 39.6 7.6 2.296 2.467 2.464 2.586 2.733

Rater 5 2.705 0.739 0.7 7.4 35.8 31.8 24.3 2.533 2.633 2.897 2.759 2.767

Task 1 2.128 0.533 7.6 18.5 38.7 23.5 11.8

Task 2 2.247 0.750 5.3 13.3 44.0 26.0 11.3

Task 3 2.180 0.414 2.2 20.9 38.8 26.6 11.5

Task 4 2.160 0.651 4.1 19.2 36.3 31.5 8.9

Task 5 2.428 0.669 0.0 14.6 38.2 35.8 11.4

a task and the total ratings on all tasks excluding the task is used as an index of the 

task discrimination. It is noteworthy that the indices presented here are inappropriate 

for categorical data. However, they have been used widely for analyzing performance 

assessment data because of their simplicity and ease of calculation.

Table 6 and Table 7 present averages of the ratings, I-R correlation, and the 

appearance rate of each category for all raters and tasks for the two datasets. In the 

tables, the Avg. column presents the average rating of each rater or task, the I-R Cor
column shows the I-R correlation, and columns for 𝑘 = 1, ⋯ , 5 in Appearance rate 

for each category column show the rates of the respective categories. Here, for the 

analysis of whether the rater severity differs among the tasks, the average scores of 

raters for each task are also presented in the Average scores of raters for each task
column.

Table 6 and Table 7 show that the average ratings varied across the raters for each 

data group, which reflects that the raters have different severity characteristics.

Furthermore, we can confirm from the tables that some raters might have a strong 

range restriction for each data group. The distribution of the appearance rate for the 

categories in a rater generally becomes unimodal with a peak at a central category 

because the abilities of examinees generally follow a normal distribution. Moreover, 

it is desirable that a rater use all categories to discriminate the ability of an examinee 

more clearly. Therefore, Rater 1 and 2 in report assessment data; those of Rater 14
and 21 in peer assessment data can be regarded as desirable raters, for example. 

From comparison to them, we can confirm that the distributions of some raters are 

skewed. For example, about 85% ∼ 90% of ratings given by Rater 3 and 4 in report 
assessment data are concentrated in categories 3 and 4. Similarly, those given by 

Rater 9, and 19 in peer assessment data were concentrated in categories 2 and 3. 

This analysis suggests that these raters have stronger range restriction characteristics. 

Although we showed the examples of overusing two adjacent categories from the 

tables, various patterns of range restriction can practically occur, such as overusing 
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Table 7. Descriptive statistics for the peer assessment data.

