離散数学第 12 回演習問題類題解答例 (8/2 修正)

2016年7月14日

1

 $f:X \to Y \mathrel{\mathrel{\triangleright}} g:Y \to Z$ が関数とすると,以下が成り立つことを証明せよ.

(1) $f \geq g$ が 1 対 1 の関数ならば, $g \circ f$ も 1 対 1 の関数である.

解答

 $x,y\in X$ に対して, $(g\circ f)(x)=(g\circ f)(y)$ とする.このとき,g(f(x))=g(f(y)) となって,g は 1 対 1 の関数であるため,f(x)=f(y).さらに,f も 1 対 1 の関数であるから,x=y. すなわち, $g\circ f$ は 1 対 1 の関数である. \square

(2) $f \geq g$ が上への関数ならば, $g \circ f$ も上への関数である.

解答

 $x\in Z$ とする.g は上への関数であるから適当な $y\in Y$ が存在して,x=g(y) となる.また f も上への関数だから,適当な $z\in X$ が存在して,y=f(z) となる.このとき $x=g(y)=g(f(z))=(g\circ f)(z)$ であるから, $g\circ f$ は上への関数である. \square

(3) f, g が 1 対 1 対応ならば, $g \circ f$ も 1 対 1 対応である.

解答

設問(1),(2)を用いて解答が得られる. \Box

(4) 任意の関数 $f:X\to Y$ に対して,集合 Z と $f=h\circ g$ となる 1 対 1 の関数となる $h:Z\hookrightarrow Y$, および,上への関数 $g:X\to Z$ が存在する.

解答

Z = f(x) とする . 写像 $g: X \to Z$ と $h: Z \to Y$ を次のように定義する .

$$g(x) = f(x) \ (x \in Z)$$
$$h(z) = z \ (z \in Z)$$

明らかに , g は上への関数で , h は 1 対 1 の関数になっており , $f=h\circ g$ を満たしている . \square

2

 $A=\{1,2,3,4,5\}$ とする.次の $f:A\to A$ は写像かどうか判断し,写像ならば,集合 $P=\{2,3\}$ の像,集合 $Q=\{4\}$ の原像,集合 $R=\{1,2\}$ の原像を求めよ.

(1) {(3,1), (4,2), (1,1), (2,3), (5,3)} 解答

写像である.

 $P = \{2,3\}$ の像: $\{3,1\}$

 $Q=\{4\}$ の原像: ϕ

 $R = \{1, 2\}$ の原像: $\{1, 3, 4\}$

写像ではない.

 $\begin{array}{c} (3) \ \{(4,2),\ (2,3),\ (5,4),\ (1,5),\ (4,2),\ (3,4)\} \\ \text{\texttt{\textbf{\it pr}}} \end{array}$

写像である.

 $P = \{2,3\}$ の像: $\{3,4\}$

 $Q = \{4\}$ の原像: $\{3,5\}$

 $R = \{1, 2\}$ の原像: $\{4\}$

3

任意の集合 A , B , 任意の写像 $f{:}A \to B$, 任意の $X,X' \subseteq A$ に対して ,

 $X \subseteq X'$ ならば $f(X) \subseteq f(X')$

であることを証明せよ.

解答

 $X \subseteq X$ であると仮定する.また, $b \in f(X)$ であると仮定する.

このとき, ある $a \in X$ が存在して, b = f(a) となる. (1)

一方で, b = f(a) を満たす $a \in X$ を考える. (2)

(1) , (2) より , $a \in X'$.

したがって,(2) で考えたaはb=f(a)と $a\in X'$ を満たす.

したがって, $b \in f(X')$ である.

ゆえに , $f(X) \subseteq f(X')$ である . \square

4

 $X=\{1,2,3,4,5\}$, $Y=\{a,b,c\}$ とし , 写像 $f:X\to Y$ を , f(1)=a , f(2)=b , f(3)=b , f(4)=a , f(5)=b で定める.このとき , 以下のものを求めよ.

 $(1) f^{-1}(a)$

解答

$$f^{-1}(a) = \{1, 4\}$$

(2) $f^{-1}(c)$

解答

$$f^{-1}(c) = \phi$$

(3) $f^{-1}(\{a,c\})$

解答

$$f^{-1}(\{a,c\}) = \{1,4\}$$

5

 $f:X \to Y$, $g:Y \to Z$ を写像とする.この時 , 以下の設問について証明せよ.

(1) $g \circ f$ が全射で g が単射ならば f が全射であることを証明せよ.

解答

 $y\in Y$ とする. $g(y)\in Z$ に対して, $g\circ f$ が全射なので,ある $x\in X$ があって, $g(y)=g\circ f(x)=g(f(x))$ である.g が単射なので y=f(x) となる.よって,f は全射である. \square

(2) $g\circ f$ が単射で f が全射ならば g が単射であることを証明せよ .

解答

 $y,y'\in Y$ について,g(y)=g(y') とする.f は全射なので,ある $x,x'\in X$ が存在して y=f(x),y'=f(x') となる.このとき, $g\circ f(x)=g(f(x))=g(y)=g(y')=g(f(x'))=g\circ f(x')$ である. $g\circ f$ は単射なので,x=x' となる.よって,y=f(x)=f(x')=y' となり g は単射である. \Box