Avg. I-R Cor Appearance rate
for each category

Average scores of raters
for each task

1 2 3 4 5 1 2 3 4

Rater 1 2.392 0.590 2.5 19.2 28.3 36.7 13.3 1.933 2.400 2.533 2.700

Rater 2 2.325 0.673 10.8 13.3 24.2 35.8 15.8 1.900 2.433 2.467 2.500

Rater 3 1.842 0.631 8.3 27.5 40.8 18.3 5.0 1.800 1.800 1.900 1.867

Rater 4 2.367 0.491 0.8 15.8 32.5 47.5 3.3 2.000 2.433 2.533 2.500

Rater 5 2.492 0.408 0.0 13.3 38.3 34.2 14.2 2.300 2.500 2.567 2.600

Rater 6 2.333 0.406 0.8 20.0 33.3 36.7 9.2 2.367 2.400 2.133 2.433

Rater 7 1.258 0.500 31.7 27.5 29.2 6.7 5.0 1.433 0.900 1.333 1.367

Rater 8 1.992 0.568 0.8 16.7 65.8 15.8 0.8 1.967 1.867 1.900 2.233

Rater 9 1.450 0.451 7.5 50.8 30.8 10.8 0.0 1.733 1.533 1.000 1.533

Rater 10 2.625 0.733 6.7 13.3 21.7 27.5 30.8 2.400 2.567 2.700 2.833

Rater 11 2.517 0.525 0.0 9.2 40.0 40.8 10.0 2.800 2.367 2.300 2.600

Rater 12 2.392 0.470 0.0 12.5 42.5 38.3 6.7 2.300 2.333 2.367 2.567

Rater 13 1.525 0.522 15.0 38.3 30.8 10.8 5.0 1.833 1.567 1.300 1.400

Rater 14 1.908 0.380 3.3 34.2 35.8 21.7 5.0 1.767 2.133 1.733 2.000

Rater 15 2.383 0.546 0.0 7.5 50.8 37.5 4.2 2.200 2.300 2.467 2.567

Rater 16 2.575 0.533 4.2 1.7 29.2 62.5 2.5 2.200 2.633 2.767 2.700

Rater 17 2.683 0.493 0.0 5.0 35.8 45.0 14.2 2.467 2.900 2.467 2.900

Rater 18 2.108 0.626 1.7 21.7 44.2 29.2 3.3 2.233 2.000 2.067 2.133

Rater 19 1.683 0.461 0.0 32.5 66.7 0.8 0.0 1.767 1.567 1.733 1.667

Rater 20 1.717 0.540 5.8 33.3 44.2 16.7 0.0 1.633 1.533 1.567 2.133

Rater 21 2.225 0.676 6.7 24.2 28.3 21.7 19.2 2.067 2.100 2.267 2.467

Rater 22 1.883 0.538 0.8 29.2 51.7 17.5 0.8 1.700 1.800 1.900 2.133

Rater 23 2.150 0.197 0.8 7.5 68.3 22.5 0.8 2.067 2.233 2.033 2.267

Rater 24 2.008 0.247 7.5 25.0 36.7 20.8 10.0 1.867 1.867 2.167 2.133

Rater 25 2.600 0.650 6.7 15.8 20.8 24.2 32.5 2.067 2.700 2.533 3.100

Rater 26 1.533 0.481 20.8 34.2 22.5 15.8 6.7 2.233 1.267 1.433 1.200

Rater 27 2.592 0.663 4.2 15.0 16.7 45.8 18.3 2.500 2.667 2.500 2.700

Rater 28 2.875 0.334 0.8 3.3 17.5 64.2 14.2 2.900 2.867 2.767 2.967

Rater 29 2.142 0.644 2.5 21.7 41.7 27.5 6.7 2.100 2.033 2.000 2.433

Rater 30 2.500 0.706 1.7 25.0 15.8 36.7 20.8 1.933 2.567 2.833 2.667

Task 1 2.082 0.474 6.8 23.2 34.2 26.6 9.2

Task 2 2.142 0.538 5.8 21.0 35.9 27.9 9.4

Task 3 2.142 0.535 4.6 20.9 37.9 29.1 7.6

Task 4 2.310 0.587 3.2 16.8 36.7 32.4 10.9

the extreme categories and only a single specific category (e.g. Eckes, 2015; Kassim, 

2011; Myford and Wolfe, 2003).

Furthermore, according to Table 6 and Table 7, the I-R correlations for raters were 

not so different in the report assessment data, but they were different in the peer 
assessment data. This result suggests that the variety of rater consistency might be 

large in the peer assessment data.

Moreover, Table 6 and Table 7 show that the rater severity was not so different among 

the tasks in both data groups. The ratings for Task 5 in the report assessment data
and those for Task 4 in the peer assessment data were slightly higher than for the 

other tasks. However, the reason is that the task difficulty was lower than the other 

tasks, as we can confirm from the Avg. column. Similarly, the reason why the ratings 

for Task 1 in the peer assessment data were low is that the difficulty was high.
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Table 8. Information criterion values calculated from actual data.

Data AIC WAIC BIC ML

Report 
assessment 
data

MFRM −809.186 −803.968 −838.611 −786.042

Patz1999 −826.134 −815.524 −875.176 −787.831

Ueno2008 −779.449 −779.449 −831.401 −756.119
Uto2016 −807.605 −797.879 −851.743 −771.613

HRM −1050.488 −1445.299 −1197.613 −868.446

Peer 
assessment 
data

MFRM −4650.06 −4646.46 −4696.3 −4615.25

Patz1999 −4662.97 −4646.08 −4776.47 −4575.41

Ueno2008 −4541.02 −4504.17 −4651.02 −4445.21

Uto2016 −4442.92 −4434.82 −4518.58 −4385.57
HRM −4683.719 −7035.085 −4842.054 −4498.075

In addition, Table 6 shows that the I-R correlations for tasks varied in the report 
assessment data. In these data, therefore, the tasks might have different

discrimination powers. Moreover, comparison of Table 6 with Table 7 reveals that 

the variety of I-R correlations for tasks in the peer assessment data was smaller 

than that in the report assessment data, which suggests that the impact of using the 

task discrimination parameters will be high for the report assessment data. We can 

confirm that the other task characteristics did not vary greatly.

From the previous discussion, we can predict that Ueno2008 will be suitable for 

the report assessment data because a large variety of range restriction and task 

discrimination were confirmed but the differences of consistency might not be large. 

For the peer assessment data, Uto2016 is expected to achieve high performance 

because raters with different consistency were detected and because the model 

incorporates the second fewest parameters in these settings. Although HRM can 

also consider the rater consistency, it will not perform better because the accuracy 

of ability measurement is extremely low, as explained in the previous section.

5.5.3. Comparisons using information criteria

This subsection compares the IRT models based on the information criteria

introduced in Subsection 5.4. The experimental procedures were the following.

1. For each dataset, the parameters used for MFRM, Patz1999, Ueno2008,

Uto2016, and HRM were estimated using the MCMC algorithm.

2. Using the estimation results, AIC, WAIC, BIC, and ML were calculated.

Table 8 presents the results. In the table, bold typeface text denotes maximum scores.

Table 8 shows that Ueno2008 was selected as the optimal model based on all 

information criteria for the report assessment data. From the discussion in

Subsection 5.5.2, this result derives from the rater consistency uniformity, the large 
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variety of the range restriction among raters, and that of the discrimination among 

tasks.

For peer assessment data, Uto2016 was selected as the optimal model based on 

the following reasons: 1) Consistency differs among raters. 2) Higher accuracy 

of parameter estimation can be realized because the model has the second fewest 

parameters in the models when the number of raters increases as in this dataset.

5.5.4. Comparisons of ability measurement accuracy

This subsection presents a comparison of the ability measurement accuracy using 

the actual datasets.

In the simulation experiments, we evaluated the accuracy using the error between the 

true ability and the estimated ability values. However, in actual data experiments, 

the true ability is unknown. Therefore, we evaluate it based on the error between 

the ability estimated using complete data and that estimated using a subset of the 

data. The subset of the data is created by changing some rating data to missing data. 

Here, we create the missing data assuming the judge pair design (Eckes, 2015; Ilhan, 

2016), which assigns only two raters to each outcome. A model that can measure the 

ability with little error when using fewer ratings is regarded as an accurate model 

(Uto and Ueno, 2016).

For accuracy evaluation according to this idea, the following experiment was 

conducted.

1. For each dataset, the parameters of MFRM, Patz1999, Ueno2008, Uto2016, and 

HRM were estimated using the MCMC algorithm.

2. Assuming the judge pair design, two raters were assigned to each outcome. Then, 

the ratings given by the raters who were not assigned to each outcome were 

changed to missing data.

3. Using the missing data, ability was estimated given the rater and task parameters 

estimated in procedure 1.

4. We calculated the RMSE, mean absolute error (MAE), and standard deviation 

(SD) of the absolute error between the ability estimated using the complete data 

and that estimated with the missing data.

Table 9 shows the results. In the table, bold typeface text represents the lowest 

RMSE and MAE values. From the results presented in Table 9, one can confirm 

that the models with higher values of the information criterion tend to provide lower 

RMSEs and MAEs. Concretely, Ueno2008 had the highest accuracy for the report 
assessment data, and Uto2016 had the highest accuracy for the peer assessment data. 
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Table 9. Ability measurement error calculated from actual data.

Report assessment data Peer assessment data
RMSE MAE SD RMSE MAE SD

MFRM 0.337 0.254 0.221 0.334 0.258 0.212

Patz1999 0.382 0.319 0.211 0.360 0.285 0.219

Ueno2008 0.238 0.154 0.181 0.316 0.229 0.217

Uto2016 0.253 0.187 0.171 0.233 0.181 0.146

HRM 0.422 0.321 0.274 0.453 0.330 0.311

The tendency is consistent with those of the simulation experiments described in 

Subsection 5.4.

Therefore, we confirmed that the model which appropriately reflects the rater and 

task characteristics assumed in the data and which has as few parameters as possible 

can achieve higher accuracy for ability measurement.

6. Discussion

The discussions and experimentally obtained results in this study show that the 

accuracy of ability measurement using IRT models depends on the following two 

points: 1) The characteristics of raters and tasks which are assumed to be present 

in the assessment process are modeled appropriately. 2) The parameters are as few 

as possible because the accuracy of parameter estimation and ability measurement 

generally decreases as the number of parameters increases. Based on those points, 

this subsection presents a summary of the model features.

The main feature of the MFRM is that it is defined by the fewest parameters of 

all models. Consequently, the MFRM can estimate model parameters from a small 

dataset more accurately than the other models can. Therefore, the model will be 

suitable when a large amount of rating data cannot be obtained. However, the 

MFRM can represent only a few rater and task characteristics. Therefore, if complex 

characteristics are assumed to occur in an assessment situation, then the MFRM will 

not perform well.

A unique feature of Patz1999 is the incorporation of a different rater severity for each 

task. When the severity of raters is likely to change between tasks, the model will 

provide better performance. However, when the raters or tasks become numerous, the 

model performance will decline because the number of parameters increases rapidly.

Ueno2008 has the unique feature that it can represent the range restriction

characteristics of raters. Therefore, the model will provide better performance when 

raters with a strong range restriction are likely to exist, as shown in the case of the 

simulation and actual data experiments. In addition, the model has another feature: 

the parameters are the second fewest when the tasks are most numerous. Therefore, 
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the model is suitable when differences in range restriction among raters are likely 

and the number of tasks is large.

Uto2015 has two features: it incorporates a rater consistency parameter; and the 

parameters are the second fewest when the number of raters is large. Therefore, 

the model is suitable when the rater consistency is likely to vary and the raters are 

numerous, as was the case for the peer assessment data in the actual data experiment.

HRM is developed based on a different modeling method. The model includes 

the assumption that each outcome of an examinee for a task has an ideal score. 

Therefore, the model would be useful for estimating those scores directly. However, 

the parameter estimation accuracy declines as the examinees become more numerous 

because the number of parameters in the model increases considerably. This feature 

is undesirable because the examinees are generally numerous in actual performance 

assessments. Therefore, the benefits of using HRM might be constrained in normal 

assessment situations.

7. Conclusion

This article described a comparison of IRT models that incorporate rater and 

task characteristic parameters. First, we examined representative rater and task 

characteristics that might affect the ability measurement accuracy. Then, we

introduced existing IRT models incorporating rater and task characteristic

parameters. We also summarized and explained the rater and task characteristics 

assumed for each model. Through simulation experiments, we next demonstrated the 

relations between the number of parameters, the accuracy of parameter estimation, 

and ability measurement. Additionally, we evaluated the performance of each 

model when some specific characteristics of tasks and raters were assumed for 

assessment processes. Finally, we also compared the models using two sets of actual 

performance assessment data. Although the experimentally obtained results were 

only examples, we were able to confirm the features and benefits of each model 

from the data.

Actually, preparing a sufficient number and quality of tasks and raters is the most 

effective means of improving the accuracy of ability measurement (Eckes, 2015; 

Myford and Wolfe, 2003). However, ideal assessments might often be infeasible 

because of time and economic constraints. For such cases, the use of IRT models 

is a convenient alternative.

As explained in Subsection 3.5, the IRT models introduced in this study assume 

unidimensionality. However, in practical assessment situations, the existence of 

multidimensional ability might be assumed. For such cases, multidimensional IRT 
on.2018.e00622

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00622
http://creativecommons.org/licenses/by/4.0/


Article No~e00622

27 https://doi.org/10.1016/j.heliy

2405-8440/© 2018 The Authors. Pub
models incorporating rater characteristic parameters are expected to present better 

performance. Developing such models is left as a subject for future work.

Moreover, the models are useful not only for estimating examinee ability but also 

for various other purposes such as the evaluation of raters, tasks, and rubric, or 

recommending optimal raters and tasks for each examinee. Some applications of IRT 

models for such purposes have recently been proposed (Nguyen et al., 2015; Uto et 

al., 2017a). In addition, the IRT models might be applicable to general rating data, 

such as item ratings in online shops and worker evaluation data in crowd sourcing 

system. We hope that, by providing this analysis, we support the development and 

use of more diverse applications.
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